Mitigation of Non-CO2 Aviation’s Climate Impact by Changing Cruise Altitudes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Modelling Concept for Climate Impact Assessment
2.2. Emission Inventories for Flying Lower and Flying Higher
2.3. Atmospheric Modelling of Aviation-Induced Non-CO2 Impacts
2.4. Calculation of Non-CO2 Radiative Impacts
3. Changes in Atmospheric Composition and Radiative and Temperature Responses
3.1. Effect of Aviation Nitrogen Oxides
3.2. Contrail and Contrail Cirrus Effect
3.3. Aerosol-Indirect Effect on Warm Clouds (AiwC)
3.4. Overview of Climate Impact of Non-CO2 Effects of Aviation
3.5. Assessing Climate Impact of Alternative Routing Concepts in Aviation
3.6. Overview of the Climate Impact of Non-CO2 Effects of Aviation
4. Discussion
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
aCCF | Algorithmic Climate Change functions |
AiwC | Aerosol indirect effect on warm clouds |
CTM | Chemistry Transport Model |
GCM | General Circulation Model |
AIC | Aviation induced cloudiness |
ATR | Average Temperature Response |
ERF | Effective Radiative Forcing |
RF | Radiative forcing |
Appendix A
Appendix B
Impact | REACT4C | CH4 Update | Sensitivity | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Attribution | Perturbation | Perturbation | Tagging 1 | |||||||
Inventory | Ref | Low | High | Ref | Low | High | Ref | Low | High | |
NOx-Ozone | 19.5 | 18.2 | 21.1 | 19.5 | 18.2 | 21.1 | 30.6 | 28.5 | 33.1 | Tagging 1 |
NOx-Methane | −8.7 | −8.9 | −8.6 | −7.0 | −7.1 | −6.9 | −7.0 | −7.1 | −6.9 | Rad 2, lifetime 3 |
NOx-PMO | −4.3 | −4.4 | −4.3 | −2.8 | −2.9 | −2.8 | −2.8 | −2.9 | −2.8 | Lifetime 3 |
NOx-H2O | −1.3 | −1.3 | −1.3 | −0.8 | −0.8 | −0.8 | −0.8 | −0.8 | −0.8 | Lifetime 3 |
Net NOx | 5.2 | 3.5 | 6.9 | 8.9 | 7.3 | 10.6 | 20.0 | 17.6 | 22.6 | |
Altitude effect | −1.8 | 1.8 | −1.6 | 1.7 | −2.4 | 2.6 |
References
- Dameris, M.; Grewe, V.; Köhler, I.; Sausen, R.; Brühl, C.; Grooß, J.-U.; Steil, B. Impact of aircraft NOx emissions on tropospheric and stratospheric ozone. Part II: 3-D model results. Atmos. Environ. 1998, 32, 3185–3199. [Google Scholar] [CrossRef]
- Grewe, V.; Dameris, M.; Fichter, C.; Lee, D.S. Impact of aircraft NOx emissions. Part 2: Effects of lowering the flight altitude. Meteorol. Z. 2002, 11, 197–205. [Google Scholar] [CrossRef]
- Köhler, M.O.; Rogers, H.L.; Pyle, J.A. Modelling the Impact of Subsonic Aircraft Emissions on Ozone: Future Changes and the Impact of Cruise Altitude Perturbations. In Proceedings of the European Conference on Aviation, Atmosphere and Climate (AAC), Friedrichshafen, Germany, 30 June–3 July 2003. [Google Scholar]
- Fichter, C.; Marquart, S.; Sausen, R.; Lee, D.S. The impact of cruise altitude on contrails and related radiative forcing. Meteorol. Z. 2005, 14, 563–572. [Google Scholar] [CrossRef] [Green Version]
- Gauss, M.; Isaksen IS, A.; Lee, D.S.; Søvde, O.A. Impact of aircraft NOx emissions on the atmosphere—Tradeoffs to reduce the impact. Atmos. Chem. Phys. 2006, 6, 1529–1548. [Google Scholar] [CrossRef] [Green Version]
