A Generalized Approach to Operational, Globally Optimal Aircraft Mission Performance Evaluation, with Application to Direct Lift Control
Abstract
:1. Introduction
1.1. State-of-the-Art Review
1.2. Outline
2. Methods
2.1. Mission Model
2.1.1. Capture Conditions
2.1.2. Constraints
2.1.3. Cost Functional
2.2. Mission Phase Stereotypes
2.3. Flight Mechanics Model
2.3.1. Equations of Motion
2.3.2. Aerodynamic Model
2.3.3. Propulsive Model
2.3.4. Control Variables
2.4. Simulation Environment
2.4.1. In-House Development
2.4.2. Solvers and Execution Flow
3. Validation
4. Results
4.1. Conventional Pitch Control Performance
4.1.1. Design Range
4.1.2. Harmonic Range
4.1.3. Top-Level Mission Performance Summary
4.2. Direct Lift Control
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Acronyms | |
BADA | Base of Aircraft Data |
CAS | Calibrated Airspeed |
CI | Cost Index |
CPC | Conventional Pitch Control |
CSR-01 | CeRAS Short Range - Version 01 |
DLC | Direct Lift Control |
FAP | Final Approach Point |
MMG | Multi Model Generator |
MO | Maximum Operative |
MTOM | Maximum Takeoff Mass |
NLP | Nonlinear Programming |
OEM | Operational Empty Mass |
PARSIFAL | Prandtlplane Architecture for the Sustainable Improvement of Future Airplanes |
PHALANX | Performance, Handling Qualities and Loads Analysis Toolbox |
PrP | PrandtlPlane |
RoC | Rate of Climb |
TSFC | Thrust Specific Fuel Consumption |
UML | Unified Modeling Language |
VSAERO | Vortex Separation Aerodynamics |
ZFM | Zero Fuel Mass |
Symbols | |
Roman letters | |
A | aspect ratio |
b | wing span |
constraint function | |
C | generic constant or coefficient |
drag coefficient | |
zero-lift drag coefficient | |
pressure drag coefficient factor | |
lift coefficient | |
D | drag |
e | span efficiency factor |
f | state dynamic equations |
F | force |
g | gravitational acceleration |
h | altitude |
cost functional | |
Lagrange running cost term | |
L | lift |
lower bound | |
m | mass |
M | Mach number |
n | number of mission phases |
N | reaction normal force |
p | roll rate |
q | pitch rate |
r | yaw rate |
R | mission range |
S | wing area |
t | time |
T | thrust |
upper bound | |
V | velocity |
x | eastward coordinate |
y | northward coordinate |
Greek letters | |
angle of attack | |
angle of sideslip | |
flightpath angle | |
generic difference | |
deflection angle | |
aerodynamic angle of roll | |
control variable vector | |
state variable vector | |
normalized throttle setting | |
Mayer endpoint cost term | |
heading angle | |
angular velocity vector | |
Subscripts | |
ae | aerodynamic |
av | available |
cr | cruise |
f | final |
gd | ground |
i | initial |
rot | rotation |
rw | runway |
Subscripts | |
* | optimal |
p | phase |
References
- Darecki, M.; Edelstenne, C.; Enders, T.; Fernandez, E.; Hartman, P.; Herteman, J.P.; Kerkloh, M.; King, I.; Ky, P.; Mathieu, M.; et al. Flightpath 2050 europes vision for aviation. Off. Eur. 2011. [Google Scholar] [CrossRef]
- Gittens, A.; Poole, J.; de Juniac, A.; Liu, F.; Pie, J. Aviation Benefits. Report, ICAO, AI, CANSO, IATA, ICCAIA. 2017. Available online: https://www.icao.int/sustainability/Documents/AVIATION-BENEFITS-2017-web.pdf (accessed on 15 June 2020).
