Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (62)

Search Parameters:
Keywords = shock-induced separation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6718 KiB  
Article
Investigation of the Effect of Vortex Generators on Flow Separation in a Supersonic Compressor Cascade
by Xi Gao, Zhiyuan Cao, Qinpeng Gu and Bo Liu
Aerospace 2025, 12(8), 692; https://doi.org/10.3390/aerospace12080692 - 31 Jul 2025
Viewed by 166
Abstract
The interaction between a shock wave and a boundary layer promotes corner separation and prevents performance enhancement in a supersonic compressor cascade. Different vortex generator (VG) designs are presented to control corner separation in a supersonic compressor cascade, including endwall VGs (EVG), suction [...] Read more.
The interaction between a shock wave and a boundary layer promotes corner separation and prevents performance enhancement in a supersonic compressor cascade. Different vortex generator (VG) designs are presented to control corner separation in a supersonic compressor cascade, including endwall VGs (EVG), suction surface VGs (SVG), and combined endwall and suction surface VGs (E-SVGs). It is demonstrated that EVG and coupled E-SVGs reduce losses in the supersonic compressor cascade. For an optimal EVG, the total loss is reduced by 24.6% and the endwall loss is reduced by 33.6%. The coupled E-SVG better controls corner separation and reduces endwall losses by 56.9%. The suppression mechanism is that vortices alter the direction of the separated flow, allowing it to overcome the chordwise pressure gradient. Moreover, the VGs change the shock structure near the endwall. For the EVG, clockwise vortices are effective in controlling corner separation due to their minor effect on the shock structure near the endwall. However, anticlockwise vortices are not suitable for controlling corner separation in the supersonic compressor because they increase the shock strength induced by the VG. The control mechanism of the coupled E-SVG on corner separation is also discussed. Full article
(This article belongs to the Special Issue Instability and Transition of Compressible Flows)
Show Figures

Figure 1

19 pages, 4649 KiB  
Article
Cavitation Erosion Performance of the INCONEL 625 Superalloy Heat-Treated via Stress-Relief Annealing
by Robert Parmanche, Olimpiu Karancsi, Ion Mitelea, Ilare Bordeașu, Corneliu Marius Crăciunescu and Ion Dragoș Uțu
Appl. Sci. 2025, 15(15), 8193; https://doi.org/10.3390/app15158193 - 23 Jul 2025
Viewed by 173
Abstract
Cavitation-induced degradation of metallic materials presents a significant challenge for engineers and users of equipment operating with high-velocity fluids. For any metallic material, the mechanical strength and ductility characteristics are controlled by the mobility of dislocations and their interaction with other defects in [...] Read more.
Cavitation-induced degradation of metallic materials presents a significant challenge for engineers and users of equipment operating with high-velocity fluids. For any metallic material, the mechanical strength and ductility characteristics are controlled by the mobility of dislocations and their interaction with other defects in the crystal lattice (such as dissolved foreign atoms, grain boundaries, phase separation surfaces, etc.). The increase in mechanical properties, and consequently the resistance to cavitation erosion, is possible through the application of heat treatments and cold plastic deformation processes. These factors induce a series of hardening mechanisms that create structural barriers limiting the mobility of dislocations. Cavitation tests involve exposing a specimen to repeated short-duration erosion cycles, followed by mass loss measurements and surface morphology examinations using optical microscopy and scanning electron microscopy (SEM). The results obtained allow for a detailed study of the actual wear processes affecting the tested material and provide a solid foundation for understanding the degradation mechanism. The tested material is the Ni-based alloy INCONEL 625, subjected to stress-relief annealing heat treatment. Experiments were conducted using an ultrasonic vibratory device operating at a frequency of 20 kHz and an amplitude of 50 µm. Microstructural analyses showed that slip bands formed due to shock wave impacts serve as preferential sites for fatigue failure of the material. Material removal occurs along these slip bands, and microjets result in pits with sizes of several micrometers. Full article
Show Figures

