Supersonic Combustion Mode Analysis of a Cavity Based Scramjet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Setup
2.2. Proper Orthogonal Decomposition (POD) Method
3. Results
3.1. Pressure Characteristics of Scramjet
3.2. Flow and Combustion Modes in Combustor
3.3. POD Mode (PDM) Characteristics of Flame
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Billig, F.S. Research on supersonic combustion. J. Propuls. Power 1993, 9, 499–514. [Google Scholar] [CrossRef]
- Ju, Y.; Sun, W. Plasma assisted combustion: Dynamics and chemistry. Prog. Energy Combust. Sci. 2015, 48, 21–83. [Google Scholar] [CrossRef]
- Reddy, P.N.; Venkatasubbaiah, K. Numerical Investigations on Development of Scramjet Combustor. J. Aerosp. Eng. 2015, 28, 04014120. [Google Scholar] [CrossRef]
- Meng, Y.; Gu, H.; Zhang, X. Experimental Study of Kerosene Ignition and Flame Stabilization in a Supersonic Combustor. Int. J. Turbo Jet-Engines 2019, 39, 403–410. [Google Scholar] [CrossRef]
- He, Z.; Wang, H.; Li, F.; Tian, Y.; Wan, M.; Zhu, J. Effect of Fuel-Injection Distance and Cavity Rear-Wall Height on the Flameholding Characteristics in a Mach 2.52 Supersonic Flow. Aerospace 2022, 9, 566. [Google Scholar] [CrossRef]
- Dooley, S.; Won, S.H.; Heyne, J.; Farouk, T.I.; Ju, Y.; Dryer, F.L.; Kumar, K.; Hui, X.; Sung, C.-J.; Wang, H.; et al. The experimental evaluation of a methodology for surrogate fuel formulation to emulate gas phase combustion kinetic phenomena. Combust. Flame 2012, 159, 1444–1466. [Google Scholar] [CrossRef]
- Zhu, S.-H.; Xu, X. Experimental Study on Flame Transition in a Two-Stage Struts Dual-Mode Scramjet. J. Aerosp. Eng. 2017, 30, 06017002. [Google Scholar] [CrossRef]
- Aradag, S.; Gelisli, K.A.; Yaldir, E.C. Effects of Active and Passive Control Techniques on Mach 1.5 Cavity Flow Dynamics. Int. J. Aerosp. Eng. 2017, 2017, 8253264. [Google Scholar] [CrossRef]
- Vinogradov, V.; Grachev, V.; Petrov, M.; Shikhman, I. Experimental investigation of a 2-D dual mode scramjet with hydrogenfuel at Mach 4–6. In Proceedings of the 2nd International Aerospace Planes Conference, Orlando, FL, USA, 29–31 October 1990. [Google Scholar] [CrossRef]
- Ben-Yakar, A.; Hanson, R. Cavity flameholders for ignition and flame stabilization in scramjets—Review and experimental study. In Proceedings of the 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Cleveland, OH, USA, 13–15 July 1998. [Google Scholar] [CrossRef]
- Meng, Y.; Gu, H.; Zhuang, J.; Sun, W.; Gao, Z.; Lian, H.; Yue, L.; Chang, X. Experimental study of mode transition characteristics of a cavity-based scramjet combustor during acceleration. Aerosp. Sci. Technol. 2019, 93, 105316. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Zhang, T.; Yao, W.; Fan, X.; Zhang, P. Characterization of flame stabilization modes in an ethylene-fueled supersonic combustor using time-resolved CH* chemiluminescence. Proc. Combust. Inst. 2017, 36, 2919–2925. [Google Scholar] [CrossRef] [Green Version]
- Meng, Y.; Gu, H.; Chen, F. Influence of Plasma on the Combustion Mode in a Scramjet. Aerospace 2022, 9, 73. [Google Scholar] [CrossRef]
