Ammonia and Phosphine in the Clouds of Venus as Potentially Biological Anomalies
Abstract
:1. Introduction
2. Anomalies in the Clouds of Venus: Ammonia and Phosphine
2.1. Ammonia
2.2. Phosphine
3. The Role of Anomalies in Scientific Discovery
3.1. A Case Study: The Discovery of Uranus the Planet
3.2. How Ancillary (vs. Fundamental) Principles Can Blind Scientists to Alternative Explanations of Anomalies
4. Ammonia and Phosphine as Potentially Biological Anomalies
We can best explore astrobiologically by roaming widely and keeping a sharp eye out for anomalous order of any kind. This could include strange, nonequilibrium mixtures of gases (or, conversely, too much equilibrium in places where other known processes are creating disequilibrium!), strange mechanical shapes and assemblages, or rhythmic environmental changes without any obvious cause. Such anomalous order will indicate either an interesting nonbiological process that we need to learn about or that we have at last found new life.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hitchcock, D.R.; Lovelock, J.E. Life detection by atmospheric analysis. Icarus 1967, 7, 149–159. [Google Scholar] [CrossRef]
- Catling, D.C.; Kasting, J.F. Atmospheric Evolution on Inhabited and Lifeless Worlds; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Krissansen-Totton, J.; Bergsman, D.S.; Catling, D.C. On Detecting Biospheres from Chemical Thermodynamic Disequilibrium in Planetary Atmospheres. Astrobiology 2016, 16, 39–67. [Google Scholar] [CrossRef] [Green Version]
- Schwieterman, E.W.; Kiang, N.Y.; Parenteau, M.N.; Harman, C.E.; DasSarma, S.; Fisher, T.M.; Arney, G.N.; Hartnett, H.E.; Reinhard, C.T.; Olson, S.L.; et al. Exoplanet Biosignatures: A Review of Remotely Detectable Signs of Life. Astrobiology 2018, 18, 663–708. [Google Scholar] [CrossRef] [Green Version]
- Yung, Y.L.; Demore, W.B. Photochemistry of the stratosphere of Venus: Implications for atmospheric evolution. Icarus 1982, 51, 199–247. [Google Scholar] [CrossRef]
- Bertaux, J.L.; Widemann, T.; Hauchecorne, A.; Moroz, V.I.; Ekonomov, A.P. VEGA 1 and VEGA 2 entry probes: An investigation of local UV absorption (220-400 nm) in the atmosphere of Venus (SO2, aerosols, cloud structure). J. Geophys. Res. 1996, 101, 12709–12746. [Google Scholar] [CrossRef]
- Ignatiev, N.I.; Moroz, V.I.; Zasova, L.V.; Khatuntsev, I.V. Water vapour in the middle atmosphere of Venus:. An improved treatment of the Venera 15 ir spectra. Planet. Space Sci. 1999, 47, 1061–1075. [Google Scholar] [CrossRef]
- de Bergh, C.; Moroz, V.I.; Taylor, F.W.; Crisp, D.; Bézard, B.; Zasova, L.V. The composition of the atmosphere of Venus below 100 km altitude: An overview. Planet. Space Sci. 2006, 54, 1389–1397. [Google Scholar] [CrossRef]
- Oyama, V.I.; Carle, G.C.; Woeller, F.; Pollack, J.B.; Reynolds, R.T.; Craig, R.A. Pioneer Venus gas chromatography of the lower atmosphere of Venus. J. Geophys. Res. 1980, 85, 7891–7902. [Google Scholar] [CrossRef]
- Donahue, T.M.; Hodges, R.R. Venus methane and water. Geophys. Rev. Lett. 1993, 20, 591–594. [Google Scholar] [CrossRef]