Figure 1

31 pages, 6448 KiB  
Review
Review of Research on Supercritical Carbon Dioxide Axial Flow Compressors
by Yong Tian, Dexi Chen, Yuming Zhu, Peng Jiang, Bo Wang, Xiang Xu and Xiaodi Tang
Energies 2025, 18(12), 3081; https://doi.org/10.3390/en18123081 - 11 Jun 2025
Viewed by 538
Abstract
Since the beginning of the 21st century, the supercritical carbon dioxide (sCO2) Brayton cycle has emerged as a hot topic of research in the energy field. Among its key components, the sCO2 compressor has received significant attention. In particular, axial-flow [...] Read more.
Since the beginning of the 21st century, the supercritical carbon dioxide (sCO2) Brayton cycle has emerged as a hot topic of research in the energy field. Among its key components, the sCO2 compressor has received significant attention. In particular, axial-flow sCO2 compressors are increasingly being investigated as power systems advance toward high power scaling. This paper reviews global research progress in this field. As for performance characteristics, currently, sCO2 axial-flow compressors are mostly designed with large mass flow rates (>100 kg/s), near-critical inlet conditions, multistage configurations with relatively low stage pressure ratios (1.1–1.2), and high isentropic efficiencies (87–93%). As for internal flow characteristics, although similarity laws remain applicable to sCO2 turbomachinery, the flow dynamics are strongly influenced by abrupt variations in thermophysical properties (e.g., viscosities, sound speeds, and isentropic exponents). High Reynolds numbers reduce frictional losses and enhance flow stability against separation but increase sensitivity to wall roughness. The locally reduced sound speed may induce shock waves and choke, while drastic variation in the isentropic exponent makes the multistage matching difficult and disperses normalized performance curves. Additionally, the quantitative impact of a near-critical phase change remains insufficiently understood. As for the experimental investigation, so far, it has been publicly shown that only the University of Notre Dame has conducted an axial-flow compressor experimental test, for the first stage of a 10 MW sCO2 multistage axial-flow compressor. Although the measured efficiency is higher than that of all known sCO2 centrifugal compressors, the inlet conditions evidently deviate from the critical point, limiting the applicability of the results to sCO2 power cycles. As for design and optimization, conventional design methodologies for axial-flow compressors require adaptations to incorporate real-gas property correction models, re-evaluations of maximum diffusion (e.g., the DF parameter) for sCO2 applications, and the intensification of structural constraints due to the high pressure and density of sCO2. In conclusion, further research should focus on two aspects. The first is to carry out more fundamental cascade experiments and numerical simulations to reveal the complex mechanisms for the near-critical, transonic, and two-phase flow within the sCO2 axial-flow compressor. The second is to develop loss models and design a space suitable for sCO2 multistage axial-flow compressors, thus improving the design tools for high-efficiency and wide-margin sCO2 axial-flow compressors. Full article
Show Figures

Figure 1

22 pages, 6829 KiB  
Article
An Investigation of the Promotion of the Aerodynamic Performance of a Supersonic Compressor Cascade Using a Local Negative-Curvature Ramp
by Yongzhen Liu, Zhen Fan, Weiwei Cui, Qiang Zhou and Jianzhong Xu
Appl. Sci. 2025, 15(10), 5664; https://doi.org/10.3390/app15105664 - 19 May 2025
Viewed by 446
Abstract
Shockwaves induce considerable flow separation loss; it is essential to reduce this using the flow control method. In this manuscript, a method for suppressing flow separation in turbomachinery through a constant adverse-pressure gradient was investigated. The first-passage shock was split into a compression [...] Read more.
Shockwaves induce considerable flow separation loss; it is essential to reduce this using the flow control method. In this manuscript, a method for suppressing flow separation in turbomachinery through a constant adverse-pressure gradient was investigated. The first-passage shock was split into a compression wave system of the vane suction surface. The aim of this was to reduce loss from shockwave/boundary layer interactions (SWBLIs). This method promotes the performance parameters of the supersonic compressor cascade. The investigation targets were a baseline cascade and the improved system. Both cascades were numerically studied with the aid of the Reynolds-averaged Navier–Stokes (RANS) method. The simulation results of the baseline cascade were also validated through experimentation, and a further physical flow analysis of the two cascades was conducted. The results show that the first-passage shockwave was a foot above the initial suction surface, with a weaker incident shock along with a clustering of the compression wave corresponding to the modified cascade. It was also concluded that the first-passage shockwave foot of the baseline cascade was replaced with a weak incident shock, and a series of compression waves emanated from the adopted negative-curvature profile. The shock-induced boundary layer separation bubble disappeared, and much smaller boundary layer shape factors over the SWBLI region were obtained for the improved cascade compared to the baseline cascade. This improvement led to a high level of stability in the boundary layer state. Sensitivity analyses were performed through different simulations on both cascades, unveiling that the loss in total pressure was lower in the case of the updated cascade as compared to the baseline. Full article
Show Figures

