The Effect of Vortex Generators on Shock-Induced Boundary Layer Separation in a Transonic Convex-Corner Flow
Abstract
:1. Introduction
2. Experimental Setup
2.1. Transonic Wind Tunnel
2.2. Test Model
2.3. Instrumentation and Data Acquisition System
3. Results and Discussion
3.1. Mean Surface Pressure Distribution
3.2. Surface Pressure Fluctuations
3.3. Shock Oscillation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
fs | shock zero-crossing frequency, Hz |
h | height of vortex generator |
h* | normalized height of vortex generator |
L | length of boundary separation |
L* | normalized separation length, L/δ |
M | freestream Mach number |
Mpeak | peak Mach number |
Po | stagnation pressure |
Pw | mean surface pressure |
(Pw/Po)min | The minimum pressure ratio for Pw/Po |
To | stagnation temperature |
U | freestream velocity |
Up | peak velocity |
X | longitudinal coordinate along the surface of the corner, mm |
X* | normalized streamwise distance, X/δ |
α | incidence angle for VGs |
β | similarity parameter, |
δ | thickness of incoming boundary-layer |
η | convex-corner angle, deg |
σp | standard deviation of surface pressure |
(σp/Pw)max | peak value for σp/Pw |
References
- Szodruch, J.; Hilbig, R. Variable wing camber for transport aircraft. Prog. Aerosp. Sci. 1988, 25, 297–328. [Google Scholar] [CrossRef]
- Liu, X.; Squire, L.C. An investigation of shock/boundary layer interactions on curved surfaces at transonic speeds. J. Fluid Mech. 1998, 187, 467–486. [Google Scholar] [CrossRef]
- Chung, K.M. Unsteadiness of transonic convex-corner flows. Exper. Fluids 2004, 37, 917–922. [Google Scholar] [CrossRef]
- Chung, K.M.; Su, K.C.; Chang, K.C. Global Visualization of compressible swept convex-corner flow using pressure-sensitive paint. Aerospace 2021, 8, 106. [Google Scholar] [CrossRef]
- Chung, K.M.; Chang, P.H.; Chang, K.C. Flow similarity in compressible convex-corner flows. AIAA J. 2012, 50, 985–988. [Google Scholar] [CrossRef]
- Chung, K.M.; Lee, K.H.; Chang, P.H. Low-frequency shock motion in transonic convex-corner flows. AIAA J. 2017, 55, 2109–2112. [Google Scholar] [CrossRef]
- Dolling, D.S.; Brusniak, L. Separation shock motion in fin, cylinder, and compression ramp induced turbulent interactions. AIAA J. 1989, 27, 734–742. [Google Scholar] [CrossRef]
- Lee, B.H.K. Self-sustained shock oscillations on airfoils at transonic speeds. Prog. Aerosp. Sci. 2001, 37, 147–196. [Google Scholar] [CrossRef]
- Wang, C.; Yang, X.; Xue, L.; Kontis, K.; Jiao, Y. Correlation analysis of separation shock oscillation and wall pressure fluctuation in unstarted hypersonic inlet flow. Aerospace 2019, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Titchener, N.; Babinsky, H. A review of the use of vortex generator for mitigating shock-induced separation. Shock Waves 2015, 25, 473–494. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.C. Review of research on low-profile vortex generators to control boundary-layer separation. Prog. Aerosp. Sci. 2002, 38, 389–420. [Google Scholar] [CrossRef]
- Ferrero, A. Control of a supersonic inlet in off-design conditions with plasma actuators and bleed. Aerospace 2020, 7, 32. [Google Scholar] [CrossRef] [Green Version]
- Panaras, A.G.; Lu, F.K. Micro-vortex generators for shock wave/boundary layer interactions. Prog. Aerosp. Sci. 2015, 74, 16–47. [Google Scholar] [CrossRef]
- Verma, S.B.; Manisankar, C. Assessment of various low-profile mechanical vortex generators in controlling a shock-induced separation. AIAA J. 2017, 55, 2228–2240. [Google Scholar] [CrossRef]
- Verma, S.B.; Manisankar, C. Control of a Mach reflection-induced interaction using an array of vane-type vortex generators. Shock Waves 2018, 28, 815–828. [Google Scholar] [CrossRef]
- Cathalifauda, P.; Godardb, G.; Braudc, C.; Stanislas, M. The flow structure behind vortex generators embedded in a decelerating turbulent boundary layer. J. Turbul. 2009, 10, 1–37. [Google Scholar] [CrossRef]
- Lin, J.C.; Robinson, S.K.; Mcghee, R.J.; Valarezo, W.O. Separation control on high-lift airfoils via micro-vortex generators. J. Aircr. 1994, 31, 1317–1323. [Google Scholar] [CrossRef]
- Bur, R.; Coponet, D.; Carpels, Y. Separation control by vortex generator devices in a transonic channel flow. Shock Waves 2009, 19, 521–530. [Google Scholar] [CrossRef]
- Souckova, N.; Kuklova, J.; Popelka, L.; Matejka, M. Visualization of flow separation and control by vortex generators on a single flap in landing configuration. EPJ Web Conf. 2012, 25, 02026. [Google Scholar] [CrossRef] [Green Version]
