Engineering Comprehensive Model of Complex Wind Fields for Flight Simulation
Abstract
:1. Introduction
2. Typical Wind Field Models
2.1. Micro-Downburst
2.2. Low-Level Jet
2.3. Atmospheric Turbulence
3. Comprehensive Wind Field Model
- Input spatial location parameters;
- Select the wind field models according to simulation requirements;
- Calculate the total wind velocity value;
- Substitute the wind velocity into the flight simulation.
4. Model Application
4.1. Flight Simulations under Different Wind Field Conditions
4.2. Analysis on Influence of Different Model Parameters on Flight Process
4.3. Discussions of Use Conditions of the Comprehensive Model
- When the flight simulation is in a small time scale (in condition 1 of Section 4.1, the rocket went through the low-level jet area within 2 s) or in a small spatial scale (the low-level jet area has a height of 800 m and the rocket has a flight altitude of 10 km), the established comprehensive model can be used to obtain some reasonable results.
- When the flight simulation is in a large time scale (or in a large spatial scale), such as the total flight process of a long-range missile, an airplane or an airship, the comprehensive model might cause significant errors.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tuleya, R.E.; Lord, S.J. The Impact of Dropwindsonde Data on GFDL Hurricane Model Forecasts Using Global Analyses. Weather Forecast. 2010, 12, 307–323. [Google Scholar] [CrossRef] [Green Version]
- Bo, M.; Lin, M.; Peng, H. WindSim Computational Flow Dynamics Model Testing Using Databases from Two Wind Measurement Stations. Electronics 2011, 15, 63–70. [Google Scholar]
- Klisić, Đ.; Zlatanović, M.; Radovanović, I. Validation of wind vectors retrieved by the HY-2 microwave scatterometer using NCEP model data. Eng. Sci. 2014, 2, 39–61. [Google Scholar]
- Efimov, V.V.; Anisimov, A.E. WindSim Climatic parameters of wind-field variability in the Black Sea region: Numerical reanalysis of regional atmospheric circulation. Izv. Atmos. Ocean. Phys. 2011, 47, 350–361. [Google Scholar] [CrossRef]
- Parish, T.R.; Cassano, J.J. Diagnosis of the Katabatic Wind Influence on the Wintertime Antarctic Surface Wind Field from Numerical Simulations. Mon. Weather Rev. 2003, 6, 1128–1139. [Google Scholar] [CrossRef]
- Zhang, A.; Gao, C.; Ling, Z. Numerical simulation of the wind field around different building arrangements. J. Wind Eng. Ind. Aerodyn. 2005, 12, 891–904. [Google Scholar] [CrossRef]
- Ivan, M. Ring-vortex downburst model for flight simulations. J. Aircr. 2012, 3, 232–236. [Google Scholar] [CrossRef]
- Zhang, W.F.; Xie, D.; Liu, Y.C.; Jing, J.I. Simulation of downburst wind field with spatial correlation. J. Vib. Shock. 2013, 32, 12–16. [Google Scholar]
- Jesson, M.; Sterling, M. A simple vortex model of a thunderstorm downburst—A parametric evaluation. J. Wind Eng. Ind. Aerodyn. 2018, 174, 1–9. [Google Scholar] [CrossRef]
- Eliassen, A.; Thorsteinsson, S. Numerical studies of stratified air flow over a mountain ridge on the rotating earth. Tellus A 2010, 2, 172–186. [Google Scholar]
- Ji, H.; Chen, R.; Li, P. Distributed Atmospheric Turbulence Model for Helicopter Flight Simulation and Handling-Quality Analysis. J. Aircr. 2017, 54, 190–198. [Google Scholar] [CrossRef]
- Jansen, C.J. Non-Gaussian Atmospheric Turbulence Model for Flight Simulator Research. J. Aircr. 2012, 19, 374–379. [Google Scholar] [CrossRef]
- Towers, P.; Jones, B.L. Real-time wind field reconstruction from LiDAR measurements using a dynamic wind model and state estimation. Wind Energy 2016, 19, 133–150. [Google Scholar] [CrossRef] [Green Version]
- Fluck, M.; Crawford, C. An engineering model for 3D turbulent wind inflow based on a limited set of random variables. Wind Energy Sci. Discuss. 2017, 1, 1–20. [Google Scholar]
- Lupi, A.; Hans, J.; Niemann, B. Aerodynamic damping model in vortex-induced vibrations for wind engineering applications. J. Wind Eng. Ind. Aerodyn. 2018, 9, 14–24. [Google Scholar] [CrossRef]
- Albini, F.A. A Phenomenological Model for Wind Speed and Shear Stress Profiles in Vegetation Cover Layers. J. Appl. Meteorol. Clim. 2010, 11, 1325–1335. [Google Scholar] [CrossRef] [Green Version]
- Lianlei, L.; Xilin, L.; Gang, W. Modelling of Microburst Based on the Slanted Vortex-Ring Model. Chin. J. Electron. 2018, 27, 318–323. [Google Scholar]
- Dogan, A.; Kabamba, P.T. Escaping Microburst with Turbulence: Altitude, Dive, and Pitch Guidance Strategies. J. Aircr. 2015, 37, 417–426. [Google Scholar] [CrossRef]
