Interpreting Decision-Making Behavior in AI-Piloted Aircraft in Aerial Combat Scenarios: An Approach to Enhance Human-AI Trust
Abstract
1. Introduction
- This work investigates the trust issues arising during the deployment of AI algorithms in air combat games—a topic that has received limited attention in existing research but holds significant practical importance.
- An approach is proposed to describe and interpret AI decision-making behaviors using natural language, offering a feasible approach for the practical application of AI algorithms.
- Validation results based on the constructed dataset demonstrate that the proposed encoder–decoder architecture, enhanced with an attention mechanism, can accurately describe and interpret the decision-making behaviors of AI algorithms.
2. Preliminaries
2.1. GRU
2.2. Attention Mechanism
3. Aerial Combat Scenario Modeling
3.1. System Modeling
3.2. Goal of the Game
3.3. State Definition
3.4. Action Definition
4. Method
4.1. Overview
4.2. Database Establishment
4.2.1. Learning Dogfight Adversarial Agents
4.2.2. Construction of the Raw Dataset
4.2.3. Dataset Augmentation
4.3. Structure of the Model
4.3.1. Encoder
4.3.2. Attention Decoder
5. Experiment
5.1. Evaluation Metrics
5.2. Main Results
5.3. Ablation Study
5.3.1. Comparative Evaluation
5.3.2. Impact of Data Augmentation Techniques
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
DRL | Deep Reinforcement Learning |
GRU | Gated Recurrent Unit |
Seq2Seq | Sequence to Sequence |
3-DoF | Three-Degree-of-Freedom |
AA | Aspect Angle |
ATA | Antenna Train Angle |
BLEU | Bilingual Evaluation Understudy |
CIDEr | Consensus-Based Image Description Evaluation |
ROUGE-L | Recall Oriented Understudy for Gisting Evaluation-Longest Common Subsequence |
METEOR | Metric for Evaluation of Translation with Explicit Ordering |
References
- Wang, Y.; Wang, J.; Fan, S.; Wang, Y. Quick intention identification of an enemy aerial target through information classification processing. Aerosp. Sci. Technol. 2023, 132, 108005. [Google Scholar] [CrossRef]
- Kong, W.; Zhou, D.; Yang, Z.; Zhao, Y.; Zhang, K. UAV autonomous aerial combat maneuver strategy generation with observation error based on state-adversarial deep deterministic policy gradient and inverse reinforcement learning. Electronics 2020, 9, 1121. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, F.; Deng, X.; Li, M.; Jiang, W. Air target intention recognition and causal effect analysis combining uncertainty information reasoning and potential outcome framework. Chin. J. Aeronaut. 2024, 37, 287–299. [Google Scholar] [CrossRef]
- Yang, Z.; Sun, Z.X.; Piao, H.Y.; Huang, J.C.; Zhou, D.Y.; Ren, Z. Online hierarchical recognition method for target tactical intention in beyond-visual-range air combat. Def. Technol. 2022, 18, 1349–1361. [Google Scholar] [CrossRef]
- Fang, F.; Fei, A.; He, J.; Li, Q.; Chen, J.; Feng, D. Development and consideration of key technologies for intelligent aircombat command and control in future. Command. Inf. Syst. Technol. 2024, 15, 10–18. [Google Scholar] [CrossRef]
- Pope, A.P.; Ide, J.S.; Mićović, D.; Diaz, H.; Rosenbluth, D.; Ritholtz, L.; Twedt, J.C.; Walker, T.T.; Alcedo, K.; Javorsek, D. Hierarchical Reinforcement Learning for Air-to-Air Combat. In Proceedings of the 2021 International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece, 15–18 June 2021; pp. 275–284. [Google Scholar] [CrossRef]
- Jing, X.; Cong, F.; Huang, J.; Tian, C.; Su, Z. Autonomous Maneuvering Decision-Making Algorithm for Unmanned Aerial Vehicles Based on Node Clustering and Deep Deterministic Policy Gradient. Aerospace 2024, 11, 1055. [Google Scholar] [CrossRef]