- Krasnopolsky, V.A. Chemical composition of Venus atmosphere and clouds: Some unsolved problems. Planet. Space Sci. 2006, 54, 1352–1359. [Google Scholar] [CrossRef]
- Yung, Y.L.; Liang, M.C.; Jiang, X.; Shia, R.L.; Lee, C.; Bézard, B.; Marcq, E. Evidence for carbonyl sulfide (OCS) conversion to CO in the lower atmosphere of Venus. J. Geophys. Res. 2009, 114, E00B34. [Google Scholar] [CrossRef] [Green Version]
- Bierson, C.J.; Zhang, X. Chemical Cycling in the Venusian Atmosphere: A Full Photochemical Model From the Surface to 110 km. J. Geophys. Res. 2020, 125, e06159. [Google Scholar] [CrossRef]
- Andreychikov, B.; Akhmetshin, I.; Korchuganov, B.; Mukhin, L.; Ogorodnikov, B.; Petryanov, I.; Skitovich, V. X-ray radiometric analysis of the cloud aerosol of Venus by the Vega 1 and 2 probes. Cosmic. Res. 1987, 25, 16. [Google Scholar]
- Krasnopolsky, V.A. Vega mission results and chemical composition of Venusian clouds. Icarus 1989, 80, 202–210. [Google Scholar] [CrossRef]
- Rimmer, P.B.; Jordan, S.; Constantinou, T.; Woitke, P.; Shorttle, O.; Hobbs, R.; Paschodimas, A. Hydroxide Salts in the Clouds of Venus: Their Effect on the Sulfur Cycle and Cloud Droplet pH. Planet. Sci. J. 2021, 2, 133. [Google Scholar] [CrossRef]
- Petkowski, J.J.; Seager, S.; Grinspoon, D.H.; Bains, W.; Ranjan, S.; Rimmer, P.B.; Buchanan, W.P.; Agrawal, R.; Mogul, R.; Carr, C. Venus’ Atmosphere Anomalies as Motivation for Astrobiology Missions. Astrobiology 2022, submitted.
- Limaye, S.S.; Zelenyi, L.; Zasova, L. Introducing the Venus Collection—Papers from the First Workshop on Habitability of the Cloud Layer. Astrobiology 2021, 21, 1157–1162. [Google Scholar] [CrossRef]
- Surkov, Y.A.; Andrejchikov, B.M.; Kalinkina, O.M. On the content of ammonia in the Venus atmosphere based on data obtained from Venera 8 automatic station. Akad. Nauk. SSSR Dokl. 1973, 213, 296–298. [Google Scholar]
- Surkov, I.A.; Andreichikov, B.M.; Kalinkina, O.M. Gas-analysis equipment for the automatic interplanetary stations Venera-4, 5, 6 and 8. Space Sci. Instrum. 1977, 3, 301–310. [Google Scholar]
- Goettel, K.A.; Lewis, J.S. Ammonia in the atmosphere of Venus. J. Atmos. Sci. 1974, 31, 828–830. [Google Scholar] [CrossRef]
- Mogul, R.; Limaye, S.S.; Way, M.J.; Cordova, J.A. Venus’ Mass Spectra Show Signs of Disequilibria in the Middle Clouds. Geophys. Res. Lett. 2021, 48, e91327. [Google Scholar] [CrossRef]
- Bains, W.; Petkowski, J.J.; Rimmer, P.B.; Seager, S. Production of ammonia makes Venusian clouds habitable and explains observed cloud-level chemical anomalies. Proc. Natl. Acad. Sci. USA 2021, 118, e2110889118. [Google Scholar] [CrossRef]
- Grinspoon, D.H. Venus Revealed: A New Look below the Clouds of Our Mysterious Twin Planet; Addison-Wesley: Boston, MA, USA, 1997. [Google Scholar]
- Schulze-Makuch, D.; Irwin, L.N. Reassessing the Possibility of Life on Venus: Proposal for an Astrobiology Mission. Astrobiology 2002, 2, 197–202. [Google Scholar] [CrossRef]
- Schulze-Makuch, D.; Grinspoon, D.H.; Abbas, O.; Irwin, L.N.; Bullock, M.A. A Sulfur-Based Survival Strategy for Putative Phototrophic Life in the Venusian Atmosphere. Astrobiology 2004, 4, 11–18. [Google Scholar] [CrossRef]