- Airbus SAS. Global Market Forecast Cities, Airports & Aircraft 2019–2038; Airbus: Blagnac, France, 2019. [Google Scholar]
- Alam, S.; Nguyen, M.; Abbass, H.; Lokan, C.; Ellejmi, M.; Kirby, S. Multi-aircraft dynamic continuous descent approach methodology for low-noise and emission guidance. J. Aircr. 2011, 48, 1225–1237. [Google Scholar] [CrossRef]
- ICAO. Continuous Descent Operations (CDO) Manual, 1st ed.; ICAO: Montréal, QC, Canada, 2010. [Google Scholar]
- Liu, Y.; Elham, A.; Horst, P.; Hepperle, M. Exploring vehicle level benefits of revolutionary technology progress via aircraft design and optimization. Energies 2018, 11, 166. [Google Scholar] [CrossRef] [Green Version]
- Frediani, A.; Cipolla, V.; Rizzo, E. The PrandtlPlane Configuration: Overview on Possible Applications to Civil Aviation. In Variational Analysis and Aerospace Engineering: Mathematical Challenges for Aerospace Design; Springer: Berlin/Heidelberg, Germany, 2012; pp. 179–210. [Google Scholar]
- Frediani, A.; Cipolla, V.; Abu Salem, K.; Binante, V.; Picchi Scardaoni, M. On the preliminary design of PrandtlPlane civil transport aircraft. In Proceedings of the 7th Eucass Conference, Milan, Italy, 3–6 July 2017. [Google Scholar]
- Okonkwo, P.; Smith, H. Review of evolving trends in blended wing body aircraft design. Prog. Aerosp. Sci. 2016, 82, 1–23. [Google Scholar] [CrossRef]
- Martinez-Val, R.; Schoep, E. Flying wing versus conventional transport airplane: The 300 seat case. Proc. Inst. Mech. Eng. Part J. Aerosp. Eng. 2000, 221. [Google Scholar] [CrossRef]
- Faggiano, F.; Vos, R.; Baan, M.; Van Dijk, R. Aerodynamic Design of a Flying V Aircraft. In Proceedings of the 17th AIAA Aviation Technology, Integration, and Operations Conference, Denver, CO, USA, 5–9 June 2017. [Google Scholar] [CrossRef] [Green Version]
- Cavallaro, R.; Demasi, L. Challenges, Ideas, and Innovations of Joined-Wing Configurations: A Concept from the Past, an Opportunity for the Future. Prog. Aerosp. Sci. 2016, 87, 1–93. [Google Scholar] [CrossRef]
- Prandtl, L. Induced Drag of Multiplanes; Report NACA-TN-182; NACA: Pasadena, CA, USA, 1924. [Google Scholar]
- Parsifal Project. Available online: https://parsifalproject.eu/ (accessed on 31 August 2020).
- Voskuijl, M.; de Klerk, J.; van Ginneken, D. Flight Mechanics Modeling of the PrandtlPlane for Conceptual and Preliminary Design. In Variational Analysis and Aerospace Engineering: Mathematical Challenges for Aerospace Design; Springer: Boston, MA, USA, 2012; pp. 435–462. [Google Scholar]
- Pinsker, W. The Control Characteristics of Aircraft Employing Direct-Lift Control; Report 0114703299; HM Stationery Office: London, UK, 1970. [Google Scholar]
- Frediani, A.; Montanari, G. Best Wing System: An Exact Solution of the Prandtl’s Problem. In Variational Analysis and Aerospace Engineering; Variational Analysis and Aerospace Engineering; Springer: New York, NY, USA, 2009; pp. 183–211. [Google Scholar]
- Demasi, L.; Monegato, G.; Rizzo, E.; Cavallaro, R.; Dipace, A. Minimum induced drag theorems for joined wings, closed systems, and generic biwings: Results. In Proceedings of the 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kissimmee, FL, USA, 5–9 January 2015; p. 0698. [Google Scholar]
- McMasters, J.H.; Paisley, D.J.; Hubert, R.J.; Kroo, I.; Bofah, K.K.; Sullivan, J.P.; Drela, M. Advanced Configurations for Very Large Subsonic Transport Airplanes; Report; NASA: Pasadena, CA, USA, 1996.
