Hot Streak Migration and Exit Temperature Distribution in a Model Combustor Under Inlet Velocity Distortion Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Model Combustor Configuration
2.2. Numerical Simulation Description
2.2.1. Numerical Simulation Approach
2.2.2. Boundary Conditions and Transient Setup
2.2.3. Mesh Setup
2.3. Experiment Methods
2.3.1. Distortion Generator
2.3.2. Experimental Facilities
2.3.3. Definition of OTDF
2.3.4. Radiation Correction of Measured Temperature
2.3.5. Experiment Parameters
3. Results and Discussions
3.1. Evolution of Hot Streak Under Uniform Inlet Velocity
3.2. Influence of Radial Velocity Distortion on Exit Temperature Profile
3.3. Influence of Circumferential Velocity Distortion on Exit Temperature Profile
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| FAR | fuel–air ratio |
| FGM | flamelet-generated manifold |
| Nu | Nusselt number |
| OTDF | outlet temperature distribution factor |
| RTDF | radial temperature distribution factor |
| SAS | scale-adaptive simulation |
Appendix A
Appendix A.1. Description of the Mechanism
- A wide-temperature-range two-parameter skeletal mechanism with a three-component surrogate fuel model, comprising mass fractions of 73.0% n-dodecane (s0C12H26), 14.7% 1,3,5-trimethylcyclohexane (s1C9H18), and 12.3% n-propylbenzene (PHC3H7).
- A two-parameter rate constant is employed in the Arrhenius equation.
Appendix A.2. Validation
Appendix A.2.1. Ignition Delay Time Comparison

Appendix A.2.2. Laminar Flame Speed Comparison

Appendix A.2.3. Species Concentrations

References
- Lefebvre, A.H.; Ballal, D.R. Gas Turbine Combustion: Alternative Fuels and Emissions, 3rd ed.; Taylor & Francis Group CRC Press: New York, NY, USA, 2010. [Google Scholar]
- Yang, R. Influence of inlet flow distortion on combustor performance. Aeroengine 1994, 3, 28–33. [Google Scholar]
- Shadowen, J.H.; Egan, W.J., Jr. Evaluation of Circumferential Airflow Uniformity Entering Combustors from Compressors. Volume 1—Discussion of Data and Results; Pratt & Whitney Aircraft Florida Research and Development Center: Jupiter, FL, USA, 1972. [Google Scholar]
- Shadowen, J.H.; Egan, W.J., Jr. Evaluation of Circumferential Airflow Uniformity Entering Combustors from Compressors. Volume 2—Data Supplement; Pratt & Whitney Aircraft Florida Research and Development Center: Jupiter, FL, USA, 1972. [Google Scholar]
- Hou, X.; Ji, H.; Liu, Q.; Yan, C.; Zhao, J. Combustion Technology for High Performance Aviation Gas Turbine, 1st ed.; N.D.I. Press: Beijing, China, 2002. [Google Scholar]
- Jin, R.; Suo, J. Advance Gas Turbine Combustor; A.I. Press: Beijing, China, 2016. [Google Scholar]
- Schultz, D.F.; Perkins, P.J. Effects of Radical and Circumferential Inlet Velocity Profile Distortions on Performance of a Short-Length Double-Annular Ram-Induction Combusto; Lewis Research Center, National Aeronautics and Space Administration: Cleveland, OH, USA, 1972. [Google Scholar]
- Wu, P. Research on Influences of Inlet Distortion and Fuel Injection Pulse on Combustor Combustion Flow Field; Nanjing University of Aeronautics and Astronautics: Nanjing, China, 2012. [Google Scholar]
- Zhu, D.-Q.; Wu, P.-L.; Jin, R.-H.; Li, P.-F.; Liu, Y. Numerical Simulation for Influences of Fuel Injection Pulse on Temperature Profile. Aeroengine 2015, 41, 51–56. [Google Scholar]
- Liang, Z.; Lin, Y.; Xu, Q.; Zhang, C.; Dai, W. Effects of inlet velocity distortion on oulet temperature distribution of a reverse-flow combustor. J. Aerosp. Power 2016, 31, 1142–1148. [Google Scholar]
- Yan, Y. Study on the Effect of Inlet Prewhirl on Combustion Chamber Outlet Gas Temperature Field; Shanghai Jiaotong University: Shanghai, China, 2017. [Google Scholar]
- Wang, M.; Cheng, S.; Song, S.; Chen, Y. Numerical simulation on influence of flow field of combustor inlet on a certain reversed-flow combustor performance. J. Aerosp. Power 2018, 33, 1281–1289. [Google Scholar]
- Gur’yanova, M.M.; Piralishvili, S.A. Joint effect of input asymmetrical velocity profile and initial turbulence intensity on hydraulics of a separated diffuser of GTE combustion chamber. Russ. Aeronaut. (Iz VUZ) 2016, 59, 197–205. [Google Scholar] [CrossRef]
- Kong, L.; Zhang, G.; Qian, Y.; Hou, L. Effect of inlet distortion on performance of combustion chamber. J. Aerosp. Power 2018, 33, 642–648. [Google Scholar]
- Gu, M. Experimental study on influence of inlet flow distortion on outlet temperature field quality of combustor. Aeroengine 1994, 1–11. [Google Scholar]
- Oijen, J.A.V.; Goey, L.P.H.D. Modelling of Premixed Laminar Flames using Flamelet-Generated Manifolds. Combust. Sci. Technol. 2000, 161, 113–137. [Google Scholar] [CrossRef]
- Donini, A.; Bastiaans, R.J.M.; Oijen, J.A.V.; de Goey, L.P.H. A 5-D Implementation of FGM for the Large Eddy Simulation of a Stratified Swirled Flame with Heat Loss in a Gas Turbine Combustor. Flow Turbul. Combust. 2017, 98, 887–922. [Google Scholar] [CrossRef] [PubMed]
- Weigand, P.; Meier, W.; Duan, X.R.; Stricker, W.; Aigner, M. Investigations of swirl flames in a gas turbine model combustor I. Flow field, structures, temperature, and species distributions. Combust. Flame 2006, 144, 205–224. [Google Scholar] [CrossRef]
- Meier, W.; Duan, X.R.; Weigand, P. Investigations of swirl flames in a gas turbine model combustor II. Turbul. –Chem. Interactions. Combust. Flame 2006, 144, 225–236. [Google Scholar] [CrossRef]
- Ren, H.; Wang, J.; Li, X. Combuston Dynamics; Center for Combustion Dynamics, Sichuan University: Chengdu, China, 2021; Available online: http://cds.scu.edu.cn/ (accessed on 8 December 2025).
- Egorov, Y.; Menter, F.R.; Lechner, R.; Cokljat, D. The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions. Part 2: Application to Complex Flows. Flow Turbul. Combust. 2010, 85, 139–165. [Google Scholar] [CrossRef]
- Schildmacher, K.U.; Koch, R.; Wittig, S.; Krebs, W.; Hoffmann, S. Experimental Investigations of the Temporal Air-Fuel Mixing Fluctuations and Cold Flow Instabilities of a Premixing Gas Turbine Burner; ASME: New York, NY, USA, 2000. [Google Scholar]
- Widenhorn, A.; Noll, B.; Aigner, M. Numerical Study of a Non-Reacting Turbulent Flow in a Gas-turbine Model Combustor. In 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2009. [Google Scholar]
- Shaddix, C.R. Correcting thermocouple measurements for radiation loss: A critical review. In Proceedings of the 33rd National Heat Transfer Conference, Albuquerque, NM, USA, 15–17 August 1999; ASME: Albuquerque, NM, USA, 1999; pp. 1–10. [Google Scholar]
- Zhao, Y.; He, X.; Li, M.; Yao, K. Experimental investigation on spray characteristics of aircraft kerosene with an external-mixing atomizer. Fuel Process. Technol. 2020, 209, 106531. [Google Scholar] [CrossRef]
- Zhao, Y.; He, X.; Li, M.; Lu, R.; Yao, K. Ignition, efficiency and emissions of RP-3 kerosene in a three-staged multi-injection combustor. Fuel Process. Technol. 2021, 213, 106635. [Google Scholar] [CrossRef]
- Zhang, C.; Li, B.; Rao, F.; Li, P.; Li, X. A shock tube study of the autoignition characteristics of RP-3 jet fuel. Proc. Combust. Inst. 2015, 35, 3151–3158. [Google Scholar] [CrossRef]
- Zheng, D.; Yu, W.-M.; Zhong, B.-J. RP-3 Aviation Kerosene Surrogate Fuel and the Chemical Reaction Kinetic Model. Acta Phys. -Chim. Sin. 2015, 31, 636–642. [Google Scholar]
- Ma, H.; Xie, M.; Zeng, W.; Chen, B. Experimental study on combustion characteristics of Chinese RP-3 kerosene. Chin. J. Aeronaut. 2016, 29, 375–385. [Google Scholar] [CrossRef]

