Figure 1

24 pages, 3544 KiB  
Article
Significant Changes in Low-Abundance Protein Content Detected by Proteomic Analysis of Urine from Patients with Renal Stones After Extracorporeal Shock Wave Lithotripsy
by Elena Carestia, Fabrizio Di Giuseppe, Mohammad Kazemi, Massoumeh Ramahi, Uditanshu Priyadarshi, Patricia Giuliani, Piergustavo De Francesco, Luigi Schips, Carmine Di Ilio, Renata Ciccarelli, Patrizia Di Iorio and Stefania Angelucci
Biology 2025, 14(5), 482; https://doi.org/10.3390/biology14050482 - 27 Apr 2025
Viewed by 599
Abstract
Extracorporeal shock wave lithotripsy (ESWL), although a highly effective method for the treatment of kidney stones, can cause significant kidney damage. Since urinary protein composition directly reflects kidney function, proteomic analysis of this fluid may be useful to identify changes in protein levels [...] Read more.
Extracorporeal shock wave lithotripsy (ESWL), although a highly effective method for the treatment of kidney stones, can cause significant kidney damage. Since urinary protein composition directly reflects kidney function, proteomic analysis of this fluid may be useful to identify changes in protein levels induced by patient exposure to ESWL as a sign of kidney damage. To this end, we collected urine samples from 80 patients with nephrolithiasis 2 h before and 24 h after exposure to ESWL, which were concentrated and subsequently processed with a commercially available enrichment method to extract low-abundance urinary proteins. These were then separated by 2D electrophoresis and subsequently analyzed by a proteomic approach. A large number of proteins were identified as being related to inflammatory, fibrotic, and antioxidant processes and changes in the levels of some of them were confirmed by Western blot analysis. Therefore, although further experimental confirmation is needed, our results demonstrate that ESWL significantly influences the low urinary protein profile of patients with nephrolithiasis. Notably, among the identified proteins, matrix metalloproteinase 7, alpha1-antitrypsin, and clusterin, as well as dimethyl arginine dimethyl amino hydrolase 2 and ab-hydrolase, may play an important role as putative biomarkers in the monitoring and management of ESWL-induced renal damage. Full article
(This article belongs to the Special Issue Proteomics and Human Diseases)
Show Figures

Figure 1

15 pages, 5537 KiB  
Article
An Analysis of the Factors Influencing Dual Separation Zones on a Plate
by Jiarui Zou, Xiaoqiang Fan and Bing Xiong
Appl. Sci. 2025, 15(8), 4569; https://doi.org/10.3390/app15084569 - 21 Apr 2025
Viewed by 266
Abstract
The shock wave/boundary layer interaction phenomenon in hypersonic inlets, affected by background waves, may induce the formation of multiple separation zones. Existing theories prove insufficient in explaining the underlying flow mechanisms behind complex phenomena arising from multi-separation zone interactions, which necessitates further investigation. [...] Read more.
The shock wave/boundary layer interaction phenomenon in hypersonic inlets, affected by background waves, may induce the formation of multiple separation zones. Existing theories prove insufficient in explaining the underlying flow mechanisms behind complex phenomena arising from multi-separation zone interactions, which necessitates further investigation. To clarify the governing factors in multi-separation zone interactions, this study developed a simplified dual-separation-zone model derived from inlet flow field characteristics. A series of numerical simulations were conducted under an incoming flow at Mach 3 to systematically analyze the effects of internal contraction ratio, the influencing locations of expansion waves, and incident shock wave intensity on the mergence and re-separation of dual separation zones. The results demonstrate that both the expansion wave impingement position and incident shock intensity significantly influence specific transition points in dual-separation-zone flow states, though they do not fundamentally alter the evolutionary patterns governing the merging/re-separating processes. Furthermore, increasing incident shock intensity leads to the expansion of separation zone scales and prolongation of the dual-separation-zone merging distance. Full article
(This article belongs to the Special Issue Advances in Fluid Mechanics Analysis)
Show Figures