- Grinspoon, D.H.; Bullock, M.A. Astrobiology and Venus Exploration; Geophysical Monograph Series; American Geophysical Unio: Washington, DC, USA, 2007; Volume 176, pp. 191–206. [Google Scholar] [CrossRef] [Green Version]
- Greaves, J.S.; Richards, A.M.S.; Bains, W.; Rimmer, P.B.; Sagawa, H.; Clements, D.L.; Seager, S.; Petkowski, J.J.; Sousa-Silva, C.; Ranjan, S.; et al. Phosphine gas in the cloud decks of Venus. Nat. Astron. 2021, 5, 655–664. [Google Scholar] [CrossRef]
- Sousa-Silva, C.; Seager, S.; Ranjan, S.; Petkowski, J.J.; Zhan, Z.; Hu, R.; Bains, W. Phosphine as a Biosignature Gas in Exoplanet Atmospheres. Astrobiology 2020, 20, 235–268. [Google Scholar] [CrossRef]
- Bains, W.; Petkowski, J.J.; Seager, S.; Ranjan, S.; Sousa-Silva, C.; Rimmer, P.B.; Zhan, Z.; Greaves, J.S.; Richards, A.M.S. Phosphine on Venus Cannot Be Explained by Conventional Processes. Astrobiology 2021, 21, 1277–1304. [Google Scholar] [CrossRef]
- Snellen, I.A.G.; Guzman-Ramirez, L.; Hogerheijde, M.R.; Hygate, A.P.S.; van der Tak, F.F.S. Re-analysis of the 267 GHz ALMA observations of Venus. No statistically significant detection of phosphine. Astron. Astrophys. 2020, 644, L2. [Google Scholar] [CrossRef]
- Akins, A.B.; Lincowski, A.P.; Meadows, V.S.; Steffes, P.G. Complications in the ALMA Detection of Phosphine at Venus. Astrophys. J. Lett. 2021, 907, L27. [Google Scholar] [CrossRef]
- Villanueva, G.; Cordiner, M.; Irwin, P.; de Pater, I.; Butler, B.; Gurwell, M.; Milam, S.; Nixon, C.; Luszcz-Cook, S.; Wilson, C.; et al. No evidence of phosphine in the atmosphere of Venus from independent analyses. Nat. Astron. 2021, 5, 631–635. [Google Scholar] [CrossRef]
- Greaves, J.S.; Richards, A.M.S.; Bains, W.; Rimmer, P.B.; Clements, D.L.; Seager, S.; Petkowski, J.J.; Sousa-Silva, C.; Ranjan, S.; Fraser, H.J. Reply to: No evidence of phosphine in the atmosphere of Venus from independent analyses. Nat. Astron. 2021, 5, 636–639. [Google Scholar] [CrossRef]
- Greaves, J.S.; Richards, A.M.S.; Bains, W.; Rimmer, P.B.; Sagawa, H.; Clements, D.L.; Seager, S.; Petkowski, J.J.; Sousa-Silva, C.; Ranjan, S.; et al. Addendum: Phosphine gas in the cloud deck of Venus. Nat. Astron. 2021, 5, 726–728. [Google Scholar] [CrossRef]
- Lincowski, A.P.; Meadows, V.S.; Crisp, D.; Akins, A.B.; Schwieterman, E.W.; Arney, G.N.; Wong, M.L.; Steffes, P.G.; Parenteau, M.N.; Domagal-Goldman, S. Claimed Detection of PH3 in the Clouds of Venus Is Consistent with Mesospheric SO2. Astrophys. J. Lett. 2021, 908, L44. [Google Scholar] [CrossRef]
- Thompson, M.A. The statistical reliability of 267-GHz JCMT observations of Venus: No significant evidence for phosphine absorption. Mon. Not. R. Astron. Soc. 2021, 501, L18–L22. [Google Scholar] [CrossRef]
- Greaves, J.S.; Rimmer, P.B.; Richards, A.M.S.; Petkowski, J.J.; Bains, W.; Ranjan, S.; Seager, S.; Clements, D.L.; Silva, C.S.; Fraser, H.J. Low levels of sulphur dioxide contamination of Venusian phosphine spectra. Mon. Not. R. Astron. Soc. 2022, 514, 2994–3001. [Google Scholar] [CrossRef]
- Cordiner, M.; Villanueva, G.; Wiesemeyer, H.; Milam, S.; de Pater, I.; Moullet, A.; Aladro, R.; Nixon, C.; Thelen, A.; Charnley, S.; et al. Phosphine in the Venusian Atmosphere: A Strict Upper Limit from SOFIA GREAT Observations. Geophys. Res. Lett. 2022, 49, e2022GL101055. [Google Scholar] [CrossRef]