- Vanyai, T.; Landsberg, W.O.; McIntyre, T.J.; Veeraragavan, A. OH visualization of ethylene combustion modes in the exhaust of a fundamental, supersonic combustor. Combust. Flame 2021, 226, 143–155. [Google Scholar] [CrossRef]
- Landsberg, W.O.; Vanyai, T.; McIntyre, T.J.; Veeraragavan, A. Dual/scram-mode combustion limits of ethylene and surrogate endothermically-cracked hydrocarbon fuels at Mach 8 equivalent high-enthalpy conditions. Proc. Combust. Inst. 2021, 38, 3835–3843. [Google Scholar] [CrossRef]
- Liu, X.; Cai, Z.; Tong, Y.; Zheng, H. Investigation of transient ignition process in a cavity based scramjet combustor using combined ethylene injectors. Acta Astronaut. 2017, 137, 1–7. [Google Scholar] [CrossRef]
- Cao, D.; Brod, H.E.; Yokev, N.; Michaels, D. Flame stabilization and local combustion modes in a cavity-based scramjet using different fuel injection schemes. Combust. Flame 2021, 233, 111562. [Google Scholar] [CrossRef]
- Zhu, S.; Xu, X.; Yang, Q.; Jin, Y. Intermittent back-flash phenomenon of supersonic combustion in the staged-strut scramjet engine. Aerosp. Sci. Technol. 2018, 79, 70–74. [Google Scholar] [CrossRef]
- Potturi, A.S.; Edwards, J.R. Large-eddy/Reynolds-averaged Navier–Stokes simulation of cavity-stabilized ethylene combustion. Combust. Flame 2015, 162, 1176–1192. [Google Scholar] [CrossRef]
- Tian, Y.; Yang, S.; Le, J.; Su, T.; Yue, M.; Zhong, F.; Tian, X. Investigation of combustion and flame stabilization modes in a hydrogen fueled scramjet combustor. Int. J. Hydrog. Energy 2016, 41, 19218–19230. [Google Scholar] [CrossRef]
- Wang, Z.; Cai, Z.; Sun, M.; Wang, H.; Zhang, Y. Large Eddy Simulation of the flame stabilization process in a scramjet combustor with rearwall-expansion cavity. Int. J. Hydrog. Energy 2016, 41, 19278–19288. [Google Scholar] [CrossRef]
- Micka, D.J.; Driscoll, J.F. Combustion characteristics of a dual-mode scramjet combustor with cavity flameholder. Proc. Combust. Inst. 2009, 32, 2397–2404. [Google Scholar] [CrossRef]
- Nakaya, S.; Kinoshita, R.; Lee, J.; Ishikawa, H.; Tsue, M. Analysis of supersonic combustion characteristics of ethylene/methane fuel mixture on high-speed measurements of CH* chemiluminescence. Proc. Combust. Inst. 2019, 37, 3749–3756. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Z.; Sun, M.; Wu, H. Combustion modes of hydrogen jet combustion in a cavity-based supersonic combustor. Int. J. Hydrog. Energy 2013, 38, 12078–12089. [Google Scholar] [CrossRef]
- Feng, R.; Zhu, J.; Wang, Z.; Zhang, F.; Ban, Y.; Zhao, G.; Tian, Y.; Wang, C.; Wang, H.; Cai, Z.; et al. Suppression of combustion mode transitions in a hydrogen-fueled scramjet combustor by a multi-channel gliding arc plasma. Combust. Flame 2022, 237, 111843. [Google Scholar] [CrossRef]
- Wang, T.; Li, G.; Yang, Y.; Wang, Z.; Cai, Z.; Sun, M. Combustion modes periodical transition in a hydrogen-fueled scramjet combustor with rear-wall-expansion cavity flameholder. Int. J. Hydrog. Energy 2020, 45, 3209–3215. [Google Scholar] [CrossRef]
- Zhu, S.; Xu, X.; Ji, P. Flame Stabilization and Propagation in Dual-Mode Scramjet with Staged-Strut Injectors. AIAA J. 2017, 55, 171–179. [Google Scholar] [CrossRef]
- Yan, Z.; Shaohua, Z.; Bing, C.; Xu, X. Hysteresis of mode transition in a dual-struts based scramjet. Acta Astronaut. 2016, 128, 147–159. [Google Scholar] [CrossRef]