Figure 1

15 pages, 16764 KiB  
Article
Computational Analysis of Tandem Micro-Vortex Generators for Supersonic Boundary Layer Flow Control
by Caixia Chen, Yong Yang and Yonghua Yan
Computation 2025, 13(4), 101; https://doi.org/10.3390/computation13040101 - 19 Apr 2025
Viewed by 417
Abstract
Micro-vortex generators (MVGs) are widely utilized as passive devices to control flow separation in supersonic boundary layers by generating ring-like vortices that mitigate shock-induced effects. This study employs large eddy simulation (LES) to investigate the flow structures in a supersonic boundary layer (Mach [...] Read more.
Micro-vortex generators (MVGs) are widely utilized as passive devices to control flow separation in supersonic boundary layers by generating ring-like vortices that mitigate shock-induced effects. This study employs large eddy simulation (LES) to investigate the flow structures in a supersonic boundary layer (Mach 2.5, Re = 5760) controlled by two MVGs installed in tandem, with spacings varying from 11.75 h to 18.75 h (h = MVG height), alongside a single-MVG reference case. A fifth-order WENO scheme and third-order TVD Runge–Kutta method were used to solve the unfiltered Navier–Stokes equations, with the Liutex method applied to visualize vortex structures. Results reveal that tandem MVGs produce complex vortex interactions, with spanwise and streamwise vortices merging extensively, leading to a significant reduction in vortex intensity due to mutual cancellation. A momentum deficit forms behind the second MVG, weakening that from the first, while the boundary layer energy thickness doubles compared to the single-MVG case, indicating increased energy loss. Streamwise vorticity distributions and instantaneous streamlines highlight intensified interactions with closer spacings, yet this complexity diminishes overall flow control effectiveness. Contrary to expectations, the tandem configuration does not enhance boundary layer control but instead weakens it, as evidenced by reduced vortex strength and amplified energy dissipation. These findings underscore a critical trade-off in tandem MVG deployment, suggesting that while vortex interactions enrich flow complexity, they may compromise the intended control benefits in supersonic flows, with implications for optimizing MVG arrangements in practical applications. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

20 pages, 7754 KiB  
Article
Aeroelastic Response in an Oscillating Transonic Compressor Cascade—An Experimental and Numerical Approach
by Carlos Alberto Tavera Guerrero, Nenad Glodic, Mauricio Gutierrez Salas and Hans Mårtensson
Int. J. Turbomach. Propuls. Power 2025, 10(2), 7; https://doi.org/10.3390/ijtpp10020007 - 1 Apr 2025
Viewed by 731
Abstract
The steady-state aerodynamics and the aeroelastic response have been analyzed in an oscillating linear transonic cascade at the KTH Royal Institute of Technology. The investigated operating points (Π=1.29 and 1.25) represent an open-source virtual compressor (VINK) operating at a [...] Read more.
The steady-state aerodynamics and the aeroelastic response have been analyzed in an oscillating linear transonic cascade at the KTH Royal Institute of Technology. The investigated operating points (Π=1.29 and 1.25) represent an open-source virtual compressor (VINK) operating at a part speed line. At these conditions, a shock-induced separation mechanism is present on the suction side. In the cascade, the central blade vibrates in its first natural modeshape with a 0.69 reduced frequency, and the reference measurement span is 85%. The numerical results are computed from the commercial software Ansys CFX with an SST turbulence model, including a reattachment modification (RM). Steady-state results consist of a Laser-2-Focus anemometer (L2F), pressure taps, and flow visualization. Steady-state numerical results indicate good agreement with experimental data, including the reattachment line length, at both operating points, while discrepancies are observed at low-momentum regions within the passage. Experimental unsteady pressure coefficients at the oscillating blade display a fast amplitude decrease downstream, while numerical results overpredict the amplitude response. Numerical results indicate that, at the measurement plane, for both operating points, the harmonic amplitude is dominated by the shock location. At midspan, there is an interaction between the shock and the separation onset, where large pressure gradients are located. Experimental and numerical responses at blades adjacent to the oscillating blade are in good agreement at both operating points. Full article
Show Figures