- Brüderlin, M.; Zimmer, M.; Hosters, N.; Behr, M. Numerical simulation of vortex generators on a winglet control surface. Aerosp. Sci. Technol. 2017, 71, 651–660. [Google Scholar] [CrossRef]
- Hu, J.; Wang, R.; Huang, D. Flow control mechanisms of a combined approach using blade slot and vortex generator in compressor cascade. Aerosp. Sci. Technol. 2018, 78, 320–331. [Google Scholar] [CrossRef]
- Li, X.K.; Liu, W.; Zhang, T.J.; Wang, P.M.; Wang, X.D. Analysis of the effect of vortex generator spacing on boundary layer flow separation control. Appl. Sci. 2019, 9, 5495. [Google Scholar] [CrossRef] [Green Version]
- McCormick, D.C. Shock/boundary-layer interaction control with vortex generators and passive cavity. AIAA J. 1993, 31, 91–96. [Google Scholar] [CrossRef]
- Ashill, P.R.; Fulker, J.L.; Hackett, K.C. Research at DERA on sub boundary layer vortex generators (SBVGS). AIAA J. 2001, 887. [Google Scholar] [CrossRef]
- Tichener, N.; Babinsky, H. Shock wave/boundary-layer interaction control using a combination of vortex generators and bleed. AIAA J. 2013, 51, 1221–1223. [Google Scholar] [CrossRef]
- Mitchell, G.A. Experimental Investigation of the performance of vortex generators mounted in the supersonic portion of a mixed-compression inlet. Contract 1971, 764, 74. [Google Scholar]
- Lee, S.; Loth, E.; Babinsky, H. Normal shock boundary layer control with various vortex generator geometries. Comput. Fluids 2011, 49, 233–234. [Google Scholar] [CrossRef]
- Lee, S.; Loth, E. Impact of ramped vanes on normal shock boundary-layer interaction. AIAA J. 2012, 50, 2069–2079. [Google Scholar] [CrossRef]
- Chung, K.M. Investigation on transonic convex-corner flows. J. Aircr. 2002, 39, 1014–1018. [Google Scholar] [CrossRef]
- Holden, H.A.; Babinsky, H. Vortex generators near shock/boundary layer interactions. AIAA Paper 2004, 2142. [Google Scholar] [CrossRef]
- Bouhadji, A.; Braza, M. Organised modes and shock-vortex interaction in unsteady viscous transonic flows around an aerofoil Part I: Mach number effect. Comput. Fluids 2003, 32, 1233–1260. [Google Scholar] [CrossRef]
- Laganelli, A.L.; Martellucci, A.; Shaw, L.L. Wall pressure fluctuations in attached boundary-layer flow. AIAA J. 1983, 21, 495–502. [Google Scholar] [CrossRef]
- Babinsky, H.; Ogawa, H. SBLI control for wings and inlets. Shock Waves 2008, 18, 89–96. [Google Scholar] [CrossRef]
- Touber, E.; Sandham, N.D. Low-order stochastic modelling of low-frequency motions in reflected shock-wave/boundary-layer interactions. J. Fluid Mech. 2011, 671, 417–465. [Google Scholar] [CrossRef] [Green Version]
- Pirozzoli, S.; Grasso, F. Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M = 2.25. Phys. Fluids 2006, 18, 065113. [Google Scholar] [CrossRef]
- Beresh, S.J.; Clements, N.T.; Dolling, D.S. Relationship between upstream turbulent boundary-layer velocity fluctuations and separation shock unsteadiness. AIAA J. 2002, 40, 2412–2422. [Google Scholar] [CrossRef]
- Hu, W.; Hickel, S.; Van Oudheusden, B.W. Low-frequency unsteadiness mechanisms in shock wave/turbulent boundary layer interactions over a backward-facing step. J. Fluid Mech. 2021, 915, A107. [Google Scholar] [CrossRef]
- Piponniau, S.; Dussage, J.P.; Debieve, J.F.; Dupont, P. A simple model for low frequency unsteadiness in shock-induced separation. J. Fluid Mech. 2009, 629, 87–108. [Google Scholar] [CrossRef]
Configuration | Height (h/δ) | Length (l/δ) | Width (w/δ) | Distance (D/δ) | Angle of Incidence (α, Degree) |
---|---|---|---|---|---|
VG1 | 0.2 | 1.0 | 0.2 | 3.0 | 15 |
VG2 | 0.5 | ||||
VG3 | 1.0 | ||||
VG4 | 1.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, K.-M.; Su, K.-C.; Chang, K.-C. The Effect of Vortex Generators on Shock-Induced Boundary Layer Separation in a Transonic Convex-Corner Flow. Aerospace 2021, 8, 157. https://doi.org/10.3390/aerospace8060157
Chung K-M, Su K-C, Chang K-C. The Effect of Vortex Generators on Shock-Induced Boundary Layer Separation in a Transonic Convex-Corner Flow. Aerospace. 2021; 8(6):157. https://doi.org/10.3390/aerospace8060157
Chicago/Turabian StyleChung, Kung-Ming, Kao-Chun Su, and Keh-Chin Chang. 2021. "The Effect of Vortex Generators on Shock-Induced Boundary Layer Separation in a Transonic Convex-Corner Flow" Aerospace 8, no. 6: 157. https://doi.org/10.3390/aerospace8060157
APA StyleChung, K. -M., Su, K. -C., & Chang, K. -C. (2021). The Effect of Vortex Generators on Shock-Induced Boundary Layer Separation in a Transonic Convex-Corner Flow. Aerospace, 8(6), 157. https://doi.org/10.3390/aerospace8060157