A Rapid Prediction Model of Three-Dimensional Ice Accretion on Rotorcraft in Hover Flight
Abstract
1. Introduction
2. Improved 3-D Ice Accretion Simulation Method
2.1. The Messinger Model
2.2. Improved 3-D Ice Accretion Numerical Method Considering Runback Water Characteristics
Algorithm 1 Numerical method for runback water characteristics |
1. Initial , , , and . Choose certain , . 2. For 3. Solve and according to Equations (1) and (2) 4. Update outflow water mass flow rate according to Equation (12) 5. Update inflow water mass flow rate according to Equation (13) 6. Update active water mass flow rate according to Equation (14) 7. End |
3. Rapid Prediction Model of 3-D Ice Accretion
3.1. POD Dimensionality Reduction Method
3.2. GA-BPNN Model
4. Ice Accretion Simulation Validation
5. Rotor Icing Prediction Results
5.1. Rotor Model and Ice Accretions Dataset
5.2. Ice Accretion Prediction Validation
5.3. Multi-Parameters Prediction
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviations | |
2-D, 3-D | Two-Dimensional, Three-Dimensional |
CFD | Computational Fluid Dynamics |
POD | Proper Orthogonal Decomposition |
GA | Genetic Algorithm |
BPNN | Back Propagation Neural Network |
MRF | Multi-Reference Frame |
RANS | Reynolds-averaged Navier-Stokes |
SST | Shear Stress Transport |
MVD | Mean Volume Diameter |
LWC | Liquid Water Content |
LHS | Latin Hypercube Sampling |
Nomenclature | |
mass flow rate | |
energy | |
heat due to airflow friction | |
heat transfer due to the convection | |
velocity of the water film | |
motion time of the water film | |
the boundary length of adjacent grids on the frozen surface | |
area of the surface grid | |
on the water runback direction | |
speed caused by air flow | |
ice height | |
icing time | |
icing density |
References
- Cao, Y.; Tan, W.; Wu, Z. Aircraft icing: An ongoing threat to aviation safety. Aerosp. Sci. Technol. 2018, 75, 353–385. [Google Scholar] [CrossRef]
- Tran, P.; Brahimi, M.T.; Paraschivoiu, I.; Pueyo, A.; Tezok, F. Ice accretion on aircraft wings with thermodynamic effects. J. Aircr. 1995, 32, 444–446. [Google Scholar] [CrossRef]
- Cao, Y.; Ma, C.; Zhang, Q.; Sheridan, J. Numerical simulation of ice accretions on an aircraft wing. Aerosp. Sci. Technol. 2012, 23, 296–304. [Google Scholar] [CrossRef]
- Costes, M.; Moens, F. Advanced numerical prediction of iced airfoil aerodynamics. Aerosp. Sci. Technol. 2019, 91, 186–207. [Google Scholar] [CrossRef]
- Morelli, M.C. Simulation and Detection of Ice Formation and Shedding on Rotor-Craft. Ph.D. Thesis, Politecnico di Milano, Milano, Italy, 2021. [Google Scholar]
- Abdelghany, E.S.; Sarhan, H.H.; El Saleh, A.; Farghaly, M.B. High bypass turbofan engine and anti-icing system performance: Mass flow rate of anti-icing bleed air system effect. Case Stud. Therm. Eng. 2023, 45, 102927. [Google Scholar] [CrossRef]
- Belte, D.; Ferrell, K.R. Helicopter icing spray system. In Proceedings of the 36th American Helicopter Society Annual Forum, Washington, DC, USA, 13–14 May 1980. [Google Scholar]
- Lee, J.; Harding, R.; Palko, R.L. Documentation of Ice Shapes on the Main Rotor of a UH-1H Helicopter in Hover; NASA CR 168332; Lewis Research Center: Cleveland, OH, USA, 1983. [Google Scholar]