Figure 1

16 pages, 2639 KiB  
Article
Analysis of the Evolution of Shock Waves When a Muzzle Jet Impacts a Constrained Moving Body
by Zijie Li and Hao Wang
Fluids 2025, 10(3), 57; https://doi.org/10.3390/fluids10030057 - 26 Feb 2025
Viewed by 442
Abstract
The evolution form of the flow field generated via the impact of a muzzle jet on a constrained moving body changes from the state of fully free-spatial development to that of constrained development, and it involves the problem of interference, owing to the [...] Read more.
The evolution form of the flow field generated via the impact of a muzzle jet on a constrained moving body changes from the state of fully free-spatial development to that of constrained development, and it involves the problem of interference, owing to the spatiotemporal coupling of various kinds of shock waves and vortices. Against this backdrop, the authors use the dynamic mesh method to establish two models for simulating the flow field and exploring the mechanism of development and the characteristics of propagation of disturbances induced via the shock waves as the muzzle jet impacts a constrained moving body. The results show that the muzzle jet exhibited a circumferentially asymmetric shape under the influence of the constrained track. The shock wave leaned towards the upper part of the muzzle, and its speed of propagation above the muzzle was higher than that below the muzzle. Meanwhile, the vortex that should have been present below the muzzle disappeared, and it was replaced with a separation line. Changes in the pressure of the flow field and important parameters of the moving body also became more complex due to the influence of the constrained track. Full article
(This article belongs to the Topic Fluid Mechanics, 2nd Edition)
Show Figures

Figure 1

18 pages, 9112 KiB  
Article
Numerical Study on the Influence of Suction near Expansion Corner on Separation Bubble
by Yaowen Zhang, Shaozhan Wang, Dangguo Yang and Bin Dong
Aerospace 2025, 12(2), 89; https://doi.org/10.3390/aerospace12020089 - 25 Jan 2025
Viewed by 771
Abstract
Suction is an important control method in the shock wave and boundary layer interaction (SWBLI). Aimed at the problem of separation bubbles induced at the expansion corners, this study investigates the influence of suction on both the dimensions of bubble and the structure [...] Read more.
Suction is an important control method in the shock wave and boundary layer interaction (SWBLI). Aimed at the problem of separation bubbles induced at the expansion corners, this study investigates the influence of suction on both the dimensions of bubble and the structure of the flow field at varying positions and back pressures under Ma = 2.73. As the upstream suction hole moves to the shoulder point, the size of the separation bubble decreases slightly. The decrease in back pressure leads to an increase in flow deflection angle αh. The low-kinetic-energy fluid in the boundary layer is removed and the thickness of the boundary layer decreases. Suction downstream of the shoulder point leads to an obvious change in separation bubble size. When the bleed position is upstream of the actual location of incident shock (Ddown = 2δ), the separation zone is located at the trailing edge of the hole, and the convergence of the separation shock wave (SS) and the barrier shock wave (BSW) leads to a large increase in the pressure plateau. At the downstream of the incident shock (Ddown = 5δ), the separation zone is situated at the leading edge of the hole, resulting in a substantial reduction in the size of the separation bubble. The flow reaches 88.5% of the theoretical expansion value at the shoulder point and directly turns into the bleeding area at the leeward side of the separation bubble. The deflection angle αh reaches the maximum of 46°, and the sonic flow coefficient Qsonic increases significantly. At the theoretical incident shock position (Ddown = 7δ), the separation zone is far from the suction hole position; the two are almost decoupled. The size of the bubble increases rapidly and the reattachment shock wave (RS) appears. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

