An Experimental Investigation on Hypersonic Boundary Layer Stability over a Fin–Cone Configuration
Abstract
1. Introduction
2. Experimental Facility and Data Processing Methods
2.1. Model and Pressure Sensor Setup
2.2. Experimental Facility and Experimental Case
| Ma | P0 (Bar) | T0 (K) | Re (1/m) |
|---|---|---|---|
| 6 | 6.00 | 420.60 | 6.72 × 106 |
| 6 | 7.00 | 420.60 | 7.85 × 106 |
| 6 | 9.00 | 420.60 | 1.01 × 107 |
2.3. Infrared Camera
2.4. Pressure Sensor Postprocessing
2.5. Rayleigh Scattering
3. Experimental Results and Analysis
3.1. Infrared Result Analysis
3.2. Rayleigh Scattering Results
3.3. Analysis of Pulsation Spectrum
3.3.1. Pressure Fluctuation Spectral Analysis on the Finless Side
3.3.2. Pressure Fluctuation Spectral Analysis on the Fin–Cone Junction
3.3.3. Pressure Fluctuation Spectral Analysis on the Fin Surface
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| TSP | Temperature-Sensitive Paint |
| PCB | Piezotronics Inc., USA |
| PEEK | Polyether ether ketone |
| IR | Infrared thermography |
| PSD | Power spectral density |
| SBLI | Shock/Boundary Layer Interaction |
| R1 | Windward Finless Region |
| R2 | Leeward Finless Region |
| R3 | Windward Fin–Cone Junction Region |
| R4 | Leeward Fin–Cone Junction Region |
| R5 | Windward Fin Surface Region |
| R6 | Leeward Fin Surface Region |
References
- Fedorov, A. Transition and Stability of High-Speed Boundary Layers. Annu. Rev. Fluid Mech. 2011, 43, 79–95. [Google Scholar] [CrossRef]
- Lee, C.; Chen, S. Recent Progress in the Study of Transition in the Hypersonic Boundary Layer. Natl. Sci. Rev. 2019, 6, 155–170. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Wen, C.; Zhou, Y.; Tu, G.; Lei, J. Review of Acoustic Metasurfaces for Hypersonic Boundary Layer Stabilization. Prog. Aerosp. Sci. 2022, 130, 100808. [Google Scholar] [CrossRef]
- Anderson, J.D. Hypersonic and High-Temperature Gas Dynamics, 3rd ed.; American Institute of Aeronautics and Astronautics, Inc.: Reston, VA, USA, 2019; ISBN 978-1-62410-514-2. [Google Scholar]
- Yang, H.; Liang, H.; Zhang, C.; Wu, Y.; Zong, H.; Su, Z.; Kong, Y.; Zhang, D.; Li, Y. Investigation of Hypersonic Cone Boundary Layer Stability Regulation with Plasma Actuation. Phys. Fluids 2023, 35, 024112. [Google Scholar] [CrossRef]
- Chen, L.; Guo, Q.; Qin, L.; Zhang, H. Hypersonic Shock Wave/Boundary Layer Interactions by a Third-Order Optimized Symmetric WENO Scheme. Trans. Nanjing Univ. Aeronaut. Astronaut. 2017, 34, 524–534. [Google Scholar]
- Paredes, P.; Choudhari, M.M.; Li, F. Mechanism for Frustum Transition over Blunt Cones at Hypersonic Speeds. J. Fluid Mech. 2020, 894, A22. [Google Scholar] [CrossRef]
- Murphy, K.J.; Nowak, R.J.; Thompson, R.A.; Hollis, B.R.; Prabhu, R.K. X-33 Hypersonic Aerodynamic Characteristics. In Proceedings of the AIAA Atmospheric Flight Mechanics Conference and Exhibit, Portland, OR, USA, 9–11 August 1999. [Google Scholar]
- Hank, J.M.; Murphy, J.S.; Mutzman, R.C. The X-51A Scramjet Engine Flight Demonstration Program. In Proceedings of the 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Dayton, OH, USA, 28 April–1 May 2008. AIAA Paper 2008-2540. [Google Scholar]
- Borg, M.P.; Schneider, S.P.; Juliano, T.J. Effect of Freestream Noise on Roughness-Induced Transition for the X-51A Forebody. In Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 9 January 2008. AIAA Paper 2008-0592. [Google Scholar]
- Juliano, T.J.; Borg, M.P.; Schneider, S.P. Quiet Tunnel Measurements of HIFiRE-5 Boundary-Layer Transition. AIAA J. 2015, 53, 832–846. [Google Scholar] [CrossRef]
- Juliano, T.J.; Adamczak, D.; Kimmel, R.L. HIFiRE-5 Flight Test Results. J. Spacecr. Rocket. 2015, 52, 650–663. [Google Scholar] [CrossRef]