- Encrenaz, T.; Greathouse, T.K.; Marcq, E.; Widemann, T.; Bézard, B.; Fouchet, T.; Giles, R.; Sagawa, H.; Greaves, J.; Sousa-Silva, C. A stringent upper limit of the PH3 abundance at the cloud top of Venus. Astron. Astrophys. 2020, 643, L5. [Google Scholar] [CrossRef]
- Trompet, L.; Robert, S.; Mahieux, A.; Schmidt, F.; Erwin, J.; Vandaele, A.C. Phosphine in Venus’ atmosphere: Detection attempts and upper limits above the cloud top assessed from the SOIR/VEx spectra. Astron. Astrophys. 2021, 645, L4. [Google Scholar] [CrossRef]
- Omran, A.; Oze, C.; Jackson, B.; Mehta, C.; Barge, L.M.; Bada, J.; Pasek, M.A. Phosphine Generation Pathways on Rocky Planets. Astrobiology 2021, 21, 1264–1276. [Google Scholar] [CrossRef]
- Truong, N.; Lunine, J.I. Volcanically extruded phosphides as an abiotic source of Venusian phosphine. Proc. Natl. Acad. Sci. USA 2021, 118, e2021689118. [Google Scholar] [CrossRef]
- Bains, W.; Shorttle, O.; Ranjan, S.; Rimmer, P.B.; Petkowski, J.J.; Greaves, J.S.; Seager, S. Only extraordinary volcanism can explain the presence of parts per billion phosphine on Venus. Proc. Natl. Acad. Sci. USA 2022, 119, e2121702119. [Google Scholar] [CrossRef] [PubMed]
- Bains, W.; Shorttle, O.; Ranjan, S.; Rimmer, P.B.; Petkowski, J.J.; Greaves, J.S.; Seager, S. Constraints on the Production of Phosphine by Venusian Volcanoes. Universe 2022, 8, 54. [Google Scholar] [CrossRef]
- Jordan, S.; Shorttle, O.; Rimmer, P.B. Proposed energy-metabolisms cannot explain the atmospheric chemistry of Venus. Nat. Commun. 2022, 13, 3274. [Google Scholar] [CrossRef] [PubMed]
- Garvin, J.B.; Getty, S.A.; Arney, G.N.; Johnson, N.M.; Kohler, E.; Schwer, K.O.; Sekerak, M.; Bartels, A.; Saylor, R.S.; Elliott, V.E.; et al. Revealing the Mysteries of Venus: The DAVINCI Mission. PSJ 2022, 3, 117. [Google Scholar] [CrossRef]
- Seager, S.; Petkowski, J.J.; Carr, C.E.; Grinspoon, D.H.; Ehlmann, B.L.; Saikia, S.J.; Agrawal, R.; Buchanan, W.P.; Weber, M.U.; French, R.; et al. Venus Life Finder Missions Motivation and Summary. arXiv 2022, arXiv:2208.05570. [Google Scholar] [CrossRef]
- French, R.; Mandy, C.; Hunter, R.; Mosleh, E.; Sinclair, D.; Beck, P.; Seager, S.; Petkowski, J.J.; Carr, C.E.; Grinspoon, D.H.; et al. Rocket Lab Mission to Venus. Aerospace 2022, 9, 445. [Google Scholar] [CrossRef]
- Seager, S. The future of spectroscopic life detection on exoplanets. Proc. Natl. Acad. Sci. USA 2014, 111, 12634–12640. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, T.S. The Structure of Scientific Revolutions; University of Chicago Press: Chicago, IL, USA, 1962; Chapters VI–VIII. [Google Scholar]
- Stanford, P.K.; Schweikert, W. Exceeding Our Grasp: Science, History, and the Problem of Unconceived Alternatives; Oxford University Press: Oxford, UK, 2006; Volume 1. [Google Scholar]
- Evans, B. Marks 240 Years Since William Herschel Discovered Uranus. Astronomy Magazine. 2021. Available online: https://astronomy.com/news/2021/03/william–herschels–discovery–of–uranus–240–years–later (accessed on 12 November 2022).
