Numerical Simulation of the Anti-Icing Performance of Electric Heaters for Icing on the NACA 0012 Airfoil
Abstract
1. Introduction
2. Numerical Scheme and Validation
2.1. Grid Generation
2.2. Flow Field Computation
2.3. Droplet Trajectory
2.4. Thermodynamics
2.5. Validation of Flow and Heating Simulation
3. Anti-Icing Performance of Heater for NACA 0012
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AoA | Angle of attack |
BBO | Basset–Boussinesq–Oseen |
EMM | Extended Messinger model |
FAA | Federal Aviation Administration |
LWC | Liquid water content |
MEMM | Modified extended Messinger model |
MVD | Median volumetric diameter |
References
- Alekseyenko, S.; Sinapius, M.; Schulz, M.; Prykhodko, O. Interaction of Supercooled Large Droplets with Aerodynamic Profile; Technical Report, SAE Technical Paper; SAE International: Warrendale, PA, USA, 2015. [Google Scholar]
- Takahashi, T.; Fukudome, K.; Mamori, H.; Fukushima, N.; Yamamoto, M. Effect of Characteristic Phenomena and Temperature on Super-Cooled Large Droplet Icing on NACA0012 Airfoil and Axial Fan Blade. Aerospace 2020, 7, 92. [Google Scholar] [CrossRef]
- Macarthur, C. Numerical simulation of airfoil ice accretion. In Proceedings of the 21st Aerospace Sciences Meeting, Reno, NV, USA, 10–13 January 1983; p. 112. [Google Scholar]
- Bidwell, C.S.; Potapczuk, M.G. Users Manual for the NASA Lewis Three-Dimensional Ice Accretion Code (LEWICE 3D); Technical Report, NASA Technical Memorandum 105974; NASA: Washington, DC, USA, 1993.
- Britton, R. Development of an analytical method to predict helicopter main rotorperformance in icing conditions. In Proceedings of the 30th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 1992; p. 418. [Google Scholar]
- Hedde, T.; Guffond, D. ONERA three-dimensional icing model. AIAA J. 1995, 33, 1038–1045. [Google Scholar] [CrossRef]
- Gent, R. TRAJICE2-A combined water droplet and ice accretion prediction code for airfoils. R. Aerosp. Establ. TR 1990, 90054. [Google Scholar]
- Mingione, G.; Brandi, V. Ice accretion prediction on multielement airfoils. J. Aircr. 1998, 35, 240–246. [Google Scholar] [CrossRef]
- Jin, J.Y.; Virk, M.S. Study of ice accretion along symmetric and asymmetric airfoils. J. Wind. Eng. Ind. Aerodyn. 2018, 179, 240–249. [Google Scholar] [CrossRef]
- Ibrahim, G.; Pope, K.; Muzychka, Y. Effects of blade design on ice accretion for horizontal axis wind turbines. J. Wind. Eng. Ind. Aerodyn. 2018, 173, 39–52. [Google Scholar] [CrossRef]
- Petty, K.R.; Floyd, C.D. A statistical review of aviation airframe icing accidents in the US. In Proceedings of the 11th Conference on Aviation, Range, and Aerospace, Hyannis, MA, USA, 4–8 October 2004. [Google Scholar]
- Jeck, R.K. Icing Design Envelopes (14 CFR Parts 25 and 29, Appenddix C) Converted to a Distance-Based Format; Technical Report; Federal Aviation Administration Technical Center: Atlantic City, NJ, USA, 2002. [Google Scholar]
- Mason, J. Engine power loss in ice crystal conditions. Aero Q. 2007, 4, 12–17. [Google Scholar]
- Linton, A. Ice Protection System. U.S. Patent 6,848,656, 1 February 2005. [Google Scholar]
- Hannat, R.; Morency, F. Numerical validation of conjugate heat transfer method for anti-/de-icing piccolo system. J. Aircr. 2014, 51, 104–116. [Google Scholar] [CrossRef]
- Addy, H.E.; Oleskiw, M.; Broeren, A.P.; Orchard, D. A study of the effects of altitude on thermal ice protection system performance. In Proceedings of the 5th AIAA Atmospheric and Space Environments Conference, San Diego, CA, USA, 24–27 June 2013; p. 2934. [Google Scholar]
- Loughborough, D.L.; Greene, H.E.; Roush, P.A. A study of wing de-icer performance on mount Washington. Inst. Aero. Sci. 1948. Preprint No. 122. [Google Scholar]
- D’Avirro, J.; Chaput, M.D. Optimizing the Use of Aircraft Deicing and Anti-Icing Fluids; Transportation Research Board: Washington, DC, USA, 2011; Volume 45. [Google Scholar]
