Fast Aircraft Turnaround Enabled by Reliable Passenger Boarding
Abstract
:1. Introduction
1.1. Status Quo
1.2. Objectives and Structure of the Document
2. Stochastic Boarding Model
2.1. Model
2.2. Field Measurement and Calibration
3. Application of Aircraft Boarding Model
3.1. Comparison of Different Boarding Approaches: Conformance, Hand Luggage, Groups
3.2. Side-Slip Seat
4. Boarding Progress and Connected Aircraft Cabin
4.1. Interference Potential as a Metric for Progress Prediction
4.2. Field Trial of a Connected Aircraft Cabin
5. Summary and Outlook
Conflicts of Interest
References
- ICAO. Aviation System Block Upgrades—The Framework for Global Harmonization, 2nd ed.; ICAO: Montreal, QC, Canada, 2013; Ver. 3. [Google Scholar]
- Eurocontrol. Airport CDM Implementation Manual, 5th ed.; Eurocontrol: Brussels, Belgium, 2017. [Google Scholar]
- SESAR. Concept of Operations Step 2 (Ed. 01.01.00). Single European Sky ATM Research Programme; Eurocontrol: Brussels, Belgium, 2014. [Google Scholar]
- Tobaruela, G.; Fransen, P.; Schuster, W.; Ochieng, W.Y.; Majumdar, A. Air traffic predictability framework—Development, performance evaluation and application. J. Air Transp. Manag. 2014, 39, 48–58. [Google Scholar] [CrossRef]
- ICAO. Manual on System Wide Information Management (SWIM) Concept, Doc. 10039 AN/511; ICAO: Montreal, QC, Canada, 2016. [Google Scholar]
- ICAO. Flight & Flow Information for a Collaborative Environment (FF-ICE) Concept, Doc. 9965; ICAO: Montreal, QC, Canada, 2012. [Google Scholar]
- ICAO. Global Air Traffic Management Operational Concept, Doc 9854, AN/458; ICAO: Montreal, QC, Canada, 2005. [Google Scholar]
- Bronsvoort, J.; McDonald, G.; Porteous, R.; Gutt, E. Study of aircraft derived temporal prediction accuracy using FANS. In Proceedings of the 13th ATRS World Conference, Abu Dhabi, UAE, 27–30 June 2009. [Google Scholar]
- Mueller, E.R.; Chatterji, G.B. Analysis of aircraft arrival and departure delay. In Proceedings of the AIAA Aviation Technology, Integration, and Operations Conference, Los Angeles, CA, USA, 1–3 October 2002. [Google Scholar]
- Eurocontrol. Performance Review Report—An Assessment of Air Traffic Management in Europe during the Calendar Year 2014, 2015, 2016, 2017 Performance Review Commission; Eurocontrol: Brussels, Belgium, 2017. [Google Scholar]
- Tielrooij, M.; Borst, C.; van Paassen, M.M.; Mulder, M. Predicting arrival time uncertainty from actual flight information. In Proceedings of the 11th USA/Europe ATM Seminar, Lisbon, Portugal, 23–26 June 2016. [Google Scholar]
- IATA. AHM 730—Codes to be used in aircraft movement and diversion messages. In Airport Handling Manual, 37th ed.; IATA: Montreal, QC, Canada, 2017. [Google Scholar]
- Eurocontrol. CODA DIGEST All-Causes Delay and Cancellations to Air Transport in Europe—2016; Eurocontrol: Brussels, Belgium, 2016. [Google Scholar]
- SESAR. Single European Sky ATM Research Programme. In European ATM Master Plan, 2015 ed.; Eurocontrol: Brussels, Belgium, 2015. [Google Scholar]
- Fricke, H.; Schultz, M. Improving aircraft turn around reliability. In Proceedings of the 3rd ICRAT, Fairfax, VA, USA, 1–4 June 2008; pp. 335–343. [Google Scholar]
- Fricke, H.; Schultz, M. Delay Impacts onto turnaround performance. In Proceedings of the 8th USA/Europe ATM Seminar, Napa, CA, USA, 29 June–2 July 2009. [Google Scholar]
- Schmidt, M. A Review of Aircraft Turnaround Operations and Simulations. Prog. Aerosp. Sci. 2017, 92, 25–38. [Google Scholar] [CrossRef]
- Jaehn, F.; Neumann, S. Airplane boarding. Eur. J. Oper. Res. 2015, 244, 339–359. [Google Scholar] [CrossRef]
- Nyquist, D.C.; McFadden, K.L. A study of the airline boarding problem. J. Air Transp. Manag. 2008, 14, 197–204. [Google Scholar] [CrossRef]
- Mirza, M. Economic Impact of Airplane Turn-times. AERO Q. 2008, 4, 14–19. [Google Scholar]