- Lee, J. Aerodynamic Evaluation of a Helicopter Rotor Blade with Ice Accretion in Hover. In Proceedings of the 13th Aerodynamic Testing Conference, San Diego, CA, USA, 5–7 March 1984. [Google Scholar]
- Flemming, R.; Bond, T.; Britton, R. Results of a sub scale model rotor icing test. In Proceedings of the 49th Aerospace Sciences Meeting, Reno, NV, USA, 7–10 January 1991. [Google Scholar]
- Wright, J.; Aubert, R. Icing wind tunnel test of a full scale heated tail rotor model. In Proceedings of the AHS 70th Annual Forum, Montreal, QC, Canada, 20 May 2014. [Google Scholar]
- Messinger, B.L. Equilibrium temperature of an unheated icing surface as a function of air speed. J. Aeronaut. Sci. 1953, 20, 29–42. [Google Scholar] [CrossRef]
- Flemming, R.J.; Britton, R.K.; Bond, T.H. Role of wind tunnels and computer codes in the certification and qualification of rotorcraft for flight in forecast icing. In Proceedings of the 20th European Rotorcraft Forum, Amsterdam, The Netherlands, 4–7 October 1994. [Google Scholar]
- Britton, R.; Bond, T.; Flemming, R. An overview of a model rotor icing test in the NASA Lewis icing research tunnel. In Proceedings of the 32nd Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 10–13 January 1994. [Google Scholar]
- Cao, Y.; Zhong, G.; Ma, C. Numerical simulation of ice accretion prediction on multiple element airfoil. Sci. China 2011, 54, 2296–2304. [Google Scholar] [CrossRef]
- Narducci, R.; Kreeger, R.E. Analysis of a Hovering Rotor in Icing Conditions; NASA/TM-2012-217126; Glenn Research Center: Cleveland, OH, USA, 2012. [Google Scholar]
- Nucci, M.; Bain, J.; Sankar, L.; Egolf, T.A.; Flemming, R.; Kreeger, E. A methodology for modeling the effects of icing on rotary wing aerodynamics. In Proceedings of the 48th AIAA Aerospace Sciences Meeting, Orlando, FL, USA, 4–7 January 2010. [Google Scholar]
- Bai, J.; Deresz, R.; Sankar, L.; Egolf, T.A.; Flemming, R.; Kreeger, E. Effects of icing on rotary wing loads and surface heat transfer. In Proceedings of the 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 4–7 January 2011. [Google Scholar]
- Wang, Z.; Zhu, C. Numerical simulation of three-dimensional rotor icing in hovering flight. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2018, 232, 545–555. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, Q. Numerical simulations for ice accretion on rotors using new three-dimensional icing model. J. Aircr. 2017, 54, 1428–1442. [Google Scholar] [CrossRef]
- Chen, N.; Ji, H.; Cao, G.; Hu, Y. A three-dimensional mathematical model for simulating ice accretion on helicopter rotors. Phys. Fluids 2018, 30, 083602. [Google Scholar] [CrossRef]
- Chen, N.; Du, J.; Ji, H.; Hu, Y.; Yuan, Y. Numerical study of effects of centrifugal force on ice accretion on a rotor blade. J. Propuls. Technol. 2020, 41, 1314–1323. (In Chinese) [Google Scholar]
- Ogretim, E.; Huebsch, W.; Shinn, A. Aircraft ice accretion prediction based on neural networks. J. Aircr. 2006, 43, 233–240. [Google Scholar] [CrossRef]
- Chang, S.N.; Leng, M.Y.; Wu, H.W.; Thompson, J. Aircraft ice accretion prediction using neural network and wavelet packet transform. Aircr. Eng. Aerosp. Technol. 2016, 88, 128–136. [Google Scholar] [CrossRef]