21 pages, 11129 KiB  
Article
Investigation on Flow Features and Combustion Characteristics in a Boron-Based Solid-Ducted Rocket Engine
by Xiang Tang, Xiaotao Tian, Liang Zhu, Suli Wu, Meng Huang and Weixuan Li
Energies 2025, 18(3), 524; https://doi.org/10.3390/en18030524 - 23 Jan 2025
Viewed by 880
Abstract
Numerical and experimental approaches are conducted to investigate the flow features and secondary combustion performance induced by different air–fuel ratios in a boron-based solid-ducted rocket engine. The results indicated that the afterburning chamber flow features become more complicated owing to the multiple nozzles [...] Read more.
Numerical and experimental approaches are conducted to investigate the flow features and secondary combustion performance induced by different air–fuel ratios in a boron-based solid-ducted rocket engine. The results indicated that the afterburning chamber flow features become more complicated owing to the multiple nozzles of the gas injector, and a number of recirculation zones are generated. Because of this, the mixing of the fuel gas and incoming air is enhanced. When the air–fuel ratio decreases, the heat release in the afterburning chamber increases continuously, which causes the pre-combustion shock train to continue to propagate upstream in the subsonic diffuser of the inlet isolator, along with the boundary layer separation zone also moving forward, and the stability margin of the direct-connect inlet decreasing gradually. Furthermore, the direct-connect inlet works at a critical state with an air–fuel ratio of 11.5. As the mass flow rate of the fuel-rich gas rises gradually, the engine thrust gradually increases, and the number of vortexes in the afterburning chamber and the corresponding region affected by the vortexes generally decrease. Meanwhile, the mixing and combustion of the fuel-rich gas and incoming flow were not substantially changed. Additionally, the combustion efficiency and specific impulse are proportional to the air fuel ratio. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

12 pages, 2371 KiB  
Article
Bioinformatic Analysis of Actin-Binding Proteins in the Nucleolus During Heat Shock
by Shinya Taniguchi, Takeru Torii, Toshiyuki Goto, Kohei Takeuchi, Rine Katsumi, Mako Sumida, Sunmin Lee, Wataru Sugimoto, Masaya Gessho, Katsuhiko Itoh, Hiroaki Hirata, Junji Kawakami, Daisuke Miyoshi and Keiko Kawauchi
Genes 2024, 15(12), 1580; https://doi.org/10.3390/genes15121580 - 9 Dec 2024
Cited by 1 | Viewed by 1611
Abstract
Background/Objectives: Actin plays a crucial role not only in the cytoplasm, but also in the nucleus, influencing various cellular behaviors, including cell migration and gene expression. Recent studies reveal that nuclear actin dynamics is altered by cellular stresses, such as DNA damage; however, [...] Read more.
Background/Objectives: Actin plays a crucial role not only in the cytoplasm, but also in the nucleus, influencing various cellular behaviors, including cell migration and gene expression. Recent studies reveal that nuclear actin dynamics is altered by cellular stresses, such as DNA damage; however, the effect of heat shock on nuclear actin dynamics, particularly in the nucleolus, remains unclear. This study aims to elucidate the contribution of nucleolar actin to cellular responses under heat shock conditions. Methods: Nuclear actin dynamics in response to heat shock were investigated using nAC-GFP, a GFP-tagged actin chromobody, to visualize nuclear actin in HeLa cells. Bioinformatic analyses were also performed. Results: Heat shock induced the reversible assembly of nAC-GFP in the nucleolus, with disassembly occurring upon recovery in a heat shock protein (Hsp) 70-dependent manner. Because the nucleolus, formed via liquid–liquid phase separation (LLPS), sequesters misfolded proteins under heat shock to prevent irreversible aggregation, we hypothesized that nucleolar actin-binding proteins might also be sequestered in a similar manner. Using several databases, we identified 47 actin-binding proteins localized in the nucleolus and determined the proportion of intrinsically disordered regions (IDRs) known to promote LLPS. Our analysis revealed that many of these 47 proteins exhibited high levels of IDRs. Conclusions: The findings from our bioinformatics analysis and further cellular studies may help elucidate new roles for actin in the heat shock response. Full article
Show Figures

