Numerical and Experimental Research on Flight Control of a V-Tail Configuration for the Wind Tunnel Model of Aircraft
Abstract
1. Introduction
2. Model Design and Manufacture
2.1. Aerodynamic Shape Design
2.2. Aerodynamic Parameters
2.3. Aircraft Trimming
2.4. Aerodynamic Center
2.5. Detailed Structure Design of Full Model Aircraft
2.6. V-Tail Actuator Design
3. Flight Control Law
3.1. Dynamic Equation
3.2. Measurement of Moment of Inertia
3.3. Simulation of the Flight Control Law
4. Wind Tunnel Test
4.1. Test Condition 1: Static Stability Verification
4.2. Test Condition 2: Attitude Control
4.3. Test Condition 3: Height Control
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
M | Pitch moment relative to center of gravity |
L | Lift force |
AC | Aerodynamic center |
XAC | Distance between center of gravity and aerodynamic center |
M0 | Zero lift pitch moment (relative to aerodynamic center) |
ρ | Air density |
V | Air velocity |
S | Reference area |
Mean aerodynamic chord | |
CM | Pitch moment coefficient relative to center of gravity |
CL | Lift force coefficient |
CM0 | Zero lift pitch moment coefficient (relative to aerodynamic center) |
A1A2B1B2 | Slope and intercept of fitting curve |
Angle of attack | |
m | Mass |
F | Horizontal reaction force |
Climb angle | |
D | Aerodynamic drag |
Iy | Pitch moment of inertia |
q | Pitch angular velocity |
My | Moment about y-axis (pitch moment) |
Pitch angle | |
h | Height |
Component of flight relative velocity in x direction | |
MO | Moment relative to fix point O |
CG | Center of gravity |
l | Distance between CG and fix point O |
Swing angle of the compound pendulum | |
IO | Moment of inertia relative to point O |
Swing angular acceleration | |
Angular frequency | |
ICG | Moment of inertia relative to CG |
T | Swing period |
References
- Gong, W.; Xia, M.; Yue, L.; Zheng, J.; Zheng, S. Numerical Investigation on Flow Features and Static Stability Characteristics of the V-Tail Aircraft. Flight Dyn. 2021, 39, 19–24. [Google Scholar] [CrossRef]
- Sanchez-Carmona, A.; Cuerno-Rejado, C. Vee-Tail Conceptual Design Criteria for Commercial Transport Aeroplanes. Chin. J. Aeronaut. 2019, 32, 595–610. [Google Scholar] [CrossRef]
- Phillips, W.F.; Hansen, A.B.; Nelson, W.M. Effects of Tail Dihedral on Static Stability. J. Aircr. 2006, 43, 1829–1837. [Google Scholar] [CrossRef]
- Metz, P. Flight Test of the YF-23A Advanced Tactical Fighter. In Proceedings of the Aerospace Design Conference, Irvine, CA, USA, 3–6 February 1992; American Institute of Aeronautics and Astronautics: Irvine, CA, USA, 1992. [Google Scholar]
- García-Hernández, L.; Cuerno-Rejado, C.; Pérez-Cortés, M. Dynamics and Failure Models for a V-Tail Remotely Piloted Aircraft System. J. Guid. Control Dyn. 2018, 41, 505–513. [Google Scholar] [CrossRef]
- Abzug, M.J. V-Tail Stalling at Combined Angles of Attack and Sideslip. J. Aircr. 1999, 36, 729–731. [Google Scholar] [CrossRef]
- Qiao, F.; Shi, J.; Qu, X.; Lyu, Y. Adaptive Back-Stepping Neural Control for an Embedded and Tiltable V-Tail Morphing Aircraft. Int. J. Control Autom. Syst. 2022, 20, 678–690. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, N.; Liu, H.; Yue, T. Stability Characteristics and Airworthiness Requirements of Blended Wing Body Aircraft with Podded Engines. Chin. J. Aeronaut. 2022, 35, 77–86. [Google Scholar] [CrossRef]
- Leshikar, C.; Gosnell, S.; Gomez, E.; Moy, L.; Valasek, J. System Identification Flight Testing of Inverted V-Tail Small Unmanned Air System. In Proceedings of the AIAA SCITECH 2022 Forum, San Diego, CA, USA, 3–7 January 2022; p. 15. [Google Scholar]