- Van Landeghem, H.V.; Beuselinck, A. Reducing passenger boarding time in airplanes: A simulation based approach. Eur. J. Oper. Res. 2002, 142, 294–308. [Google Scholar] [CrossRef]
- Ferrari, P.; Nagel, K. Robustness of efficient passenger boarding strategies for airplanes. J. Transp. Res. Board 2005, 1915, 44–54. [Google Scholar] [CrossRef]
- Van den Briel, M.H.L.; Villalobos, J.R.; Hogg, G.L.; Lindemann, T.; Mule, A.V. America west airlines develops efficient boarding strategies. Interfaces 2005, 35, 191–201. [Google Scholar] [CrossRef]
- Bachmat, E.; Elkin, M. Bounds on the performance of back-to-front aircraft boarding policies. Oper. Res. Lett. 2008, 35, 597–601. [Google Scholar] [CrossRef]
- Schultz, M.; Schulz, C.; Fricke, H. Efficiency of Aircraft Boarding Procedures. In Proceedings of the 3rd International Conference for Research in Air Transportation, Fairfax, VA, USA, 1–4 June 2008; pp. 371–377. [Google Scholar]
- Bachmat, E.; Khachaturov, V.; Kuperman, R. Optimal back-to-front airplane boarding. Phys. Rev. E 2013, 87. [Google Scholar] [CrossRef] [PubMed]
- Bazargan, M. A linear programming approach for aircraft boarding strategy. Eur. J. Oper. Res. 2007, 183, 394–411. [Google Scholar] [CrossRef]
- Steffen, J.H. Optimal boarding method for airline passengers. J. Air Transp. Manag. 2008, 14, 146–150. [Google Scholar] [CrossRef]
- Steffen, J.H. A statistical mechanics model for free-for-all airplane passenger boarding. Am. J. Phys. 2008, 76, 1114–1119. [Google Scholar] [CrossRef]
- Frette, V.; Hemmer, P.-C. Time needed to board an aircraft: A power law and the structure behind it. Phys. Rev. E 2012, 85. [Google Scholar] [CrossRef]
- Bernstein, N. Comment on time needed to board an airplane: A power law and the structure behind it. Phys. Rev. E 2012, 86, 023101. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.-Q.; Wu, Y.-H.; Huang, H.-J.; Caccetta, L. An aircraft boarding model accounting for passengers’ individual properties. J. Transp. Res. Part C Emerg. Technol. 2012, 22, 1–16. [Google Scholar] [CrossRef]
- Milne, R.J.; Kelly, A.R. A new method for boarding passengers onto an airplane. J. Air Transp. Manag. 2014, 34, 93–100. [Google Scholar] [CrossRef]
- Qiang, S.-J.; Jia, B.; Xie, D.-F.; Gao, Z.-Y. Reducing airplane boarding time by accounting for passengers’ individual properties: A simulation based on cellular automaton. J. Air Transp. Manag. 2014, 40, 42–47. [Google Scholar] [CrossRef]
- Milne, R.J.; Salari, M. Optimization of assigning passengers to seats on airplanes based on their carry-on luggage. J. Air Transp. Manag. 2016, 54, 104–110. [Google Scholar] [CrossRef]
- Zeineddine, H. A dynamically optimized aircraft boarding strategy. J. Air Transp. Manag. 2017, 58, 144–151. [Google Scholar] [CrossRef]
- Bachmat, E.; Berend, D.; Sapir, L.; Skiena, S.; Stolyarov, N. Analysis of aircraft boarding times. Oper. Res. 2009, 57, 499–513. [Google Scholar] [CrossRef]
- Chung, C.-A. Simulation design approach for the selection of alternative commercial passenger aircraft seating configurations. J. Aviat. Technol. Eng. 2012, 2, 100–104. [Google Scholar] [CrossRef]
- Schultz, M.; Kunze, T.; Fricke, H. Boarding on the critical path of the turnaround. In Proceedings of the 10th USA/Europe ATM Seminar, Chicago, IL, USA, 10–13 June 2013. [Google Scholar]
- Fuchte, J. Enhancement of Aircraft Cabin Design Guidelines with Special Consideration of Aircraft Turnaround and Short Range Operations. Ph.D. Thesis, Technische Universität Hamburg-Harburg, Hamburg, Germany, April 2014. [Google Scholar]
- Schmidt, M.; Nguyen, P.; Hornung, M. Novel Aircraft Ground Operation Concepts Based on Clustering of Interfaces; SAE Technical Paper 2015-01-2401; SAE AeroTech Congress and Exhibition: Seattle, WA, USA, September 2015. [Google Scholar]