- Zhang, J.; Chang, J.; Ma, J.; Zhang, C.; Bao, W. Investigation of flame establishment and stabilization mechanism in a kerosene fueled supersonic combustor equipped with a thin strut. Aerosp. Sci. Technol. 2017, 70, 152–160. [Google Scholar] [CrossRef]
- Masumoto, R.; Tomioka, S.; Kudo, K.; Murakami, A.; Kato, K.; Yamasaki, H. Experimental Study on Combustion Modes in a Supersonic Combustor. J. Propuls. Power 2011, 27, 346–355. [Google Scholar] [CrossRef]
- Aguilera, C.; Yu, K.H. Scramjet to ramjet transition in a dual-mode combustor with fin-guided injection. Proc. Combust. Inst. 2017, 36, 2911–2918. [Google Scholar] [CrossRef]
- Fotia, M.L.; Driscoll, J.F. Ram-Scram Transition and Flame/Shock-Train Interactions in a Model Scramjet Experiment. J. Propuls. Power 2013, 29, 261–273. [Google Scholar] [CrossRef]
- Choi, J.Y.; Yang, V.; Fuhua, M.; Won, S.H.; Jeung, I.S. DES combustion modeling of a scramjet combustor. AIAA Pap. 2006, 5097, 2006. [Google Scholar]
- Li, J.; Ma, F.; Yang, V.; Lin, K.-C.; Jackson, T. A Comprehensive Study of Combustion Oscillations in a Hydrocarbon-Fueled Scramjet Engine. In Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 8–11 January 2007. [Google Scholar] [CrossRef]
- Ma, F.; Li, J.; Yang, V.; Lin, K.-C.; Jackson, T. Thermoacoustic Flow Instability in a Scramjet Combustor. In Proceedings of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Tucson, Arizona, 10–13 July 2005. [Google Scholar] [CrossRef]
- Lin, K.-C.; Jackson, K.; Behdadnia, R.; Jackson, T.A.; Ma, F.; Yang, V. Acoustic Characterization of an Ethylene-Fueled Scramjet Combustor with a Cavity Flameholder. J. Propuls. Power 2010, 26, 1161–1170. [Google Scholar] [CrossRef] [Green Version]
- Allison, P.M.; Frederickson, K.; Kirik, J.W.; Rockwell, R.D.; Lempert, W.R.; Sutton, J.A. Investigation of supersonic combustion dynamics via 50 kHz CH* chemiluminescence imaging. Proc. Combust. Inst. 2017, 36, 2849–2856. [Google Scholar] [CrossRef]
- Li, X.; Lei, Q.; Zhao, X.; Fan, W.; Chen, S.; Chen, L.; Tian, Y.; Zhou, Q. Combustion Characteristics of a Supersonic Combustor with a Large Cavity Length-to-Depth Ratio. Aerospace 2022, 9, 214. [Google Scholar] [CrossRef]
Cases | Equivalence Ratio φ | Combustion Stabilization Mode |
---|---|---|
1 | 0.10 | Cavity shear layer |
2 | 0.15 | Jet wake |
3 | 0.20 | Jet front |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, Y.; Sun, W.; Gu, H.; Chen, F.; Zhou, R. Supersonic Combustion Mode Analysis of a Cavity Based Scramjet. Aerospace 2022, 9, 826. https://doi.org/10.3390/aerospace9120826
Meng Y, Sun W, Gu H, Chen F, Zhou R. Supersonic Combustion Mode Analysis of a Cavity Based Scramjet. Aerospace. 2022; 9(12):826. https://doi.org/10.3390/aerospace9120826
Chicago/Turabian StyleMeng, Yu, Wenming Sun, Hongbin Gu, Fang Chen, and Ruixu Zhou. 2022. "Supersonic Combustion Mode Analysis of a Cavity Based Scramjet" Aerospace 9, no. 12: 826. https://doi.org/10.3390/aerospace9120826
APA StyleMeng, Y., Sun, W., Gu, H., Chen, F., & Zhou, R. (2022). Supersonic Combustion Mode Analysis of a Cavity Based Scramjet. Aerospace, 9(12), 826. https://doi.org/10.3390/aerospace9120826