Figure 1

22 pages, 3160 KiB  
Review
Stress Granules in Infectious Disease: Cellular Principles and Dynamic Roles in Immunity and Organelles
by Jaewhan Kim and Chang-Hwa Song
Int. J. Mol. Sci. 2024, 25(23), 12950; https://doi.org/10.3390/ijms252312950 - 2 Dec 2024
Cited by 2 | Viewed by 2353
Abstract
Stress granules (SGs) are membrane-less aggregates that form in response to various cellular stimuli through a process called liquid–liquid phase separation (LLPS). Stimuli such as heat shock, osmotic stress, oxidative stress, and infections can induce the formation of SGs, which play crucial roles [...] Read more.
Stress granules (SGs) are membrane-less aggregates that form in response to various cellular stimuli through a process called liquid–liquid phase separation (LLPS). Stimuli such as heat shock, osmotic stress, oxidative stress, and infections can induce the formation of SGs, which play crucial roles in regulating gene expression to help cells adapt to stress conditions. Various mRNAs and proteins are aggregated into SGs, particularly those associated with the protein translation machinery, which are frequently found in SGs. When induced by infections, SGs modulate immune cell activity, supporting the cellular response against infection. The roles of SGs differ in viral versus microbial infections, and depending on the type of immune cell involved, SGs function differently in response to infection. In this review, we summarize our current understanding of the implication of SGs in immunity and cellular organelles in the context of infectious diseases. Importantly, we explore insights into the regulatory functions of SGs in the context of host cells under infection. Full article
Show Figures

Figure 1

20 pages, 10761 KiB  
Article
Numerical Methods Comparison of Shock-Induced Separation on Transonic Axisymmetric Hump
by Miao Zhang, Zhuoyue Tian, Songxiang Tang, Ziyan Wei and Jie Li
Appl. Sci. 2024, 14(22), 10234; https://doi.org/10.3390/app142210234 - 7 Nov 2024
Viewed by 936
Abstract
A transonic hump with a Mach number (M∞) of 0.875 was utilized to compare the prediction capabilities of RANS, URANS, IDDES, and IDDES-SLA for shock-induced separation. The results matched the experimental data concerning pressure, friction coefficients, velocity distribution, and other parameters. The improved [...] Read more.
A transonic hump with a Mach number (M∞) of 0.875 was utilized to compare the prediction capabilities of RANS, URANS, IDDES, and IDDES-SLA for shock-induced separation. The results matched the experimental data concerning pressure, friction coefficients, velocity distribution, and other parameters. The improved delayed detached eddy simulation with a modified sub-grid scale (IDDES-SLA) method performed the best amongst tested numerical methods, demonstrating differences of 1.3% and 4.1% from the experimental results for separation and reattachment locations, respectively. The primary difference between IDDES and IDDES-SLA is reflected in detailed data, such as velocity and high-frequency characteristics, although both methods exhibit similar simulation capabilities for the main structural features of the flow field. The POD and PSD analyses of the flow field results demonstrated that the IDDES-SLA method was more capable of resolving higher modes of flow field. Full article
Show Figures

Figure 1

18 pages, 8520 KiB  
Article
Prediction of Transonic Shock Buffet over Supercritical Airfoil OAT15A Based on Zonal Detached-Eddy Simulation
by Tiejun Liu, Xingyu Chen, Zhuoyue Tian and Jie Li
Appl. Sci. 2024, 14(21), 9628; https://doi.org/10.3390/app14219628 - 22 Oct 2024
Cited by 1 | Viewed by 1488
Abstract
The zonal detached-eddy simulation (ZDES) method divides the flow field into different computational modes, offering flexibility in the simulation of complex flows. The transonic shock buffet on the upper surface of the OAT15A supercritical airfoil is numerically simulated by ZDES based on the [...] Read more.
The zonal detached-eddy simulation (ZDES) method divides the flow field into different computational modes, offering flexibility in the simulation of complex flows. The transonic shock buffet on the upper surface of the OAT15A supercritical airfoil is numerically simulated by ZDES based on the k-ω SST model. The results show that the error in the low-frequency characteristics of the transonic shock buffet predicted by ZDES compared to experiments is within 3%. Its predictions of pressure fluctuations and averaged velocity agree better with the experimental data. Overall, ZDES is effective in predicting the periodic oscillations of shock waves along the streamwise direction, flow separation induced by shock wave motion, and the small-scale vortex structures in the wake region. Full article
Show Figures

Figure 1

Back to TopTop