| Distortion Type | Position of Peak Velocity | Magnitude of Distortion |
|---|---|---|
| Uniform | / | 0 |
| Radial distortion (RD) | Radial-mid(RD-I) | 6.5% |
| 12% | ||
| 18% | ||
| 24.4% | ||
| Radial-outer(RD-II) | 11.2% | |
| 17.6% | ||
| 23% | ||
| Radial-inner(RD-III) | 11.2% | |
| 17.6% | ||
| 23% | ||
| Circumferential distortion (CD) | Middle swirler (CD-I) | 17.8% |
| 24.4% | ||
| Between swirler-1 and swirler-2 (CD-II) | 19.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Chen, X.; Hou, K.; Jiang, P.; Li, Y.; Cai, W.; Tang, X.; Wu, Z. Hot Streak Migration and Exit Temperature Distribution in a Model Combustor Under Inlet Velocity Distortion Conditions. Aerospace 2026, 13, 20. https://doi.org/10.3390/aerospace13010020
Chen X, Hou K, Jiang P, Li Y, Cai W, Tang X, Wu Z. Hot Streak Migration and Exit Temperature Distribution in a Model Combustor Under Inlet Velocity Distortion Conditions. Aerospace. 2026; 13(1):20. https://doi.org/10.3390/aerospace13010020
Chicago/Turabian StyleChen, Xin, Kaibo Hou, Ping Jiang, Yongzhou Li, Wenzhe Cai, Xingyan Tang, and Zejun Wu. 2026. "Hot Streak Migration and Exit Temperature Distribution in a Model Combustor Under Inlet Velocity Distortion Conditions" Aerospace 13, no. 1: 20. https://doi.org/10.3390/aerospace13010020
APA StyleChen, X., Hou, K., Jiang, P., Li, Y., Cai, W., Tang, X., & Wu, Z. (2026). Hot Streak Migration and Exit Temperature Distribution in a Model Combustor Under Inlet Velocity Distortion Conditions. Aerospace, 13(1), 20. https://doi.org/10.3390/aerospace13010020