- Yi, X.; Wang, Q.; Chai, C.C.; Guo, L. Prediction model of aircraft icing based on deep neural network. Trans. Nanjing Univ. Aeronaut. Astronaut. 2021, 38, 535–544. [Google Scholar]
- Qu, J.; Peng, B.; Yi, X.; Ma, Y. Icing prediction method for arbitrary airfoil using deep neural networks. Acta Aerodyn. Sin. 2023, 41, 48–55. (In Chinese) [Google Scholar]
- Abdelghany, E.S.; Farghaly, M.B.; Almalki, M.M.; Sarhan, H.H.; Essa, M.E.S.M. Machine learning and iot trends for intelligent prediction of aircraft wing anti-icing system temperature. Aerospace 2023, 10, 676. [Google Scholar] [CrossRef]
- Ostrowski, Z.; Bialecki, R.A. Estimation of constant thermal conductivity by use of proper orthogonal decomposition. Comput. Mech. 2005, 37, 52–59. [Google Scholar] [CrossRef]
- Goldberg, D.E.; Holland, J.H. Genetic Algorithms and machine learning. Mach. Learn. 1988, 3, 95–99. [Google Scholar] [CrossRef]
- Xiao, Z.; Mou, B.; Jiang, X.; Han, W. Computational aeroelastic method for rotor based on MBDYN. Int. J. Mod. Phys. B 2020, 34, 2040077. [Google Scholar] [CrossRef]
- Morelli, M.; Guardonea, A. A simulation framework for rotorcraft ice accretion and shedding. Aerosp. Sci. Technol. 2022, 129, 107157. [Google Scholar] [CrossRef]
Collective Pitch Angle (°) | Rotational Speed (rad/s) | Static Temperature (°C) | MVD (μm) | LWC (g/m3) | Icing Time (min) |
---|---|---|---|---|---|
7.0 | 33.9 | −19.0 | 30.0 | 0.7 | 3.0 |
No. | No. | ||
---|---|---|---|
1 | 307.60309 | 15 | 0.09296 |
2 | 19.25679 | 16 | 0.08556 |
3 | 5.98227 | 17 | 0.07621 |
4 | 3.15939 | 18 | 0.06310 |
5 | 1.12216 | 19 | 0.05147 |
6 | 0.74467 | 20 | 0.04675 |
7 | 0.53879 | 21 | 0.04254 |
8 | 0.41088 | 22 | 0.03665 |
9 | 0.33444 | 23 | 0.03470 |
10 | 0.30189 | 24 | 0.03315 |
11 | 0.20751 | 25 | 0.02790 |
12 | 0.14947 | 26 | 0.02578 |
13 | 0.12135 | 27 | 0.02523 |
14 | 0.11986 |
Hidden Layers | Number of Neurons in Each Layer | Learning Rate | Optimizer | Activation Function |
---|---|---|---|---|
1 | 3, 7, 27 | 0.01 | Levenberg-Marquardt algorithm | tanh (for hidden layer) linear (for output layer) |
(mm) | (%) | Time Cost (s) | |
---|---|---|---|
GA-BPNN | 7.2 | 3.6 | 2.66 |
Static Temperature (°C) | LWC (g/m3) | Icing Time (s) | |
---|---|---|---|
Case 1 | −10.00 | 0.500 | 480.00 |
Case 2 | −20.00 | 0.350 | 360.00 |
Case 3 | −22.89 | 0.308 | 626.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Liu, F.; Zhao, D.; Cui, X.; Xiao, Z.; Li, K. A Rapid Prediction Model of Three-Dimensional Ice Accretion on Rotorcraft in Hover Flight. Aerospace 2025, 12, 795. https://doi.org/10.3390/aerospace12090795
Li W, Liu F, Zhao D, Cui X, Xiao Z, Li K. A Rapid Prediction Model of Three-Dimensional Ice Accretion on Rotorcraft in Hover Flight. Aerospace. 2025; 12(9):795. https://doi.org/10.3390/aerospace12090795
Chicago/Turabian StyleLi, Weibin, Fan Liu, Dazhi Zhao, Xingda Cui, Zhongyun Xiao, and Kaicheng Li. 2025. "A Rapid Prediction Model of Three-Dimensional Ice Accretion on Rotorcraft in Hover Flight" Aerospace 12, no. 9: 795. https://doi.org/10.3390/aerospace12090795
APA StyleLi, W., Liu, F., Zhao, D., Cui, X., Xiao, Z., & Li, K. (2025). A Rapid Prediction Model of Three-Dimensional Ice Accretion on Rotorcraft in Hover Flight. Aerospace, 12(9), 795. https://doi.org/10.3390/aerospace12090795