# Engineering Comprehensive Model of Complex Wind Fields for Flight Simulation

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Typical Wind Field Models

#### 2.1. Micro-Downburst

#### 2.2. Low-Level Jet

#### 2.3. Atmospheric Turbulence

## 3. Comprehensive Wind Field Model

- Input spatial location parameters;
- Select the wind field models according to simulation requirements;
- Calculate the total wind velocity value;
- Substitute the wind velocity into the flight simulation.

## 4. Model Application

#### 4.1. Flight Simulations under Different Wind Field Conditions

#### 4.2. Analysis on Influence of Different Model Parameters on Flight Process

^{3}). The simulation results also show that the influence degree of low-level jet on the flight process is positively correlated to the strength parameter ${w}_{L}$ and the scale parameter ${H}_{T}$.

#### 4.3. Discussions of Use Conditions of the Comprehensive Model

- When the flight simulation is in a small time scale (in condition 1 of Section 4.1, the rocket went through the low-level jet area within 2 s) or in a small spatial scale (the low-level jet area has a height of 800 m and the rocket has a flight altitude of 10 km), the established comprehensive model can be used to obtain some reasonable results.
- When the flight simulation is in a large time scale (or in a large spatial scale), such as the total flight process of a long-range missile, an airplane or an airship, the comprehensive model might cause significant errors.