- Rädel, G.; Shine, K.P. Radiative forcing by persistent contrails and its dependence on cruise altitudes. J. Geophys. Res. 2008, 113, D07105. [Google Scholar] [CrossRef]
- Frömming, C.; Ponater, M.; Dahlmann, K.; Grewe, V.; Lee, D.S.; Sausen, R. Aviation-induced radiative forcing and surface temperature change in dependency of the emission altitude. J. Geophys. Res. 2012, 117, D19104. [Google Scholar] [CrossRef] [Green Version]
- Skowron, A.; Lee, D.S.; De León, R.R. The assessment of the impact of aviation NOx on ozone and other radiative forcing responses—The importance of representing cruise altitudes accurately. Atmos. Environ. 2013, 74, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Matthes, S.; Schumann, U.; Grewe, V.; Frömming, C.; Dahlmann, K.; Koch, A.; Mannstein, H. Climate optimized air transport. In Atmospheric Physics, Research Topics in Aerospace; Schumann, U., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 727–746. [Google Scholar] [CrossRef]
- Matthes, S.; Grewe, V.; Sausen, R.; Roelofs, G.-J. Global impact of road traffic emissions on tropospheric ozone. Atmos Chem. Phys. 2007, 7, 1707–1718. [Google Scholar] [CrossRef] [Green Version]
- Bier, A.; Burkhardt, U. Variability in contrail ice nucleation and its dependence on soot number emissions. J. Geophys. Res. Atmos. 2019, 124, 3384–3400. [Google Scholar] [CrossRef] [Green Version]
- Burkhardt, U.; Karcher, B.; Mannstein, H.; Schumann, U. Climate Impact of Contrails and Contrail Cirrus Research Paper, SSWP No. 6. 2008. Available online: https://rosap.ntl.bts.gov/view/dot/17379 (accessed on 28 January 2021).
- Grewe, V.; Champougny, T.; Matthes, S.; Frömming, C.; Brinkop, S.; Søvde, O.A.; Irvine, E.A.; Halscheidt, L. Reduction of the air traffic’s contribution to climate change: A REACT4C case study. Atmos. Environ. 2014, 94, 616–625. [Google Scholar] [CrossRef] [Green Version]
- Søvde, O.; Matthes, S.; Skowron, A.; Iachetti, D.; Lim, L.; Owen, B.; Hodnebrog, T.; Di Genova, G.; Pitari, G.; Lee, D. Aircraft emission mitigation by changing route altitude: A multi-model estimate of aircraft NOx emission impact on O3 photochemistry. Atmos. Environ. 2014, 95, 468–479. [Google Scholar] [CrossRef]
- Lim, L.L.; Lee, D.S.; Owen, B.; Skowron, A.; Matthes, S.; Burkhardt, U.; Dietmüller, S.; Pitari, G.; Di Genova, G.; Iachetti, D.; et al. REACT4C: Simplified mitigation studies. In Proceedings of the TAC-4 Conference, Bad Kohlgrub, Germany, 22–25 June 2015. [Google Scholar]
- Grewe, V.; Dahlmann, K.; Matthes, S. The contribution of aviation NOx emissions to climate change: Are we ignoring methodological flaws. Environ. Res. Lett. 2019, 14, 121003. [Google Scholar] [CrossRef]
- Lee, D.; Pitari, G.; Grewe, V.; Gierens, K.; Penner, J.; Petzold, A.; Prather, M.; Schumann, U.; Bais, A.; Berntsen, T.; et al. Transport impacts on atmosphere and climate: Aviation. Atmos. Environ. 2010, 44, 4678–4734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.S.; Fahey, D.W.; Skowron, A.; Allen, M.R.; Burkhardt, U.; Chen, Q.; Doherty, S.J.; Freeman, S.; Forster, P.M.; Fuglestvedt, J.; et al. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. Atmos. Environ. 2021, 244, 117834. [Google Scholar] [CrossRef]