- Johnston, Z.M.; Candler, G.V. Hypersonic Simulations of the BoLT-II Subscale Geometry. In Proceedings of the AIAA Scitech 2021 Forum, Virtual Event, 11 January 2021; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2021. [Google Scholar]
- Butler, C.; McKiernan, G.; Wheaton, B.M. Initial BiGlobal Stability Analysis of the BOLT II Flight Experiment. In Proceedings of the AIAA SCITECH 2023 Forum, National Harbor, MD, USA, 23 January 2023; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2023. [Google Scholar]
- Zhang, C.; Lyu, D.; Zhu, C.; Chen, J.; Wu, J. Preliminary Experimental Study on Hypersonic Boundary Layer Stability of HyTRV Lift Body. Acta Aeronaut. Astronaut. Sin. 2025, 46, 130272. [Google Scholar]
- Zhang, L.; Chen, X.; Liu, S.; Wang, Q.; Dong, S.; Duan, M.; Chen, J. Transition Front Prediction for the HyTRV Model Based on Multi-Dimensional Stability Theories. Adv. Aerodyn. 2025, 7, 9. [Google Scholar] [CrossRef]
- Gillerlain, J., Jr. Fin-Cone Interference Flow Field. In Proceedings of the 17th Aerospace Sciences Meeting, New Orleans, LA, USA, 15 January 1979; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1979. [Google Scholar]
- Mullen, C.D.; Turbeville, F.D.; Reed, H.L.; Schneider, S.P. Computational and Experimental Boundary-Layer Stability Analysis on a Hypersonic Finned Cone. In Proceedings of the AIAA Scitech 2019 Forum, San Diego, CA, USA, 7 January 2019; American Institute of Aeronautics and Astronautics: Reston, VA, USA.
- Turbeville, F.D.; Schneider, S.P. Boundary-Layer Instability on a Slender Cone with Highly Swept Fins. In Proceedings of the 2018 Fluid Dynamics Conference, Atlanta, GA, USA, 25 June 2018; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2018. [Google Scholar]
- Turbeville, F.D.; Schneider, S.P. Effect of Nose Bluntness on Fin-Cone Transition at Mach 6. In Proceedings of the AIAA AVIATION 2021 Forum, Virtual Event, 2 August 2021; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2021. [Google Scholar]
- Turbeville, F.D.; Schneider, S.P. Effect of Freestream Noise on Fin-Cone Transition at Mach 6. In Proceedings of the AIAA AVIATION 2022 Forum, Chicago, IL, USA, 27 June 2022; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2022. [Google Scholar]
- Knutson, A.; Gs, S.; Candler, G.V. Direct Numerical Simulation of Mach 6 Flow over a Cone with a Highly Swept Fin. In Proceedings of the 2018 AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA, 8 January 2018; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2018. [Google Scholar]
- Knutson, A.; Gs, S.; Candler, G.V. Instabilities in Mach 6 Flow over a Cone with a Swept Fin. In Proceedings of the 2018 Fluid Dynamics Conference, Atlanta, GA, USA, 25 June 2018; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2018. [Google Scholar]
- Turbeville, F.D.; Schneider, S.P. Measurements of Instability and Transition on a Slender Cone with a Highly-Swept Fin at Mach 6. In Proceedings of the AIAA SCITECH 2022 Forum, San Diego, CA, USA, 3 January 2022; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2022. [Google Scholar]
- Turbeville, F.D.; Schneider, S.P. Transition on a Cone with a Highly-Swept Fin at Mach 6. In Proceedings of the AIAA Aviation 2019 Forum, Dallas, TX, USA, 17 June 2019; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2019. [Google Scholar]
- McMillan, M.; Mullen, C.D.; Reed, H.L. Spatial BiGlobal Stability Analysis of Spanwise Vortex Rollup on a Hypersonic Finned Cone. In Proceedings of the AIAA AVIATION 2021 Forum, Virtual Event, 2 August 2021; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2021. [Google Scholar]
- Riha, A.K.; McMillan, M.; Reed, H.L. Linear Stability of a Boundary-Layer Vortex on a Hypersonic Finned Cone. In Proceedings of the AIAA AVIATION 2021 Forum, Virtual Event, 2 August 2021; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2021. [Google Scholar]
