Experimental Investigation of the Wake and the Wingtip Vortices of a UAV Model
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Regular Wingtip
3.2. Winglet Installed
3.3. Comparison
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wargo, C.A.; Church, G.C.; Glaneueski, J.; Strout, M. Unmanned Aircraft Systems (UAS) research and future analysis. In Proceedings of the 2014 IEEE Aerospace Conference, Big Sky, MT, USA, 1–8 March 2014; pp. 1–16. [Google Scholar]
- Austin, R. Unmanned Aircraft Systems, UAVS Design, Development and Deployment; Wiley: Chichester, UK, 2010. [Google Scholar]
- U.S. Air Force Fact Sheet: MQ-1B PREDATOR. Available online: https://web.archive.org/web/20130624094111/http://www.af.mil/information/factsheets/factsheet_print.asp?fsID=122&page=1 (accessed on 10 October 2016).
- Gibbs, Y. NASA Armstrong Fact Sheet: Altus II, NASA. Available online: http://www.nasa.gov/centers/armstrong/news/FactSheets/FS-058-DFRC.html (accessed on 1 August 2017).
- L3 Unmanned Systems. Viking 400 UAS Datasheet; L3 Unmanned Systems: Ashburn, VA, USA, 2012; Available online: http://www.teleglobal.co.th/doc/Products/Millitary/UAV/Siam%20Viking%20Briefv2%20%28Non-ITAR%29.pdf (accessed on 10 October 2016).
- Panagiotou, P.; Kaparos, P.; Salpingidou, C.; Yakinthos, K. Aerodynamic design of a MALE UAV. Aerosp. Sci. Technol. 2016, 50, 127–138. [Google Scholar] [CrossRef]
- Panagiotou, P.; Kaparos, P.; Yakinthos, K. Winglet design and optimization for a MALE UAV using CFD. Aerosp. Sci. Technol. 2014, 39, 190–205. [Google Scholar] [CrossRef]
- Anderson, J.D. Fundamentals of Aerodynamics, 5th ed.; McGraw-Hill: New York, NY, USA, 2011; p. 415. [Google Scholar]
- Whitcomb, R.T. A Design Approach and Selected Wind-Tunnel Results at High Subsonic Speeds for Wing-Tip Mounted Winglets; NASA Langley Research Center: Hampton, VA, USA, 1976.
- Maughmer, M.D.; Timothy, S.S.; Willits, S.M. The Design and Testing of a Winglet Airfoil for Low-Speed Aircraft. AIAA J. 2001, 39, 654–661. [Google Scholar]
- Heyson, H.H.; Riebe, G.D.; Fulton, C.L. Theoretical Parametric Study of the Relative Advantages of Winglets and Wing-Tip Extensions; NASA Langley Research Center: Hampton, VA, USA, 1977.
- Weierman, J.R.; Jacob, J.D. Winglet Design and Optimization for UAVs; American Institute of Aeronautics and Astronautics: Chicago, IL, USA, 2010. [Google Scholar]
- Jacobs, E.N.; Sherman, A. Experimental Results of Winglets on First, Second, and Third Generation Jet Transports; NASA Langley Research Center: Hampton, VA, USA, 1978.