- Matthes, S. Climate-optimised flight planning—REACT4C. In Innovation for a Sustainable Aviation in a Global Environment, Proceedings of the Sixth European Aeronautics Days 2011, Madrid, Spain, 30 March – 1 April 2011; IOS Press &: Amsterdam, The Netherlands; European Union: Brussels, Belgium, 2012; ISBN 978-92-79-22968-8. [Google Scholar]
- Owen, B.; Lim, L.L.; Gray, E.; Lee, D.S. Emission Inventories for Sensitivity Studies; CATE, Manchester Metropolitan University: Manchester, UK, 2011. [Google Scholar]
- Pitari, G.; Cionni, I.; Di Genova, G.; Søvde, O.A.; Lim, L. Radiative forcing from aircraft emissions of NOx: Model calculations with CH4 surface flux boundary condition. Meteorol. Z. 2016. [Google Scholar] [CrossRef]
- Zhu, J.; Penner, J.E. Radiative forcing of anthropogenic aerosols on cirrus clouds using a hybrid ice nucleation scheme. Atmos. Chem. Phys. 2020, 20, 7801–7827. [Google Scholar] [CrossRef]
- Bock, L.; Burkhardt, U. Contrail cirrus radiative forcing for future air traffic. Atmos. Chem. Phys. 2019, 19, 8163–8174. [Google Scholar] [CrossRef] [Green Version]
- Jöckel, P.; Tost, H.; Pozzer, A.; Brühl, C.; Buchholz, J.; Ganzeveld, L.; Hoor, P.; Kerkweg, A.; Lawrence, M.; Sander, R.; et al. The atmospheric chemistry general circulation model ECHAM5/MESSy1: Consistent simulation of ozone from the surface to the mesosphere. Atmos. Chem. Phys. 2006, 6, 5067–5104. [Google Scholar] [CrossRef] [Green Version]
- Jöckel, P.; Tost, H.; Pozzer, A.; Kunze, M.; Kirner, O.; Brenninkmeijer, C.A.M.; Brinkop, S.; Cai, D.S.; Dyroff, C.; Eckstein, J.; et al. Earth System Chemistry Integrated Modelling (ESCiMo) with the Modular Earth Submodel System (MESSy, version 2.51). Geosci. Model Dev. 2016, 9, 1153–1200. [Google Scholar] [CrossRef] [Green Version]
- Righi, M.; Hendricks, J.; Sausen, R. The global impact of the transport sectors on atmospheric aerosol: Simulations for year 2000 emissions. Atmos. Chem. Phys. 2013, 13, 9939–9970. [Google Scholar] [CrossRef] [Green Version]
- Burkhardt, U.; Kärcher, B. Process-based simulation of contrail cirrus in a global climate model. J. Geophys. Res. 2009, 114, D16201. [Google Scholar] [CrossRef] [Green Version]
- Schumann, U. On conditions for contrail formation from aircraft exhausts. Meteorol. Z. 1996, 5, 4–23. [Google Scholar] [CrossRef]
- Burkhardt, U.; Kärcher, B.; Ponater, M.; Gierens, K.; Gettelman, A. Contrail cirrus supporting areas in model and observations. Geophys. Res. Lett. 2008, 35, L16808. [Google Scholar] [CrossRef] [Green Version]
- Lamquin, N.; Stubenrauch, C.; Gierens, K.; Burkhardt, U.; Smit, H. A global climatology of upper-tropospheric ice supersaturation occurence inferred from the Atmospheric Infrared Sounder calibrated by MOZAIC. Atmos. Chem. Phys. 2012, 12, 381–405. [Google Scholar] [CrossRef] [Green Version]
- Kärcher, B.; Burkhardt, U.; Bier, A.; Bock, L.; Ford, I.J. The microphysical pathway to contrail formation. J. Geophys. Res. Atmos. 2015, 120, 7893–7927. [Google Scholar] [CrossRef] [Green Version]