## 5. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Tuleya, R.E.; Lord, S.J. The Impact of Dropwindsonde Data on GFDL Hurricane Model Forecasts Using Global Analyses. Weather Forecast.
**2010**, 12, 307–323. [Google Scholar] [CrossRef] [Green Version] - Bo, M.; Lin, M.; Peng, H. WindSim Computational Flow Dynamics Model Testing Using Databases from Two Wind Measurement Stations. Electronics
**2011**, 15, 63–70. [Google Scholar] - Klisić, Đ.; Zlatanović, M.; Radovanović, I. Validation of wind vectors retrieved by the HY-2 microwave scatterometer using NCEP model data. Eng. Sci.
**2014**, 2, 39–61. [Google Scholar] - Efimov, V.V.; Anisimov, A.E. WindSim Climatic parameters of wind-field variability in the Black Sea region: Numerical reanalysis of regional atmospheric circulation. Izv. Atmos. Ocean. Phys.
**2011**, 47, 350–361. [Google Scholar] [CrossRef] - Parish, T.R.; Cassano, J.J. Diagnosis of the Katabatic Wind Influence on the Wintertime Antarctic Surface Wind Field from Numerical Simulations. Mon. Weather Rev.
**2003**, 6, 1128–1139. [Google Scholar] [CrossRef] - Zhang, A.; Gao, C.; Ling, Z. Numerical simulation of the wind field around different building arrangements. J. Wind Eng. Ind. Aerodyn.
**2005**, 12, 891–904. [Google Scholar] [CrossRef] - Ivan, M. Ring-vortex downburst model for flight simulations. J. Aircr.
**2012**, 3, 232–236. [Google Scholar] [CrossRef] - Zhang, W.F.; Xie, D.; Liu, Y.C.; Jing, J.I. Simulation of downburst wind field with spatial correlation. J. Vib. Shock.
**2013**, 32, 12–16. [Google Scholar] - Jesson, M.; Sterling, M. A simple vortex model of a thunderstorm downburst—A parametric evaluation. J. Wind Eng. Ind. Aerodyn.
**2018**, 174, 1–9. [Google Scholar] [CrossRef] - Eliassen, A.; Thorsteinsson, S. Numerical studies of stratified air flow over a mountain ridge on the rotating earth. Tellus A
**2010**, 2, 172–186. [Google Scholar] - Ji, H.; Chen, R.; Li, P. Distributed Atmospheric Turbulence Model for Helicopter Flight Simulation and Handling-Quality Analysis. J. Aircr.
**2017**, 54, 190–198. [Google Scholar] [CrossRef] - Jansen, C.J. Non-Gaussian Atmospheric Turbulence Model for Flight Simulator Research. J. Aircr.
**2012**, 19, 374–379. [Google Scholar] [CrossRef] - Towers, P.; Jones, B.L. Real-time wind field reconstruction from LiDAR measurements using a dynamic wind model and state estimation. Wind Energy
**2016**, 19, 133–150. [Google Scholar] [CrossRef] [Green Version] - Fluck, M.; Crawford, C. An engineering model for 3D turbulent wind inflow based on a limited set of random variables. Wind Energy Sci. Discuss.
**2017**, 1, 1–20. [Google Scholar] - Lupi, A.; Hans, J.; Niemann, B. Aerodynamic damping model in vortex-induced vibrations for wind engineering applications. J. Wind Eng. Ind. Aerodyn.
**2018**, 9, 14–24. [Google Scholar] [CrossRef] - Albini, F.A. A Phenomenological Model for Wind Speed and Shear Stress Profiles in Vegetation Cover Layers. J. Appl. Meteorol. Clim.
**2010**, 11, 1325–1335. [Google Scholar] [CrossRef] [Green Version] - Lianlei, L.; Xilin, L.; Gang, W. Modelling of Microburst Based on the Slanted Vortex-Ring Model. Chin. J. Electron.
**2018**, 27, 318–323. [Google Scholar] - Dogan, A.; Kabamba, P.T. Escaping Microburst with Turbulence: Altitude, Dive, and Pitch Guidance Strategies. J. Aircr.
**2015**, 37, 417–426. [Google Scholar] [CrossRef] - Lundgren, T.S.; Yao, J.; Mansour, N.N. Microburst modelling and scaling. J. Fluid Mech.
**2006**, 239, 461–488. [Google Scholar] [CrossRef] - Xhelaj, A.; Burlando, M.; Solari, G. A general-purpose analytical model for reconstructing the thunderstorm outflows of travelling downbursts immersed in ABL flows. J. Wind Eng. Ind. Aerodyn.
**2020**, 207, 1–7. [Google Scholar] [CrossRef] - Proctor, F. Model comparison of July 7, 1990 microburst. In Proceedings of the Third Combined Manufacturer’s and Technology Airbone Windshear Review Meeting, Hampton, VA, USA, 1 January 1991. [Google Scholar]
- Wanke, C.R.; Hansman, J.R. A data fusion algorithm for multi-sensor microburst hazard assessment. In Proceedings of the AIAA Atmospheric Flight Mechanics Conference, Hilton Head Island, SC, USA, 10–12 August 1992. [Google Scholar]
- Wang, H.; Fu, R. Influence of Cross-Andes Flow on the South American Low-Level Jet. J. Clim.
**2002**, 17, 1247–1262. [Google Scholar] [CrossRef] - Wang, C.; Wang, Z.S.; Li, Z.L. Comparison and parametric analysis of wind profile characteristics of impinging jet and wall jet. Eng. Mech.
**2015**, 32, 86–93. [Google Scholar] - Xiao, Y.L. Flight Principle in Atmospheric Turbulence, 1st ed.; National Defense Industry Press: Beijing, China, 1993; pp. 27–47. [Google Scholar]
- Chen, J.; Wang, L.; Li, Z. Influence of two typical kinds of low-level wind shear on ballistic performance of rockets. J. Beijing Univ. Aeronaut. Astronaut.
**2018**, 44, 1008–1017. [Google Scholar] - Marengo, J.A.; Soares, W.R.; Saulo, C.; Nicolini, M. Climatology of the Low-Level Jet East of the Andes as Derived from the NCEP–NCAR Reanalyses: Characteristics and Temporal Variability. J. Clim.
**2004**, 17, 12–19. [Google Scholar] [CrossRef] [Green Version] - Beal, T.R. Digital Simulation of Atmospheric Turbulence for Dryden and von Karman Models. J. Guid. Control. Dynam.
**1993**, 16, 132–138. [Google Scholar] [CrossRef] - Jing, G.; Guanxin, H.; Zaoqing, L. Theory and method of numerical simulation for 3D atmospheric turbulence field based on Von Karman model. J. Beijing Univ. Aeronaut. Astronaut.
**2012**, 38, 736–740. [Google Scholar] - Halsig, S.; Artz, T.; Iddink, A.; Nothnagel, A. Using an atmospheric turbulence model for the stochastic model of geodetic VLBI data analysis. Earth Planets Space
**2016**, 68, 106. [Google Scholar] [CrossRef] [Green Version] - Han, Z.P. Exterior Ballistics of Shells and Rockets, 2nd ed.; Beijing University of Technology Press: Beijing, China, 2008; pp. 141–143. [Google Scholar]

**Figure 3.**Comparisons between simulation results and measured data of micro-downburst. (

**a**) Simulation wind vector diagram of horizontal section. (

**b**) Flow pattern of 7 July 1990 Orlando downburst from NTRS-NASA Technical Reports Server [21]. (

**c**) Simulation wind vector diagram of vertical section. (

**d**) Flow pattern of 1988 microburst event of DEN from NTRS-NASA Technical Reports Server [22].

**Figure 5.**Comparisons between simulation results and measured data of low-level jet. (

**a**) Wind profiles ($u(x,H)$) of low-level jet by simulation. (

**b**) Wind profiles derived from the NCEP-NCAR reanalyzes and from the PACS-SONET upper-air observations [27] (© American Meteorological Society. Used with permission).