- Sulej, A.M.; Polkowska, Ż.; Astel, A.; Namieśnik, J. Analytical procedures for the determination of fuel combustion products, anti-corrosive compounds, and de-icing compounds in airport runoff water samples. Talanta 2013, 117, 158–167. [Google Scholar] [CrossRef]
- Al-Khalil, K.M.; Horvath, C.; Miller, D.R.; Wright, W.B. Validation of NASA Thermal Ice Protection Computer Codes. Part 3. The Validation of Antice. In Proceedings of the 35th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 1997. [Google Scholar]
- Reid, T.; Baruzzi, G.S.; Habashi, W.G. FENSAP-ICE: Unsteady conjugate heat transfer simulation of electrothermal de-icing. J. Aircr. 2012, 49, 1101–1109. [Google Scholar] [CrossRef]
- Bu, X.; Lin, G.; Yu, J.; Yang, S.; Song, X. Numerical simulation of an airfoil electrothermal anti-icing system. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2013, 227, 1608–1622. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, Y.; Hu, H.; Hu, H.; Meng, X. Utilization of thermal effect induced by plasma generation for aircraft icing mitigation. AIAA J. 2018, 56, 1097–1104. [Google Scholar] [CrossRef]
- Mu, Z.; Lin, G.; Shen, X.; Bu, X.; Zhou, Y. Numerical simulation of unsteady conjugate heat transfer of electrothermal deicing process. Int. J. Aerosp. Eng. 2018, 2018. [Google Scholar] [CrossRef]
- Asaumi, N.; Mizuno, M.; Tomioka, Y.; Suzuki, K.; Hyugaji, T.; Kimura, S. Experimental Investigation and Simple Estimation of Heat Requirement for Anti-Icing. J. Gas Turbine Soc. Jpn. 2018, 46, 476–485. (In Japanese) [Google Scholar]
- Bu, X.; Lin, G.; Shen, X.; Hu, Z.; Wen, D. Numerical simulation of aircraft thermal anti-icing system based on a tight-coupling method. Int. J. Heat Mass Transf. 2020, 148, 119061. [Google Scholar] [CrossRef]
- Villalpando, F.; Reggio, M.; Ilinca, A. Prediction of ice accretion and anti-icing heating power on wind turbine blades using standard commercial software. Energy 2016, 114, 1041–1052. [Google Scholar] [CrossRef]
- Shu, L.; Qiu, G.; Hu, Q.; Jiang, X.; McClure, G.; Liu, Y. Numerical and experimental investigation of threshold de-icing heat flux of wind turbine. J. Wind. Eng. Ind. Aerodyn. 2018, 174, 296–302. [Google Scholar] [CrossRef]
- Özgen, S.; Canıbek, M. Ice accretion simulation on multi-element airfoils using extended Messinger model. Heat Mass Transf. 2009, 45, 305. [Google Scholar] [CrossRef]
- Chung, T. Computational Fluid Dynamics; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Hayashi, R.; Yamamoto, M. Numerical Simulation on Ice Shedding Phenomena in Turbomachinery. J. Energy Power Eng. 2015, 9, 45–53. [Google Scholar]
- Kato, M.; Launder, B.E. The modelling of turbulent flow around stationary and vibrating square cylinders. In Proceedings of the 9th Symposium on Turbulent Shear Flows, Kyoto, Japan, 16–18 August 1993; Volume 1, pp. 10–14. [Google Scholar]
- Yee, H.C. Upwind and Symmetric Shock-Capturing Schemes; NASA-TM-89464; NASA: Washington, DC, USA, 1987.
- Fujii, K.; Obayashi, S. Practical Applications of Improved LU-ADI Scheme for the Three-Dimensional Navier-Stokes Computation of Transonic Viscous Flows; AIAA Paper; AIAA: Reno, NV, USA, 1986; pp. 86–0513. [Google Scholar]
- Schiller, L.; Naumann, A. A drag coefficient correlation. Vdi Zeitung 1935, 77, 318–320. [Google Scholar]
- Sheldahl, R.E.; Klimas, P.C. Aerodynamic Characteristics of Seven Symmetrical Airfoil Sections through 180-Degree Angle of Attack for Use in Aerodynamic Analysis of Vertical Axis Wind Turbines; Technical Report; Sandia National Labs.: Albuquerque, NM, USA, 1981. [Google Scholar]
- Harris, C.D. Two-Dimensional Aerodynamic Characteristics of the NACA 0012 Airfoil in the Langley 8 Foot Transonic Pressure Tunnel; NASA Langley Research Center: Hampton, VA, USA, 1981.