- Burkhardt, U.; Kärcher, B. Global radiative forcing from contrail cirrus. Nat. Clim. Chang. 2011, 1, 54–58. [Google Scholar] [CrossRef] [Green Version]
- Bock, L.; Burkhardt, U. Reassessing properties and radiative forcing of contrail cirrus using a climate model. J. Geophys. Res. 2016, 121, D9717–D9736. [Google Scholar] [CrossRef] [Green Version]
- Burkhardt, U.; Bock, L.; Bier, A. Mitigating the contrail cirrus climate impact by reducing aircraft soot number emissions. NPJ Clim. Atmos. Sci. 2018, 37, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Myhre, G.; Kvalevåg, M.; Rädel, G.; Cook, J.; Shine, K.P.; Clark, H.; Karcher, F.; Markowicz, K.; Kardas, A.; Wolkenberg, P.; et al. Intercomparison of radiative forcing calculations of stratospheric water vapour and contrails. Meteorol. Z. 2009, 18, 585–596. [Google Scholar] [CrossRef] [Green Version]
- Schumann, U.; Penner, J.E.; Chen, Y.; Zhou, C.; Graf, K. Dehydration effects from contrails in a coupled contrail-climate model. Atmos. Chem. Phys. 2015, 15, 11179–11199. [Google Scholar] [CrossRef] [Green Version]
- Bickel, M.; Ponater, M.; Bock, L.; Burkhardt, U.; Reineke, S. Estimating the Effective Radiative Forcing of Contrail Cirrus. J. Clim. 2020, 33, 1991–2005. [Google Scholar] [CrossRef] [Green Version]
- Righi, M.; Hendricks, J.; Sausen, R. The global impact of the transport sectors on atmospheric aerosol in 2030—Part 2: Aviation. Atmos. Chem. Phys. 2016, 16, 4481–4495. [Google Scholar] [CrossRef] [Green Version]
- Lamarque, J.-F.; Bond, T.C.; Eyring, V.; Granier, C.; Heil, A.; Klimont, Z.; Lee, D.S.; Liousse, C.; Mieville, A.; Owen, B.; et al. Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmos. Chem. Phys. 2010, 10, 7017–7039. [Google Scholar] [CrossRef] [Green Version]
- Grewe, V.; Stenke, A. AirClim: An efficient climate impact assessment tool. Atmos. Chem. Phys. 2008, 8, 4621–4639. [Google Scholar] [CrossRef] [Green Version]
- Dahlmann, K.; Grewe, V.; Frömming, C.; Burkhardt, U. Can we reliably assess climate mitigation options for air traffic scenarios despite large uncertainties in atmospheric processes? Transp. Res. Part D Transp. Environ. 2016, 46, 40–55. [Google Scholar] [CrossRef] [Green Version]
- Dahlmann, K.; Grewe, V.; Ponater, M.; Matthes, S. Quantifying the contributions of individual NOx sources to the trend in ozone radiative forcing. Atmos. Environ. 2011, 45, 2860–2868. [Google Scholar] [CrossRef] [Green Version]
- Hendricks, J.; Kärcher, B.; Lohmann, U.; Ponater, M. Do aircraft black carbon emissions affect cirrus clouds on the global scale? Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Hendricks, J.; Kärcher, B.; Lohmann, U. Effects of ice nuclei on cirrus clouds in a global climate model. J. Geophys. Res. 2011, 116, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Tesche, M.; Achtert, P.; Glantz, P.; Noone, K.J. Aviation effects on already-existing cirrus clouds. Nat. Commun. 2016, 7, 12016. [Google Scholar] [CrossRef] [Green Version]
- Holmes, C.D.; Tang, Q.; Prather, M.J. Uncertainties in climate assessment for the case of aviation NO. Proc. Natl. Acad. Sci. USA 2011, 108, 10997–11002. [Google Scholar] [CrossRef] [Green Version]