**Figure 14.**Impact dispersion of the rocket projectile under the influence of condition 2 (simulation time = 100).

Parameter | Value |
---|---|

${O}_{P}({x}_{p},{y}_{p},{z}_{p})$ | (1000 m, 0, 800 m) |

$R$ | 1100 m |

${V}_{z}(0)$ | −10 m/s |

${\mathit{Z}}_{0}$ | ${\mathit{H}}_{0}$ | ${\mathit{w}}_{0}$ | ${\mathit{H}}_{\mathit{L}}$ | ${\mathit{w}}_{\mathit{L}}$ | ${\mathit{H}}_{\mathit{T}}$ | ${\mathit{\alpha}}_{{\mathit{H}}_{0}}$ | ${\mathit{\alpha}}_{{\mathit{H}}_{\mathit{L}}}$ | ${\mathit{\alpha}}_{{\mathit{H}}_{\mathit{T}}}$ | ${\mathit{C}}_{\mathit{s}}$ | ${\mathit{C}}_{\mathit{L}}$ |
---|---|---|---|---|---|---|---|---|---|---|

2.5 m | 3.5 m | 5 ms^{−1} | 180 m | 10 ms^{−1} | 800 m | 0° | 30° | 60° | 0.8 | 0.3 |

**Table 3.**Parameters of atmospheric turbulence model [30].

Parameter | Value |
---|---|

${L}_{u}={L}_{v}={L}_{w}$ | 150 m |

${\sigma}_{u}={\sigma}_{v}={\sigma}_{w}$ | 1.5 ms^{−1} |

$h$ | 50 m |

Wind Field | Input | Output |
---|---|---|

Micro-downburst | $(x,y,z)$ | ${w}_{MD-x}$, ${w}_{MD-y}$, ${w}_{MD-z}$ |

Low-level jet | $H(H=y)$ | ${w}_{LLJ-x}$, ${w}_{LLJ-z}$ |

Atmospheric turbulence | $(x,y,z)$ | ${w}_{AT-x}$, ${w}_{AT-y}$, ${w}_{AT-z}$ |

Parameter | Value |
---|---|

Diameter of rocket | 0.122 m |

Length of rocket | 2.9 m |

Specific impulse | 250 s |

Working time of the engine | 3 s |

Initial velocity | 40 ms^{−1} |

Firing angle | 50 deg |

Firing direction | 0 deg |

Serial Number | Climatic Condition | Wind Field Condition |
---|---|---|

1 | Clear sky | Low-level jet |

2 | Thunderstorm | Micro-downburst and atmospheric turbulence |

W_{L}(m/s) | Flight Time (s) | Down Range (km) | Cross Range (km) | Terminal Velocity (m/s) |
---|---|---|---|---|

0 (No wind) | 104.7 | 34.38 | −0.009 | 366 |

6 | 91.7 | 32.18 | −2.501 | 347 |

10 | 89.8 | 31.81 | −2.738 | 345 |

14 | 88.9 | 31.42 | −3.067 | 343 |

18 | 86.1 | 31.04 | −3.182 | 340 |

W_{L}(m/s) | Flight Time (s) | Down Range (km) | Cross Range (km) | Terminal Velocity (m/s) |
---|---|---|---|---|

0 (No wind) | 104.7 | 34.38 | −0.009 | 366 |

400 | 90.6 | 31.95 | −3.005 | 347 |

500 | 89.8 | 31.81 | −2.738 | 345 |

600 | 89.1 | 31.72 | −2.692 | 345 |

700 | 88.6 | 31.61 | −2.461 | 343 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Chen, J.; Wang, L.; Fu, J.; Yang, Z.
Engineering Comprehensive Model of Complex Wind Fields for Flight Simulation. *Aerospace* **2021**, *8*, 145.
https://doi.org/10.3390/aerospace8060145

**AMA Style**

Chen J, Wang L, Fu J, Yang Z.
Engineering Comprehensive Model of Complex Wind Fields for Flight Simulation. *Aerospace*. 2021; 8(6):145.
https://doi.org/10.3390/aerospace8060145

**Chicago/Turabian Style**

Chen, Jianwei, Liangming Wang, Jian Fu, and Zhiwei Yang.
2021. "Engineering Comprehensive Model of Complex Wind Fields for Flight Simulation" *Aerospace* 8, no. 6: 145.
https://doi.org/10.3390/aerospace8060145