- Olsen, W.; Shaw, R.; Newton, J. Ice shapes and the resulting drag increase for a NACA 0012 airfoil. In Proceedings of the 22nd Aerospace Sciences Meeting, Reno, NV, USA, 9–12 January 1984; p. 109. [Google Scholar]
- Whalen, E.; Broeren, A.; Bragg, M.; Lee, S. Characteristics of Runback Ice Accretions on Airfoils and their Aerodynamics Effects. In Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 10–13 January 2005; p. 1065. [Google Scholar]
- Broeren, A.P.; Bragg, M.B.; Addy, H.E., Jr.; Lee, S.; Moens, F.; Guffond, D. Effect of high-fidelity ice-accretion simulations on full-scale airfoil performance. J. Aircr. 2010, 47, 240–254. [Google Scholar] [CrossRef]
- Blumenthal, L.; Busch, G.; Broeren, A.; Bragg, M. Issues in Ice Accretion Aerodynamic Simulation on a Subscale Model. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 9–12 January 2006; p. 262. [Google Scholar]
- Lee, S.; Kim, H.; Bragg, M. Investigation of factors that influence iced-airfoil aerodynamics. In Proceedings of the 38th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 10–13 January 2000; p. 99. [Google Scholar]
Airfoil | NACA 0013 | |
---|---|---|
Chord length | [m] | 0.12 |
Angle of attack | [°] | 0 |
Freestream velocity | [m/s] | 30 |
Freestream temperature | [°C] | −8 |
Reynolds number | [-] | 285,000 |
Median volume diameter (MVD) | [m] | 58 |
Liquid water content (LWC) | [g/m3] | 2.8 |
Initial droplet temperature | [°C] | −8 |
Total droplet number | [-] | 1,000,000 |
Exposure time | [s] | 300 |
Ambient pressure | [kPa] | 101.325 |
Heating condition | Constant heat flux | |
Heating region | 0–48% chord | |
Wall material | Titanium | |
Wall thickness | [m] | 6 |
Airfoil | NACA 0012 | |
---|---|---|
Chord length | [m] | 0.53 |
Angle of attack | [°] | 4 |
Freestream velocity | [m/s] | 58.1 |
Freestream temperature | [°C] | −27.8 |
Reynolds number | [-] | 2,800,000 |
Median volume diameter (MVD) | [m] | 18.0 |
Liquid water content (LWC) | [g/m3] | 1.3 |
Initial droplet temperature | [°C] | −27.8 |
Total droplet number | [-] | 1,000,000 |
Exposure time | [s] | 480 |
Ambient pressure | [kPa] | 95.61 |
Heating condition | Constant temperature | |
Heating wall temperature | [°C] | 10.0 |
Heating region | 1–12% chord (Case 1–Case 12) | |
Wall material | Aluminum | |
Wall thickness | [mm] | 10 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uranai, S.; Fukudome, K.; Mamori, H.; Fukushima, N.; Yamamoto, M. Numerical Simulation of the Anti-Icing Performance of Electric Heaters for Icing on the NACA 0012 Airfoil. Aerospace 2020, 7, 123. https://doi.org/10.3390/aerospace7090123
Uranai S, Fukudome K, Mamori H, Fukushima N, Yamamoto M. Numerical Simulation of the Anti-Icing Performance of Electric Heaters for Icing on the NACA 0012 Airfoil. Aerospace. 2020; 7(9):123. https://doi.org/10.3390/aerospace7090123
Chicago/Turabian StyleUranai, Sho, Koji Fukudome, Hiroya Mamori, Naoya Fukushima, and Makoto Yamamoto. 2020. "Numerical Simulation of the Anti-Icing Performance of Electric Heaters for Icing on the NACA 0012 Airfoil" Aerospace 7, no. 9: 123. https://doi.org/10.3390/aerospace7090123
APA StyleUranai, S., Fukudome, K., Mamori, H., Fukushima, N., & Yamamoto, M. (2020). Numerical Simulation of the Anti-Icing Performance of Electric Heaters for Icing on the NACA 0012 Airfoil. Aerospace, 7(9), 123. https://doi.org/10.3390/aerospace7090123