- Middlebrooks, J.B.; Corke, T.C.; Matlis, E.; Semper, M. Cross-Flow Instability on a Swept-Fin Cone at Mach 6: Characteristics and Control. J. Fluid Mech. 2024, 981, A18. [Google Scholar] [CrossRef]
- Middlebrooks, J.B.; Farnan, E.; Matlis, E.H.; Corke, T.C.; Mullen, C.D.; Peck, M.M.; Reed, H.L. Design of a Hypersonic Boundary Layer Transition Control Experiment Utilizing a Swept Fin Cone Geometry in Mach 6 Flow. In Proceedings of the AIAA Scitech 2021 Forum, Virtual Event, 11 January 2021; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2021. [Google Scholar]
- Middlebrooks, J.B.; Farnan, E.; Juliano, T.J.; Matlis, E.H.; Corke, T.C.; Peck, M.M.; Mullen, D.; Reed, H.L.; Semper, M. Cross-Flow Instability Experiments on a Swept Fin-Cone with Variable Nose Bluntness in Mach 6 Flow. In Proceedings of the AIAA SCITECH 2022 Forum, San Diego, CA, USA, 3 January 2022; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2022. [Google Scholar]
- Peck, M.M.; Groot, K.J.; Reed, H.L. Boundary-Layer Instability on a Highly Swept Fin on a Cone at Mach 6. J. Fluid Mech. 2024, 987, A13. [Google Scholar] [CrossRef]
- Peck, M.M.; Groot, K.J.; Reed, H.L. Boundary-Layer Instability on a Highly Swept Fin on a Hypersonic Cone. In Proceedings of the AIAA AVIATION 2022 Forum, Chicago, IL, USA, 27 June 2022; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2022. [Google Scholar]
- Meng, Q.; Lei, J.; Wu, S.; Yuan, C.; Yu, J.; Zhou, L. High Reynolds and Mach Number Effects on Transition Behavior on a Flared Cone–Swept Fin Configuration. Phys. Fluids 2025, 37, 064106. [Google Scholar] [CrossRef]
- Meng, Q.; Lei, J.; Wu, S.; Yuan, C.; Yu, J.; Zhou, L. Angle of Attack Effects on Boundary Layer Transition over a Flared Cone–Swept Fin Configuration. Aerospace 2025, 12, 824. [Google Scholar] [CrossRef]
- Li, X.; Xu, B.; Huang, G.; Wu, J. Experimental Study on the Boundary Layer Transition of a High-Speed Fin-Cone Configuration. Adv. Aerodyn. 2025, 7, 10. [Google Scholar] [CrossRef]
- Huang, R.; Zhang, C.; Li, C.; Xu, B.; Xu, D.; Yuan, X.; Wu, J. Design and Preliminary Freestream Calibration of HUST Φ 0.5 m Mach 6 Ludwieg Tube Wind Tunnel. Acta Aerodyn. Sin. 2023, 41, 39–48, 85. [Google Scholar]
- Li, X.; Li, C.; Wei, S.; Wu, J. Experiment of influence of distributed roughness elements on hypersonic boundary layer instability. Acta Aeronaut. Astronaut. Sin. 2024, 45, 90–108. [Google Scholar]
- Qiu, H.; Shi, M.; Zhu, Y.; Lee, C. Boundary Layer Transition of Hypersonic Flow over a Delta Wing. J. Fluid Mech. 2024, 980, A57. [Google Scholar] [CrossRef]
- Niu, H.; Yi, S.; Liu, X.; Huo, J.; Jin, L. Experimental Investigation of Nose-Tip Bluntness Effects on the Hypersonic Crossflow Instability over a Cone. Int. J. Heat Fluid Flow 2020, 86, 108746. [Google Scholar] [CrossRef]

















Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Lv, D.; Zhang, F.; Yang, Y.; Li, X.; Wu, J. An Experimental Investigation on Hypersonic Boundary Layer Stability over a Fin–Cone Configuration. Aerospace 2026, 13, 151. https://doi.org/10.3390/aerospace13020151
Lv D, Zhang F, Yang Y, Li X, Wu J. An Experimental Investigation on Hypersonic Boundary Layer Stability over a Fin–Cone Configuration. Aerospace. 2026; 13(2):151. https://doi.org/10.3390/aerospace13020151
Chicago/Turabian StyleLv, Dailin, Fu Zhang, Yifan Yang, Xueliang Li, and Jie Wu. 2026. "An Experimental Investigation on Hypersonic Boundary Layer Stability over a Fin–Cone Configuration" Aerospace 13, no. 2: 151. https://doi.org/10.3390/aerospace13020151
APA StyleLv, D., Zhang, F., Yang, Y., Li, X., & Wu, J. (2026). An Experimental Investigation on Hypersonic Boundary Layer Stability over a Fin–Cone Configuration. Aerospace, 13(2), 151. https://doi.org/10.3390/aerospace13020151