- Jin, W.; Yang, Z.; Meng, D.; Chen, Y.; Huang, H.; Wang, Y.; He, S.; Chen, Y. Strength Desigh and Test of Advanced Fighter All-Moving Twin V-Tail Buffet. Acta Aeronaut. Astronaut. Sin. 2020, 41, 15. [Google Scholar] [CrossRef]
- Zhu, W. Models for Wind Tunnel Tests Based on Additive Manufacturing Technology. Prog. Aerosp. Sci. 2019, 110, 100541. [Google Scholar] [CrossRef]
- Fujii, K. Progress and Future Prospects of CFD in Aerospace—Wind Tunnel and Beyond. Prog. Aerosp. Sci. 2005, 41, 455–470. [Google Scholar] [CrossRef]
- Damljanović, D.; Vuković, Đ.; Ocokoljić, G.; Ilić, B.; Rašuo, B. Wind Tunnel Testing of ONERA-M, AGARD-B and HB-2 Standard Models at Off-Design Conditions. Aerospace 2021, 8, 275. [Google Scholar] [CrossRef]
- Ocokoljić, G.; Rašuo, B.; Kozić, M. Supporting System Interference on Aerodynamic Characteristics of an Aircraft Model in a Low-Speed Wind Tunnel. Aerosp. Sci. Technol. 2017, 64, 133–146. [Google Scholar] [CrossRef]
- Ivanco, T.G. Unique Testing Capabilities of the NASA Langley Transonic Dynamics Tunnel, an Exercise in Aeroelastic Scaling. In Proceedings of the AIAA Ground Testing Conference, San Diego, CA, USA, 24–27 June 2013; p. 23. [Google Scholar]
- Yang, X.; Liu, N.; Guo, C.; Zhang, Y.; Sun, J.; Zhang, G.; Yu, X.; Yu, J.; Hou, L. A Survey of Aeroelastic Wind Tunnel Test Techonlogy of Flight Vehicles. Acta Aerodyn. Sin. 2018, 36, 995–1008. [Google Scholar] [CrossRef]
- Raju Kulkarni, A.; La Rocca, G.; Veldhuis, L.L.M.; Eitelberg, G. Sub-Scale Flight Test Model Design: Developments, Challenges and Opportunities. Prog. Aerosp. Sci. 2022, 130, 36. [Google Scholar] [CrossRef]
- Gebbink, R.; Wang, G.; Zhong, M. High-Speed Wind Tunnel Test of the CAE Aerodynamic Validation Model. Chin. J. Aeronaut. 2018, 31, 439–447. [Google Scholar] [CrossRef]
- Tang, D.; Dowell, E.H. Effects of a Free-to-Roll Fuselage on Wing Flutter: Theory and Experiment. AIAA J. 2014, 52, 2625–2632. [Google Scholar] [CrossRef]
- Scott, R.C.; Allen, T.; Castelluccio, M.; Sexton, B.; Claggett, S.; Dykman, J.R.; Funk, C.; Coulson, D.; Bartels, R.E. Aeroservoelastic Wind-Tunnel Test of the SUGAR Truss Braced Wing Wind-Tunnel Model. In Proceedings of the 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kissimmee, FL, USA, 5–9 January 2015; American Institute of Aeronautics and Astronautics: Kissimmee, FL, USA, 2015. [Google Scholar]
- Allen, T.; Sexton, B.; Scott, M.J. SUGAR Truss Braced Wing Full Scale Aeroelastic Analysis and Dynamically Scaled Wind Tunnel Model Development. In Proceedings of the 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kissimmee, FL, USA, 5–9 January 2015; American Institute of Aeronautics and Astronautics: Kissimmee, FL, USA, 2015. [Google Scholar]
- Tang, J.; Wu, F.; Pu, L.; Zeng, X.; Zhang, H.; Zhang, L. Development of a Two Degrees of Freedom Support System for Full Model Gust Tests. J. Exp. Fluid Mech. 2021, 35, 94–99. [Google Scholar] [CrossRef]
- Gu, X.; Duc Vo, H.; Mureithi, N.W.; Laurendeau, E. Plasma Gurney Flap Flight Control at Low Angle of Attack. J. Aircr. 2022, 1–18. [Google Scholar] [CrossRef]
- Courtland, W.J.D.; Perkins, D.; Hage, R.E. Airplane Performance, Stability and Control. J. R. Aeronaut. Soc. 1950, 54, 607–608. [Google Scholar]
- Cusati, V.; Corcione, S.; Ciliberti, D.; Nicolosi, F. Design Evolution and Wind Tunnel Tests of a Three-Lifting Surface Regional Transport Aircraft. Aerospace 2022, 9, 133. [Google Scholar] [CrossRef]