- Chen, C.; Song, T.; Mo, L.; Lv, M.; Lin, D. Autonomous Dogfight Decision-Making for Air Combat Based on Reinforcement Learning with Automatic Opponent Sampling. Aerospace 2025, 12, 265. [Google Scholar] [CrossRef]
- Sun, L.; Qiu, H.; Wang, Y.; Yan, C. Autonomous UAV maneuvering decisions by refining opponent strategies. IEEE Trans. Aerosp. Electron. Syst. 2024, 60, 3454–3467. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, J.; Yang, L.; Liu, C. Autonomous decision-making for dogfights based on a tactical pursuit point approach. Aerosp. Sci. Technol. 2022, 129, 107857. [Google Scholar] [CrossRef]
- Hu, D.; Yang, R.; Zhang, Y.; Yue, L.; Yan, M.; Zuo, J.; Zhao, X. Aerial combat maneuvering policy learning based on confrontation demonstrations and dynamic quality replay. Appl. Artif. Intell. 2022, 111, 104767. [Google Scholar] [CrossRef]
- Cotting, M.C.; Stephens, S.S.; Cole, J.; Barricklow, J.; Gray, W. X-62 VISTA Capabilities and Architecture. In Proceedings of the AIAA SCITECH 2023 Forum, National Harbor, MD, USA, 23–27 January 2023; p. 1744. [Google Scholar] [CrossRef]
- Cotting, M.C.; Stephens, S.S.; Cole, J.; Gray, W.; Hartwig, L.; Caraway, D.J.; Harris, Q.; Schiavone, A.; Babala, P.; Picard, R. X-62 VISTA Simulation and Autonomy Flight Testing. In Proceedings of the AIAA SCITECH 2023 Forum, National Harbor, MD, USA, 23–27 January 2023; p. 1928. [Google Scholar] [CrossRef]
- Schiavone, A.; Babala, P.; Hartwig, L.; Cotting, M.C. X-62 VISTA System for the Autonomous Control of the Simulation Design and Implementation. In Proceedings of the AIAA SCITECH 2023 Forum, National Harbor, MD, USA, 23–27 January 2023; p. 1926. [Google Scholar] [CrossRef]
- Zhang, G.; Chong, L.; Kotovsky, K.; Cagan, J. Trust in an AI versus a Human teammate: The effects of teammate identity and performance on Human-AI cooperation. Comput. Hum. Behav. 2023, 139, 107536. [Google Scholar] [CrossRef]
- Shwartz-Ziv, R.; Tishby, N. Opening the black box of deep neural networks via information. arXiv 2017, arXiv:1703.00810. [Google Scholar]
- Jin, B.; Liu, X.; Zheng, Y.; Li, P.; Zhao, H.; Zhang, T.; Zheng, Y.; Zhou, G.; Liu, J. Adapt: Action-aware driving caption transformer. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023; pp. 7554–7561. [Google Scholar] [CrossRef]
- Wang, M.; Wang, L.; Yue, T.; Liu, H. Influence of unmanned combat aerial vehicle agility on short-range aerial combat effectiveness. Aerosp. Sci. Technol. 2020, 96, 105534. [Google Scholar] [CrossRef]
- Zhang, A.; Zhang, B.; Bi, W.; Mao, Z. Attention based trajectory prediction method under the air combat environment. Appl. Intell. 2022, 52, 17341–17355. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, D.; Wang, W.; Xiong, L.; Yang, X. Confrontational flight trajectory prediction based on attention mechanism. In Proceedings of the 2020 International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE), Bangkok, Thailand, 30 October–1 November 2020; pp. 211–214. [Google Scholar] [CrossRef]
- Yu, X.; Wei, S.; Fang, Y.; Sheng, J.; Zhang, L. Low-altitude Slow Small Target Threat Assessment Algorithm by Exploiting Sequential Multi-Feature with Long-Short-Term-Memory. IEEE Sens. J. 2023, 23, 21524–21533. [Google Scholar] [CrossRef]
- Chen, C.; Quan, W.; Shao, Z. Aerial Target Threat Assessment Based on Gated Recurrent Unit and Self-Attention Mechanism. Syst. Eng. Electron. 2024, 35, 361–373. [Google Scholar] [CrossRef]