- Asai, K. Theoretical considerations in the aerodynamic effectiveness of winglets. J. Aircr. 1985, 22, 635–637. [Google Scholar] [CrossRef]
- Shekarriz, A.; Fu, T.C.; Katz, J.; Huang, T. Near-field behavior of a tip vortex. AIAA J. 1993, 31, 112–118. [Google Scholar] [CrossRef]
- Hoffmann, E.R.; Joubert, P.N. Turbulent line vortices. J. Fluid Mech. 1963, 16, 395–411. [Google Scholar] [CrossRef]
- Nielsen, J.N.; Schwind, R.G. Decay of a Vortex Pair behind an Aircraft. In Aircraft Wake Turbulence and Its Detection; Olsen, J.H., Goldburg, A., Rogers, M., Eds.; Springer: Boston, MA, USA, 1971; pp. 413–454. [Google Scholar]
- Corsiglia, V.R.; Schwind, R.G.; Chigier, N.A. Rapid Scanning, Three-Dimensional Hot-Wire Anemometer Surveys of Wing-Tip Vortices. J. Aircr. 1973, 10, 752–757. [Google Scholar] [CrossRef]
- Baker, G.R.; Barker, S.J.; Bofah, K.K.; Saffman, P.G. Laser anemometer measurements of trailing vortices in water. J. Fluid Mech. 1974, 65, 325–336. [Google Scholar] [CrossRef]
- Devenport, W.J.; Rife, M.C.; Liapis, S.I.; Follin, G.J. The structure and development of a wing-tip vortex. J. Fluid Mech. 1996, 312, 67–106. [Google Scholar] [CrossRef]
- Chow, J.S.; Zilliac, G.G.; Bradshaw, P. Mean and Turbulence Measurements in the Near Field of a Wingtip Vortex. AIAA J. 1997, 35, 1561–1567. [Google Scholar] [CrossRef]
- Del Pino, C.; López-Alonso, J.M.; Parras, L.; Fernandez-Feria, R. Dynamics of the wing-tip vortex in the near field of a NACA 0012 aerofoil. Aeronaut. J. 2011, 115, 229–239. [Google Scholar] [CrossRef]
- Edstrand, A.M.; Davis, T.B.; Schmid, P.J.; Taira, K.; Cattafesta, L.N. On the mechanism of trailing vortex wandering. J. Fluid Mech. 2016, 801. [Google Scholar] [CrossRef]
- Huang, R.F.; Lin, C.L. Vortex shedding and shear-layer instability of wing at low-Reynolds numbers. AIAA J. 1995, 33, 1398–1403. [Google Scholar] [CrossRef]
- Del Pino, C.; Parras, L.; Felli, M.; Fernandez-Feria, R. Structure of trailing vortices: Comparison between particle image velocimetry measurements and theoretical models. Phys. Fluids 2011, 23, 013602. [Google Scholar] [CrossRef]
- Serrano-Aguilera, J.J.; García-Ortiz, J.H.; Gallardo-Claros, A.; Parras, L.; del Pino, C. Experimental characterization of wingtip vortices in the near field using smoke flow visualizations. Exp. Fluids 2016, 57, 137. [Google Scholar] [CrossRef]
- Zheng, Y.; Ramaprian, B.R. An Experimental Study of Wing Tip Vortex in the Near Wake of a Rectangular Wing; DTIC Document; Report No. MME-TF-93–1; Washington State University: Pullman, WA, USA, 1993. [Google Scholar]
- Elsayed, O.A.; Asrar, W.; Omar, A.A.; Kwon, K.; Jung, H. Experimental Investigation of Plain- and Flapped-Wing Tip Vortex. J. Aircr. 2009, 46, 254–262. [Google Scholar] [CrossRef]
- Muthusamy, N.; Kumar, S.V.; Senthilkumar, C. Force Measurement on Aircraft Model with and without Winglet Using Low Speed Wind Tunnel. Int. J. Eng. Technol. 2015, 6, 2521–2530. [Google Scholar]
- Selig, M.S.; Maughmer, M.D.; Somers, D.M. Natural-laminar-flow airfoil for general-aviation applications. J. Aircr. 1995, 32, 710–715. [Google Scholar] [CrossRef]
- Barlow, J.B.; Rae, W.H.; Pope, A. Low-Speed Wind Tunnel Testing, 3rd ed.; Wiley: New York, NY, USA, 1999. [Google Scholar]
- Dol, S.S.; Nor, M.A.M.; Kamaruzaman, M.K. An Improved Smoke-Wire Flow Visualization Technique. In Proceedings of the 4th WSEAS International Conference on Fluid Mechanics and Aerodynamics, Crete Island, Greece, 21–23 August 2006; pp. 21–23. [Google Scholar]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panagiotou, P.; Ioannidis, G.; Tzivinikos, I.; Yakinthos, K. Experimental Investigation of the Wake and the Wingtip Vortices of a UAV Model. Aerospace 2017, 4, 53. https://doi.org/10.3390/aerospace4040053
Panagiotou P, Ioannidis G, Tzivinikos I, Yakinthos K. Experimental Investigation of the Wake and the Wingtip Vortices of a UAV Model. Aerospace. 2017; 4(4):53. https://doi.org/10.3390/aerospace4040053
Chicago/Turabian StylePanagiotou, Pericles, George Ioannidis, Ioannis Tzivinikos, and Kyros Yakinthos. 2017. "Experimental Investigation of the Wake and the Wingtip Vortices of a UAV Model" Aerospace 4, no. 4: 53. https://doi.org/10.3390/aerospace4040053
APA StylePanagiotou, P., Ioannidis, G., Tzivinikos, I., & Yakinthos, K. (2017). Experimental Investigation of the Wake and the Wingtip Vortices of a UAV Model. Aerospace, 4(4), 53. https://doi.org/10.3390/aerospace4040053