- Zhao, D.; Lu, Z.; Zhao, H.; Li, X.Y.; Wang, B.; Liu, P. A Review of Active Control Approaches in Stabilizing Combustion Systems in Aerospace Industry. Prog. Aerosp. Sci. 2018, 35–60. [Google Scholar] [CrossRef]
- Jasa, J.P.; Brelje, B.J.; Gray, J.S.; Mader, C.A.; Martins, J.R.R.A. Large-Scale Path-Dependent Optimization of Supersonic Aircraft. Aerospace 2020, 7, 152. [Google Scholar] [CrossRef]
- Junos, M.H.; Mohd Suhadis, N.; Zihad, M.M. Experimental Determination of the Moment of Inertias of USM E-UAV. AMM 2013, 465–466, 368–372. [Google Scholar] [CrossRef]
- Hong, S.-I.; Hong, S.-C. Moments of Inertia of Spheres without Integration in Arbitrary Dimensions. Eur. J. Phys. 2014, 35, 025003. [Google Scholar] [CrossRef]
- Katz, J.; Walters, R. Effects of Large Blockage in Wind-Tunnel Testing. J. Aircr. 1995, 32, 1149–1152. [Google Scholar] [CrossRef]
- Lei, P.; Yu, L.; Chen, D.; Lyu, B. Influence of Flight Control Law on Body Freedom Flutter Characteristics: Experimental Study. Acta Aeronaut. Astronaut. Sin. 2021, 42, 124378. [Google Scholar] [CrossRef]
- Lei, P.; Lyu, B.; Yu, L.; Chen, D. Influence of Inertial Parameters on Body Freedom Flutter of Flying Wings. Acta Aerodyn. Sin. 2021, 39, 18–24. [Google Scholar]
- He, S.; Guo, S.; Liu, Y.; Luo, W. Passive Gust Alleviation of a Flying-Wing Aircraft by Analysis and Wind-Tunnel Test of a Scaled Model in Dynamic Similarity. Aerosp. Sci. Technol. 2021, 113, 106689. [Google Scholar] [CrossRef]
- Shi, P.; Liu, J.; Gu, Y.; Yang, Z.; Marzocca, P. Full-Span Flying Wing Wind Tunnel Test: A Body Freedom Flutter Study. Fluids 2020, 5, 34. [Google Scholar] [CrossRef]
- Yang, J.; Wu, Z.; Dai, Y.; Ma, C.; Yang, C. Wind Tunnel Test of Gust Alleviation Active Control for Flying Wing Configuration Aircraft. J. Beijing Univ. Aeronaut. Astronaut. 2017, 43, 184–192. [Google Scholar]
- Ricci, S.; De Gaspari, A.; Riccobene, L.; Fonte, F. Design and Wind Tunnel Test Validation of Gust Load Alleviation Systems. In Proceedings of the 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Grapevine, TX, USA, 9–13 January 2017; American Institute of Aeronautics and Astronautics: Grapevine, TX, USA, 2017. [Google Scholar]
- Scott, R.; Coulson, D.; Castelluccio, M.; Heeg, J. Aeroservoelastic Wind-Tunnel Tests of a Free-Flying, Joined-Wing SensorCraft Model for Gust Load Alleviation. In Proceedings of the 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Denver, CO, USA, 4–7 April 2011; American Institute of Aeronautics and Astronautics: Denver, CO, USA, 2011. [Google Scholar]
Parameters | Value |
---|---|
Scale ratio | 8% |
Length | 1.82 m |
Wingspan | 1.28 m |
MAC | 0.32 m |
Dihedral angle of V-tails | 40° |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Qian, W.; Bai, Y.; Xu, X. Numerical and Experimental Research on Flight Control of a V-Tail Configuration for the Wind Tunnel Model of Aircraft. Aerospace 2022, 9, 792. https://doi.org/10.3390/aerospace9120792
Liu J, Qian W, Bai Y, Xu X. Numerical and Experimental Research on Flight Control of a V-Tail Configuration for the Wind Tunnel Model of Aircraft. Aerospace. 2022; 9(12):792. https://doi.org/10.3390/aerospace9120792
Chicago/Turabian StyleLiu, Jun, Wei Qian, Yuguang Bai, and Xiaole Xu. 2022. "Numerical and Experimental Research on Flight Control of a V-Tail Configuration for the Wind Tunnel Model of Aircraft" Aerospace 9, no. 12: 792. https://doi.org/10.3390/aerospace9120792
APA StyleLiu, J., Qian, W., Bai, Y., & Xu, X. (2022). Numerical and Experimental Research on Flight Control of a V-Tail Configuration for the Wind Tunnel Model of Aircraft. Aerospace, 9(12), 792. https://doi.org/10.3390/aerospace9120792