- Vinh, N.X. Optimal Trajectories in Atmospheric Flight. In Studies in Astronautics; Elsevier: Amsterdam, The Netherlands, 1981; Book Section 3; pp. 47–62. [Google Scholar]
- Betts, J.T. Practical Methods for Optimal Control and Estimation Using Nonlinear Programming; Siam: Philadelphia, PA, USA, 2010; Volume 19. [Google Scholar]
- Bryson, A.E. Applied Optimal Control: Optimization, Estimation and Control; Routledge: London, UK, 2018. [Google Scholar]
- Kirk, D.E. Optimal Control Theory: An Introduction; Courier Corporation: North Chelmsford, MA, USA, 2012. [Google Scholar]
- Betts, J.T. Survey of numerical methods for trajectory optimization. J. Guid. Control. Dyn. 1998, 21, 193–207. [Google Scholar] [CrossRef]
- Fisch, F. Development of a Framework for the Solution of High-Fidelity Trajectory Optimization Problems and Bilevel Optimal Control Problems. Ph.D. Thesis, Technische Universität München, München, Germany, 2011. [Google Scholar]
- Soler, M.; Olivares, A.; Staffetti, E. Multiphase Optimal Control Framework for Commercial Aircraft Four-Dimensional Flight-Planning Problems. J. Aircr. 2015, 52, 274–286. [Google Scholar] [CrossRef]
- Becerra, V.M. Practical Direct Collocation Methods for Computational Optimal Control. In Modeling and Optimization in Space Engineering; Springer: Berlin/Heidelberg, Germany, 2012; pp. 33–60. [Google Scholar]
- Von Stryk, O.; Bulirsch, R. Direct and indirect methods for trajectory optimization. Ann. Oper. Res. 1992, 37, 357–373. [Google Scholar] [CrossRef]
- Hargraves, C.R.; Paris, S.W. Direct trajectory optimization using nonlinear programming and collocation. J. Guid. Control. Dyn. 1987, 10, 338–342. [Google Scholar] [CrossRef]
- Betts, J.T.; Cramer, E.J. Application of direct transcription to commercial aircraft trajectory optimization. J. Guid. Control. Dyn. 1995, 18, 151–159. [Google Scholar] [CrossRef]
- Hartjes, S.; van Hellenberg Hubar, M.E.G.; Visser, H.G. Multiple-Phase Trajectory Optimization for Formation Flight in Civil Aviation. In Advances in Aerospace Guidance, Navigation and Control; Dołęga, B., Głębocki, R., Kordos, D., Żugaj, M., Eds.; Springer: Cham, Switzerland, 2018; pp. 389–405. [Google Scholar]
- Nuic, A. User manual for the Base of Aircraft Data (BADA) revision 3.10. Atmosphere 2010, 2010, 10–45. [Google Scholar]
- Nuic, A.; Poles, D.; Mouillet, V. BADA: An advanced aircraft performance model for present and future ATM systems. Int. J. Adapt. Control. Signal Process. 2010, 24, 850–866. [Google Scholar] [CrossRef]
- Wu, D.; Zhao, Y. Optimization and sensitivity analysis of climb and descent trajectories for reducing fuel burn and emissions. In Proceedings of the 11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference, including the AIAA Balloon Systems Conference and 19th AIAA Lighter-Than-Air Systems Technology (LTA) Conference, Virginia Beach, VA, USA, 20–22 September 2011; p. 6879. [Google Scholar]
- Zhao, Y.; Slattery, R.A. Capture conditions for merging trajectory segments to model realistic aircraft descents. J. Guid. Control. Dyn. 1996, 19, 453–460. [Google Scholar] [CrossRef] [Green Version]
- Visser, H.G. Terminal area traffic management. Prog. Aerosp. Sci. 1991, 28, 323–368. [Google Scholar] [CrossRef]
- European Aviation Safety Agency. Certification Specifications for Large Aeroplanes CS-25A19; EASA: Cologne, Germany, 2017. [Google Scholar]
- Federal Aviation Administration. Federal Aviation Regulation, Part 91: General Operating and Flight Rules, Section 117: Aircraft Speed; FAA: Washington, DC, USA, 2020.