- Matthes, S.; Lührs, B.; Dahlmann, K.; Grewe, V.; Linke, F.; Yin, F.; Klingaman, E.; Shine, K.P. Climate-Optimized Trajectories and Robust Mitigation Potential: Flying ATM4E. Aerospace 2020, 7, 156. [Google Scholar] [CrossRef]
- Matthes, S.; Ling, L.; Burkhardt, U.; Dahmann, K.; Dietmüller, S.; Grewe, V.; Haslerud, A.S.; Hendricks, J.; Lee, D.S.; Owen, B.; et al. Mitigation of aviation’s non-CO2 climate impact by changing cruise altitudes. In Proceedings of the Making Aviation Environmentally Sustainable, ECATS 3rd Conference, online, 13–15 October 2020; ECATS IASBL. pp. 83–89, ISBN 978-1-910029-58-9. [Google Scholar]
Scenario | Fuel | CO2 | NOx | Soot |
---|---|---|---|---|
[Tg] | [Tg] | [Tg NO2] | [Tg] | |
Base case (reference) | 178.3 | 563.4 | 2.338 | 0.00407 |
Flying Lower | 180.7 | 571.0 | 2.339 | 0.00432 |
Flying Higher | 176.8 | 558.7 | 2.358 | 0.00388 |
Model | Type 1 | Setup 2 | Resolution | Length [a] | Rad. | Effects | Reference |
---|---|---|---|---|---|---|---|
ECHAM4-CCMod | GCM | FR | T30/L39 | 10 | online | CC | [27] |
EMAC/MESSy | QCTM | SD | T42/L90 | 4 | offline | NOx | [25] |
EMAC/MADE3 | GCM | SD | T42/L19 | 15 | online | AiwC | [26] |
MOZART-3 | CTM | SD | T42/L60 | 4 | offline | NOx | [8] |
Oslo CTM3 | CTM | SD | T42/L90 | 4 | offline | NOx | [14] |
ULAQ | GCM | SD | T21/L126 | 10 | offline | NOx | [21] |
Impact | Reference | Lower | Higher |
---|---|---|---|
Net NOx | 8.9 | 7.3 | 10.6 |
NOx-Ozone | 19.5 | 18.2 | 21.1 |
NOx-Methane | −7.0 | −7.1 | −6.9 |
NOx-PMO | −2.8 | −2.9 | −2.8 |
NOx-H2O | −0.8 | −0.8 | −0.8 |
Direct H2O | 1.5 | 1.1 | 2.0 |
Aerosol indirect warm cloud (AiwC) | −14.8 | −21.9 | −14.4 |
Contrail Cirrus (CC) | 45 | 40 | 48 |
Total non-CO2 | 40.3 | 26.8 | 46.1 |
Total1 | 61.8 | 48.6 | 67.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matthes, S.; Lim, L.; Burkhardt, U.; Dahlmann, K.; Dietmüller, S.; Grewe, V.; Haslerud, A.S.; Hendricks, J.; Owen, B.; Pitari, G.; et al. Mitigation of Non-CO2 Aviation’s Climate Impact by Changing Cruise Altitudes. Aerospace 2021, 8, 36. https://doi.org/10.3390/aerospace8020036
Matthes S, Lim L, Burkhardt U, Dahlmann K, Dietmüller S, Grewe V, Haslerud AS, Hendricks J, Owen B, Pitari G, et al. Mitigation of Non-CO2 Aviation’s Climate Impact by Changing Cruise Altitudes. Aerospace. 2021; 8(2):36. https://doi.org/10.3390/aerospace8020036
Chicago/Turabian StyleMatthes, Sigrun, Ling Lim, Ulrike Burkhardt, Katrin Dahlmann, Simone Dietmüller, Volker Grewe, Amund S. Haslerud, Johannes Hendricks, Bethan Owen, Giovanni Pitari, and et al. 2021. "Mitigation of Non-CO2 Aviation’s Climate Impact by Changing Cruise Altitudes" Aerospace 8, no. 2: 36. https://doi.org/10.3390/aerospace8020036
APA StyleMatthes, S., Lim, L., Burkhardt, U., Dahlmann, K., Dietmüller, S., Grewe, V., Haslerud, A. S., Hendricks, J., Owen, B., Pitari, G., Righi, M., & Skowron, A. (2021). Mitigation of Non-CO2 Aviation’s Climate Impact by Changing Cruise Altitudes. Aerospace, 8(2), 36. https://doi.org/10.3390/aerospace8020036