- Kim, J.; Rohrbach, A.; Darrell, T.; Canny, J.; Akata, Z. Textual explanations for self-driving vehicles. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 563–578. [Google Scholar] [CrossRef]
- Kumar, S.C.; Hemalatha, M.; Narayan, S.B.; Nandhini, P. Region driven remote sensing image captioning. Procedia Comput Sci. 2019, 165, 32–40. [Google Scholar] [CrossRef]
- Bashmal, L.; Bazi, Y.; Al Rahhal, M.M.; Zuair, M.; Melgani, F. CapERA: Captioning Events in Aerial Videos. Remote Sens. 2023, 15, 2139. [Google Scholar] [CrossRef]
- Hoxha, G.; Melgani, F. Remote sensing image captioning with SVM-based decoding. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 6734–6737. [Google Scholar] [CrossRef]
- Bang, S.; Kim, H. Context-based information generation for managing UAV-acquired data using image captioning. Autom. Constr. 2020, 112, 103116. [Google Scholar] [CrossRef]
- Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv 2014, arXiv:1412.3555. [Google Scholar]
- Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078. [Google Scholar]
- Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. In Proceedings of the International Conference on Machine Learning, PMLR, Stockholm, Sweden, 10–15 July 2018; Volume 80, pp. 1861–1870. [Google Scholar] [CrossRef]
- Lou, Z.; Wang, Y.; Shan, S.; Zhang, K.; Wei, H. Balanced prioritized experience replay in off-policy reinforcement learning. Neural Comput. Appl. 2024, 36, 15721–15737. [Google Scholar] [CrossRef]
- Papineni, K.; Roukos, S.; Ward, T.; Zhu, W.J. BLEU: A method for automatic evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, Philadelphia, PA, USA, 7–12 July 2002; pp. 311–318. [Google Scholar] [CrossRef]
- Vedantam, R.; Zitnick, C.L.; Parikh, D. CIDEr: Consensus-based image description evaluation. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 4566–4575. [Google Scholar] [CrossRef]
- Lin, C.Y.; Och, F.J. Automatic evaluation of machine translation quality using longest common subsequence and skip-bigram statistics. In Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics (ACL-04), Barcelona, Spain, 21–26 July 2004; pp. 605–612. [Google Scholar] [CrossRef]
- Banerjee, S.; Lavie, A. METEOR: An automatic metric for MT evaluation with improved correlation with human judgments. In Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization, Ann Arbor, MI, USA, 29–30 June 2005; pp. 65–72. [Google Scholar] [CrossRef]
Algorithm | Accuracy (%) | BLEU4 |
---|---|---|
Encoder + Attention Decoder | ||
Encoder + Decoder | ||
Attention Decoder only | ||
Decoder only |
Method | Accuracy (%) | BLEU4 |
---|---|---|
Rotation + Translation | ||
Rotation | ||
Translation | ||
Original |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lou, Z.; Ge, W.; Xie, K. Interpreting Decision-Making Behavior in AI-Piloted Aircraft in Aerial Combat Scenarios: An Approach to Enhance Human-AI Trust. Aerospace 2025, 12, 722. https://doi.org/10.3390/aerospace12080722
Lou Z, Ge W, Xie K. Interpreting Decision-Making Behavior in AI-Piloted Aircraft in Aerial Combat Scenarios: An Approach to Enhance Human-AI Trust. Aerospace. 2025; 12(8):722. https://doi.org/10.3390/aerospace12080722
Chicago/Turabian StyleLou, Zhouwei, Weiyi Ge, and Ke Xie. 2025. "Interpreting Decision-Making Behavior in AI-Piloted Aircraft in Aerial Combat Scenarios: An Approach to Enhance Human-AI Trust" Aerospace 12, no. 8: 722. https://doi.org/10.3390/aerospace12080722
APA StyleLou, Z., Ge, W., & Xie, K. (2025). Interpreting Decision-Making Behavior in AI-Piloted Aircraft in Aerial Combat Scenarios: An Approach to Enhance Human-AI Trust. Aerospace, 12(8), 722. https://doi.org/10.3390/aerospace12080722