- Gagné, J.; Murrieta, A.; Botez, R.M.; Labour, D. New method for aircraft fuel saving using Flight Management System and its validation on the L-1011 aircraft. In Proceedings of the 2013 Aviation Technology, Integration, and Operations Conference, Los Angeles, CA, USA, 12–14 August 2013; p. 4290. [Google Scholar]
- Patrón, R.S.F.; Botez, R.M.; Labour, D. New altitude optimisation algorithm for the flight management system CMA-9000 improvement on the A310 and L-1011 aircraft. Aeronaut. J. (1968) 2013, 117, 787–805. [Google Scholar] [CrossRef]
- International Civil Aviation Organization. Rules of the Air; ICAO: Montréal, QC, Canada, 2005. [Google Scholar]
- Federal Aviation Administration. Instrument Procedures Handbook, FAA-H-8083-16B, Chapter 2: En Route Operations; FAA: Washington, DC, USA, 2020.
- Federal Aviation Administration. Airplane Flying Handbook, FAA-H-8083-3B, Chapter 8: Approaches and Landings; FAA: Washington, DC, USA, 2020.
- Deutsches Zentrum für Luft- und Raumfahrt; Delft University of Technology; Skybox Engineering. Report on Socio-Economic Scenarios and Expectations; Report, DLR; University of Pisa: Pisa, Italy, 2017. [Google Scholar]
- International Civil Aviation Organization. International Standards and Recommended Practices: Annex 14 to the Convention on International Civil Aviation: Aerodromes. Aerodrome Design and Operations; International Civil Aviation Organization: Montreal, QC, Canada, 2004. [Google Scholar]
- Risse, K.; Schäfer, K.; Schültke, F.; Stumpf, E. Central Reference Aircraft data System (CERAS) for research community. Ceas Aeronaut. J. 2016, 7, 121–133. [Google Scholar] [CrossRef]
- Fogarty, L.E.; Howe, R.M. Computer mechanization of six-degree of freedom flight equations. Simulation 1968, 11, 187–193. [Google Scholar] [CrossRef] [Green Version]
- Ruijgrok, G. Elements of Airplane Performance; VSSD: Delft, The Netherlands, 2009. [Google Scholar]
- Phillips, W.F.; Hailey, C.E.; Gebert, G.A. Review of Attitude Representations Used for Aircraft Kinematics. J. Aircr. 2001, 38, 718–737. [Google Scholar] [CrossRef]
- Nathman, J.K. VSAERO 7.9: A Computer Program for Calculating the Nonlinear Aerodynamic Characteristics of Arbitrary Configurations; Stark Aerospace, Inc.: Washington, DC, USA, 2016. [Google Scholar]
- Soler, M.; Olivares, A.; Staffetti, E.; Cegarra, J. Multi-phase optimal control applied to 4D business trajectory strategic planning in air traffic management. In Proceedings of the 1st International Conference on Application and Theory of Automation in Command and Control Systems, Barcelona, Spain, 26–27 May 2011; pp. 68–78. [Google Scholar]
- Sun, J.; Hoekstra, J.M.; Ellerbroek, J. Aircraft Drag Polar Estimation Based on a Stochastic Hierarchical Model. In Eighth SESAR Innovation Days; University of Salzburg: Salzburg, Austria, 2018. [Google Scholar]
- Chung, K.M. Aerodynamic characteristics of deflected surfaces in compressible flows. J. Aircr. 2004, 41, 415–418. [Google Scholar] [CrossRef]
- Traub, L.W. Unified approximation for nonparabolic drag polars. J. Aircr. 2007, 44, 343–346. [Google Scholar] [CrossRef]
- Proesmans, P. Preliminary Propulsion System Design and Integration for a Box-Wing Aircraft Configuration, A Knowledge Based Engineering Approach. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2019. [Google Scholar]
- Visser, W.P. Generic Analysis Methods for Gas Turbine Engine Performance: The development of the gas turbine simulation program GSP. Ph.D. Thesis, Technische Universiteit Delft, Delft, The Netherlands, 2014. [Google Scholar]
- Greitzer, E.M.; Bonnefoy, P.A.; de la Rosa Blanco, E.; Dorbian, C.S.; Drela, M.; Hall, D.K.; Hansman, R.J.; Liebeck, R.H.; Lovegren, J.; Mody, P.; et al. N+3 Aircraft Concept Designs and Trade Studies. Volume 2; Appendices-Design Methodologies for Aerodynamics, Structures, Weight, and Thermodynamic Cycles; Report; NASA Glenn Research Center: Pasadena, CA, USA, 2010.