- Lundgren, T.S.; Yao, J.; Mansour, N.N. Microburst modelling and scaling. J. Fluid Mech. 2006, 239, 461–488. [Google Scholar] [CrossRef]
- Xhelaj, A.; Burlando, M.; Solari, G. A general-purpose analytical model for reconstructing the thunderstorm outflows of travelling downbursts immersed in ABL flows. J. Wind Eng. Ind. Aerodyn. 2020, 207, 1–7. [Google Scholar] [CrossRef]
- Proctor, F. Model comparison of July 7, 1990 microburst. In Proceedings of the Third Combined Manufacturer’s and Technology Airbone Windshear Review Meeting, Hampton, VA, USA, 1 January 1991. [Google Scholar]
- Wanke, C.R.; Hansman, J.R. A data fusion algorithm for multi-sensor microburst hazard assessment. In Proceedings of the AIAA Atmospheric Flight Mechanics Conference, Hilton Head Island, SC, USA, 10–12 August 1992. [Google Scholar]
- Wang, H.; Fu, R. Influence of Cross-Andes Flow on the South American Low-Level Jet. J. Clim. 2002, 17, 1247–1262. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Z.S.; Li, Z.L. Comparison and parametric analysis of wind profile characteristics of impinging jet and wall jet. Eng. Mech. 2015, 32, 86–93. [Google Scholar]
- Xiao, Y.L. Flight Principle in Atmospheric Turbulence, 1st ed.; National Defense Industry Press: Beijing, China, 1993; pp. 27–47. [Google Scholar]
- Chen, J.; Wang, L.; Li, Z. Influence of two typical kinds of low-level wind shear on ballistic performance of rockets. J. Beijing Univ. Aeronaut. Astronaut. 2018, 44, 1008–1017. [Google Scholar]
- Marengo, J.A.; Soares, W.R.; Saulo, C.; Nicolini, M. Climatology of the Low-Level Jet East of the Andes as Derived from the NCEP–NCAR Reanalyses: Characteristics and Temporal Variability. J. Clim. 2004, 17, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Beal, T.R. Digital Simulation of Atmospheric Turbulence for Dryden and von Karman Models. J. Guid. Control. Dynam. 1993, 16, 132–138. [Google Scholar] [CrossRef]
- Jing, G.; Guanxin, H.; Zaoqing, L. Theory and method of numerical simulation for 3D atmospheric turbulence field based on Von Karman model. J. Beijing Univ. Aeronaut. Astronaut. 2012, 38, 736–740. [Google Scholar]
- Halsig, S.; Artz, T.; Iddink, A.; Nothnagel, A. Using an atmospheric turbulence model for the stochastic model of geodetic VLBI data analysis. Earth Planets Space 2016, 68, 106. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.P. Exterior Ballistics of Shells and Rockets, 2nd ed.; Beijing University of Technology Press: Beijing, China, 2008; pp. 141–143. [Google Scholar]
Parameter | Value |
---|---|
(1000 m, 0, 800 m) | |
1100 m | |
−10 m/s |
2.5 m | 3.5 m | 5 ms−1 | 180 m | 10 ms−1 | 800 m | 0° | 30° | 60° | 0.8 | 0.3 |
Parameter | Value |
---|---|
150 m | |
1.5 ms−1 | |
50 m |
Wind Field | Input | Output |
---|---|---|
Micro-downburst | , , | |
Low-level jet | , | |
Atmospheric turbulence | , , |
Parameter | Value |
---|---|
Diameter of rocket | 0.122 m |
Length of rocket | 2.9 m |
Specific impulse | 250 s |
Working time of the engine | 3 s |
Initial velocity | 40 ms−1 |
Firing angle | 50 deg |
Firing direction | 0 deg |
Serial Number | Climatic Condition | Wind Field Condition |
---|---|---|
1 | Clear sky | Low-level jet |
2 | Thunderstorm | Micro-downburst and atmospheric turbulence |
WL (m/s) | Flight Time (s) | Down Range (km) | Cross Range (km) | Terminal Velocity (m/s) |
---|---|---|---|---|
0 (No wind) | 104.7 | 34.38 | −0.009 | 366 |
6 | 91.7 | 32.18 | −2.501 | 347 |
10 | 89.8 | 31.81 | −2.738 | 345 |
14 | 88.9 | 31.42 | −3.067 | 343 |
18 | 86.1 | 31.04 | −3.182 | 340 |
WL (m/s) | Flight Time (s) | Down Range (km) | Cross Range (km) | Terminal Velocity (m/s) |
---|---|---|---|---|
0 (No wind) | 104.7 | 34.38 | −0.009 | 366 |
400 | 90.6 | 31.95 | −3.005 | 347 |
500 | 89.8 | 31.81 | −2.738 | 345 |
600 | 89.1 | 31.72 | −2.692 | 345 |
700 | 88.6 | 31.61 | −2.461 | 343 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Wang, L.; Fu, J.; Yang, Z. Engineering Comprehensive Model of Complex Wind Fields for Flight Simulation. Aerospace 2021, 8, 145. https://doi.org/10.3390/aerospace8060145
Chen J, Wang L, Fu J, Yang Z. Engineering Comprehensive Model of Complex Wind Fields for Flight Simulation. Aerospace. 2021; 8(6):145. https://doi.org/10.3390/aerospace8060145
Chicago/Turabian StyleChen, Jianwei, Liangming Wang, Jian Fu, and Zhiwei Yang. 2021. "Engineering Comprehensive Model of Complex Wind Fields for Flight Simulation" Aerospace 8, no. 6: 145. https://doi.org/10.3390/aerospace8060145
APA StyleChen, J., Wang, L., Fu, J., & Yang, Z. (2021). Engineering Comprehensive Model of Complex Wind Fields for Flight Simulation. Aerospace, 8(6), 145. https://doi.org/10.3390/aerospace8060145