- Schmidt, M.; Heinemann, P.; Hornung, M. Boarding and turnaround process assessment of single- and twin-aisle aircraft. In Proceedings of the 55th AIAA Aerospace Sciences Meeting, AIAA SciTech Forum, AIAA 2017-1856, Grapevine, TX, USA, 9–13 January 2017. [Google Scholar]
- Schultz, M. Dynamic change of aircraft seat condition for fast boarding. J. Transp. Res. Part C Emerg. Technol. 2017, 85, 131–147. [Google Scholar] [CrossRef]
- Steffen, J.H.; Hotchkiss, J. Experimental test of aircraft boarding methods. J. Air Transp. Manag. 2012, 18, 64–67. [Google Scholar] [CrossRef]
- Kierzkowski, A.; Kisiel, T. The human factor in the passenger boarding process at the airport. Proc. Eng. 2017, 187, 348–355. [Google Scholar] [CrossRef]
- Gwynne, S.M.V.; Senarath Yapa, U.; Codrington, L.; Thomas, J.R.; Jennings, S.; Thompson, A.J.L.; Grewal, A. Small-scale trials on passenger microbehaviours during aircraft boarding and deplaning procedures. J. Air Transp. Manag. 2018, 67, 115–133. [Google Scholar] [CrossRef]
- Schultz, M. Field trial measurements to validate a stochastic aircraft boarding model. J. Transp. Res. Part C Emerg. Technol. 2018. under review. [Google Scholar]
- Miura, A.; Nishinari, K. A passenger distribution analysis model for the perceived time of airplane boarding/deboarding, utilizing an ex-Gaussian distribution. J. Air Transp. Manag. 2017, 59, 44–49. [Google Scholar] [CrossRef]
- Schultz, M. Aircraft boarding—Data, validation, analysis. In Proceedings of the 12th USA/Europe ATM Seminar, Seattle, WA, USA, 26–30 June 2017. [Google Scholar]
- Schultz, M. The Seat Interference Potential as an Indicator for the Aircraft Boarding Progress; SAE Technical Paper 2017-01-2113; SAE AeroTech Congress and Exhibition: Fort Worth, TX, USA, September 2017. [Google Scholar]
- Schultz, M. Stochastic transition model for pedestrian dynamics. In Pedestrian and Evacuation Dynamics 2012; Weidmann, U., Kirsch, U., Schreckenberg, M., Eds.; Springer: Berlin, Germany, 2014; pp. 971–986. [Google Scholar]
- Schultz, M.; Fricke, H. Managing passenger handling at airport terminal. In Proceedings of the 9th USA/Europe ATM Seminar, Berlin, Germany, 14–17 June 2011. [Google Scholar]
- Schultz, M. Entwicklung eines individuenbasierten Modells zur Abbildung des Bewegungsverhaltens von Passagieren im Flughafenterminal. Ph.D. Thesis, Technische Universität Dresden, Dresden, Germany, August 2010. [Google Scholar]
- Molon Labe Seating. Side-Slip Seat. Available online: www.airlineseats.biz (accessed on 26 September 2017).
- Schultz, M. Implementation and Application of a Stochastic Aircraft Boarding Model. J. Transp. Res. Part C Emerg. Technol. 2018. under review. [Google Scholar]
- Schultz, M. A metric for the real-time evaluation of the aircraft boarding progress. J. Transp. Res. Part C Emerg. Technol. 2018, 86, 467–487. [Google Scholar] [CrossRef]
- Reitmann, S.; Gillissen, A.; Schultz, M. Performance benchmarking in interdependent ATM systems. In Proceedings of the 7th International Conference for Research in Air Transportation, Philadelphia, PA, USA, 20–24 June 2016. [Google Scholar]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schultz, M. Fast Aircraft Turnaround Enabled by Reliable Passenger Boarding. Aerospace 2018, 5, 8. https://doi.org/10.3390/aerospace5010008
Schultz M. Fast Aircraft Turnaround Enabled by Reliable Passenger Boarding. Aerospace. 2018; 5(1):8. https://doi.org/10.3390/aerospace5010008
Chicago/Turabian StyleSchultz, Michael. 2018. "Fast Aircraft Turnaround Enabled by Reliable Passenger Boarding" Aerospace 5, no. 1: 8. https://doi.org/10.3390/aerospace5010008
APA StyleSchultz, M. (2018). Fast Aircraft Turnaround Enabled by Reliable Passenger Boarding. Aerospace, 5(1), 8. https://doi.org/10.3390/aerospace5010008