- Safran Aircraft Engines. Available online: https://www.safran-aircraft-engines.com/commercial-engines/single-aisle-commercial-jets/leap/ (accessed on 31 August 2020).
- Hartjes, S.; Visser, H. Optimal Control Approach to Helicopter Noise Abatement Trajectories in Nonstandard Atmospheric Conditions. J. Aircr. 2019, 56, 43–52. [Google Scholar] [CrossRef]
- La Rocca, G.; Van Tooren, M. Enabling distributed multi-disciplinary design of complex products: A knowledge based engineering approach. J. Des. Res. 2007, 5, 333–352. [Google Scholar] [CrossRef]
- Raju Kulkarni, A.; Varriale, C.; Voskuijl, M.; La Rocca, G.; Veldhuis, L.L.M. Assessment of Sub-Scale Designs for Scaled Flight Testing. In AIAA Aviation Forum and Exposition; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2019. [Google Scholar]
- Rizzi, A.; Zhang, M.; Nagel, B.; Böhnke, D.; Saquet, P. Towards a Unified Framework using CPACS for Geometry Management in Aircraft Design. In Proceedings of the AIAA Aerospace Sciences Meeting, Nashville, TN, USA, 9–12 January 2012. [Google Scholar] [CrossRef] [Green Version]
- Alder, M.; Moerland, E.; Jepsen, J.; Nagel, B. Recent Advances in Establishing a Common Language for Aircraft Design with CPACS. In Proceedings of the Aerospace Europe Conference 2020, Bordeaux, France, 25–28 February 2020. [Google Scholar]
- Open Cascade SAS. Available online: https://www.opencascade.com/ (accessed on 31 August 2020).
- Van Ginneken, D.A.J.; Voskuijl, M.; van Tooren, M.J.L.; Frediani, A. Automated Control Surface Design and Sizing for the Prandtl Plane. In Proceedings of the 6th AIAA Multidisciplinary Design Optimization Specialist Conference, Orlando, FL, USA, 12–15 April 2010. [Google Scholar]
- Varriale, C.; Raju Kulkarni, A.; La Rocca, G.; Voskuijl, M. A Hybryd, Configuration-Agnostic Approach to Aircraft Control Surface Sizing. In Proceedings of the 25th International Congress of the Italian Association of Aeronautics and Astronautics (AIDAA), Rome, Italy, 9–13 September 2019. [Google Scholar]
- Voskuijl, M.; La Rocca, G.; Dircken, F. Controllability of Blended Wing Body Aircraft. In Proceedings of the 26th Congress of International Council of the Aeronautical Sciences, Anchorage, AK, USA, 14–19 September 2008. [Google Scholar]
- Varriale, C.; Hameeteman, K.; Voskuijl, M.; Veldhuis, L. A Thrust-Elevator Interaction Criterion for Aircraft Optimal Longitudinal Control; AIAA Aviation Forum and Exposition: Reston, VA, USA, 2019. [Google Scholar]
- Patterson, M.A.; Rao, A.V. GPOPS-II: A MATLAB software for solving multiple-phase optimal control problems using hp-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming. Acm Trans. Math. Softw. (Toms) 2014, 41, 1. [Google Scholar] [CrossRef] [Green Version]
- Wächter, A. Short Tutorial: Getting Started With Ipopt in 90 Minutes. In Dagstuhl Seminar Proceedings; Naumann, U., Schenk, O., Simon, H.D., Toledo, S., Eds.; Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik: Dagstuhl, Germany, 2009. [Google Scholar]
- Hull, D.G. Fundamentals of Airplane Flight Mechanics; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
Variable | h | V | γ | μ | α | β | m | p, q, r | τ | δ |