- NobelPrize.org. Press Release: Ribonucleic Acid (RNA)—A Biomolecule of Many Functions. 1989. Available online: https://www.nobelprize.org/prizes/chemistry/1989/press-release/ (accessed on 2 November 2022).
- Oreskes, N. The Rejection of Continental Drift: Theory and Method in American Earth Science; Oxford University Press: Oxford, UK, 1999. [Google Scholar]
- Burnett, D.G. Trying Leviathan. In Trying Leviathan; Princeton University Press: Princeton, NJ, USA, 2007. [Google Scholar]
- Romero, A. When whales became mammals: The scientific journey of cetaceans from fish to mammals in the history of science. New Approaches Study Mar. Mamm. 2012, 1, 3–30. [Google Scholar]
- Mumma, M.J.; Villanueva, G.L.; Novak, R.E.; Hewagama, T.; Bonev, B.P.; DiSanti, M.A.; Mandell, A.M.; Smith, M.D. Strong Release of Methane on Mars in Northern Summer 2003. Science 2009, 323, 1041. [Google Scholar] [CrossRef] [Green Version]
- Zahnle, K.; Freedman, R.S.; Catling, D.C. Is there methane on Mars? Icarus 2011, 212, 493–503. [Google Scholar] [CrossRef] [Green Version]
- Gillen, E.; Rimmer, P.B.; Catling, D.C. Statistical analysis of Curiosity data shows no evidence for a strong seasonal cycle of martian methane. Icarus 2020, 336, 113407. [Google Scholar] [CrossRef]
- Cleland, C.E. Moving Beyond Definitions in the Search for Extraterrestrial Life. Astrobiology 2019, 19, 722–729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cleland, C.E. The Quest for a Universal Theory of Life: Searching for Life as We Don’t Know It; Cambridge University Press: Cambridge, UK, 2019; Volume 11. [Google Scholar]
- Grinspoon, D. Lonely Planets: The Natural Philosophy of Alien Life; Ecco/HarperCollins: New York, NY, USA, 2003. [Google Scholar]
- Catling, D.C.; Krissansen-Totton, J.; Kiang, N.Y.; Crisp, D.; Robinson, T.D.; DasSarma, S.; Rushby, A.J.; Del Genio, A.; Bains, W.; Domagal-Goldman, S. Exoplanet Biosignatures: A Framework for Their Assessment. Astrobiology 2018, 18, 709–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, S.I.; Bains, W.; Cronin, L.; DasSarma, S.; Danielache, S.; Domagal-Goldman, S.; Kacar, B.; Kiang, N.Y.; Lenardic, A.; Reinhard, C.T.; et al. Exoplanet Biosignatures: Future Directions. Astrobiology 2018, 18, 779–824. [Google Scholar] [CrossRef]
- Wordsworth, R.; Pierrehumbert, R. Abiotic Oxygen-dominated Atmospheres on Terrestrial Habitable Zone Planets. Astrophys. J. Lett. 2014, 785, L20. [Google Scholar] [CrossRef] [Green Version]
- Luger, R.; Barnes, R. Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwarfs. Astrobiology 2015, 15, 119–143. [Google Scholar] [CrossRef] [Green Version]
- Narita, N.; Enomoto, T.; Masaoka, S.; Kusakabe, N. Titania may produce abiotic oxygen atmospheres on habitable exoplanets. Sci. Rep. 2015, 5, 13977. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cleland, C.E.; Rimmer, P.B. Ammonia and Phosphine in the Clouds of Venus as Potentially Biological Anomalies. Aerospace 2022, 9, 752. https://doi.org/10.3390/aerospace9120752
Cleland CE, Rimmer PB. Ammonia and Phosphine in the Clouds of Venus as Potentially Biological Anomalies. Aerospace. 2022; 9(12):752. https://doi.org/10.3390/aerospace9120752
Chicago/Turabian StyleCleland, Carol E., and Paul B. Rimmer. 2022. "Ammonia and Phosphine in the Clouds of Venus as Potentially Biological Anomalies" Aerospace 9, no. 12: 752. https://doi.org/10.3390/aerospace9120752
APA StyleCleland, C. E., & Rimmer, P. B. (2022). Ammonia and Phosphine in the Clouds of Venus as Potentially Biological Anomalies. Aerospace, 9(12), 752. https://doi.org/10.3390/aerospace9120752