---|---|---|---|---|---|---|---|---|---|---|
Lower bound | 0 | 0 / | ZFM | / | 0 | |||||
Upper bound | 14 | 330 / | MTOM | / | 1 |
Phase | Segment | Flight Objective | Capture Cond. | ||
---|---|---|---|---|---|
Takeoff [37] | Level ground roll | q = 0 | — | — | |
Pitched ground roll | N = 0 | — | — | ||
Initial climb out | = | h | — | — | |
Climb [34,38,39,40] | CAS-limited | — | h = 3048 m | CAS < 129 m/ | — |
Level acceleration | = 0 | CAS | — | — | |
Acceleration | = 0 | M | — | — | |
Deceleration | = 0 | h | M < | — | |
Cruise [37,41,42] | Level flight | = 0 | — | M < | — |
Step climb | — | — | M < | — | |
> 500 ft/min | |||||
< 1500 ft/min | |||||
Descent [34,38,39,40] | Acceleration | = 0 | CAS | M < | — |
Deceleration | = 0 | h = 3048 m/s | — | — | |
Level deceleration | = 0 | CAS = 129 m/s | — | — | |
CAS-limited | — | h | CAS < 129 m/ | — | |
Landing [43] | Approach | = 0 | h | — | — |
= | |||||
Flare/round out | = | h | — | = | |
= |
Design Variable | MTOM | ZFM | OEM | S | b | Pax | ||
---|---|---|---|---|---|---|---|---|
PrandtlPlane | 125 × | 98 × | 69 × | 0.79 | 11 | 308 | ||
CSR-01 | 79 × | 62 × | 42 × | 0.79 | 11 | 150 |
Variables | Conventional Pitch Control (CPC) | Direct Life Control (DLC) |
---|---|---|
States σ | h, m, V, x, y, μ, γ, χ, α, β | h, m, V, x, y, μ, γ, χ, α, β |
Controls ζ | τ, p, q, r | τ, p, q, r, |
Mission | Duration (h:mm:ss) | Fuel Consumed (kg) |
---|---|---|
Reference | 2:33:26 | 5344 |
Replicate | 2:29:05 (−2.83%) | 5246 (−1.84%) |
Aircraft | Range (km) | Fuel Consumption (kg) | Fuel/pax/km (kg/km) | Flight Time (h:mm:ss) |
---|---|---|---|---|
PrP | 5417.2 | 27,000 | 0.0146 | 7:27:42 |
CSR-01 | 6218.6 | 16,500 | 0.0162 | 7:39:48 |
Δ | −12.9% | +63.6% | −8.5% | −2.6% |
Fuel Consumption (kg) | Flight Time (h:mm:ss) | |||||
---|---|---|---|---|---|---|
Strategy | DLC | CPC | Δ | DLC | CPC | Δ |
Efficient | 18,961 | 19,071 | −0.6% | 5:42:26 | 5:38:36 | +1.1% |
Balanced | 19,729 | 20,236 | −2.5% | 5:10:43 | 5:00:50 | +3.2% |
Fast | 27,000 | 27,000 | 0% | 4:43:53 | 4:43:54 | 0% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Wringer, S.; Varriale, C.; Oliviero, F. A Generalized Approach to Operational, Globally Optimal Aircraft Mission Performance Evaluation, with Application to Direct Lift Control. Aerospace 2020, 7, 134. https://doi.org/10.3390/aerospace7090134
de Wringer S, Varriale C, Oliviero F. A Generalized Approach to Operational, Globally Optimal Aircraft Mission Performance Evaluation, with Application to Direct Lift Control. Aerospace. 2020; 7(9):134. https://doi.org/10.3390/aerospace7090134
Chicago/Turabian Stylede Wringer, Sam, Carmine Varriale, and Fabrizio Oliviero. 2020. "A Generalized Approach to Operational, Globally Optimal Aircraft Mission Performance Evaluation, with Application to Direct Lift Control" Aerospace 7, no. 9: 134. https://doi.org/10.3390/aerospace7090134
APA Stylede Wringer, S., Varriale, C., & Oliviero, F. (2020). A Generalized Approach to Operational, Globally Optimal Aircraft Mission Performance Evaluation, with Application to Direct Lift Control. Aerospace, 7(9), 134. https://doi.org/10.3390/aerospace7090134