
Academic Editor: Gokhan Inalhan

Received: 22 June 2025

Revised: 8 August 2025

Accepted: 12 August 2025

Published: 13 August 2025

Citation: Lou, Z.; Ge, W.; Xie, K.

Interpreting Decision-Making

Behavior in AI-Piloted Aircraft in

Aerial Combat Scenarios: An

Approach to Enhance Human-AI Trust.

Aerospace 2025, 12, 722. https://

doi.org/10.3390/aerospace12080722

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Interpreting Decision-Making Behavior in AI-Piloted Aircraft in
Aerial Combat Scenarios: An Approach to Enhance
Human-AI Trust
Zhouwei Lou 1,2,* , Weiyi Ge 2 and Ke Xie 2

1 Key Laboratory of Measurement and Control of Complex Systems of Engineering, Ministry of Education,
School of Automation, Southeast University, Nanjing 210096, China

2 National Key Laboratory of Information Systems Engineering, Nanjing 210007, China;
geweiyi@cetc.com.cn (W.G.); xieke3@cetc.com.cn (K.X.)

* Correspondence: lou_zw@seu.edu.cn

Abstract

With the continuous advancement of artificial intelligence (AI) technology, AI algorithms
have demonstrated exceptional aircraft control capabilities in highly dynamic and complex
scenarios such as aerial combat. However, the inherent lack of explainability in AI algo-
rithms poses a significant challenge to gaining sufficient trust, presenting potential safety
risks that could lead to aircraft loss of control. This limitation hinders the widespread
adoption of AI in practical applications. To enhance human–AI trust, improve system
stability and safety, and advance the deployment of AI algorithms in practical settings,
this study proposes an approach to describe and explain AI decision-making behaviors
using natural language. Natural language is a straightforward medium for expressing
information, which avoids the need for additional decoding or interpretation, particularly
in rapidly changing battlefield environments, enabling pilots to quickly comprehend the
intentions of AI algorithms and thereby fostering trust in AI systems. This study constructs
a dataset of AI decision behavior description and interpretation based on adversarial tem-
poral data in an aerial combat scenario and introduces an encoder–decoder framework
that integrates an attentional mechanism. Findings from the experiments suggest that this
approach effectively delineates and elucidates the AI decision-making behaviors, thereby
facilitating mutual trust between humans and AI.

Keywords: human–AI trust; aerial combat; artificial intelligence; natural language; decision-
making behavior

1. Introduction
With the rapid advancement of modern military technology, the battlefield environ-

ment is increasingly characterized by high dynamism and complexity [1]. This necessitates
the integration of powerful artificial intelligence (AI) technologies into military operations.
Aircraft, as pivotal assets on the modern battlefield, undertake critical missions such as
combat and reconnaissance [2–4]. Effectively leveraging the advantages of AI algorithms
in actual aerial combat is crucial for establishing battlefield superiority [5].

Currently, many researchers are actively exploring the application of AI algorithms
in aerial combat scenarios to enable autonomous aircraft to perform combat missions [6].
Among these, AI algorithms represented by deep reinforcement learning (DRL) have
emerged as the dominant approach due to their capabilities in autonomous learning and
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policy optimization [7,8]. DRL-based methods continuously refine their decision-making
strategies through interaction with the environment, allowing agents to make autonomous
decisions and respond adaptively in highly dynamic and adversarial aerial combat envi-
ronments. However, most studies remain at the simulation stage. Experimental results
in simulated environments indicate that AI algorithms have demonstrated capabilities
surpassing human performance in autonomous aerial combat scenarios [9–11]. Mean-
while, a minority of researchers are testing the performance of AI algorithms in real flight
conditions [12,13]. This requires a careful consideration of system safety, significant restric-
tions on AI algorithms, and the presence of a pilot to take control if the AI’s decisions are
not trusted [14]. Overall, deploying AI algorithms in actual aircraft still faces numerous
challenges, with the most critical being the trust between humans and AI [15].

Currently, widely used AI algorithms typically rely on neural networks to represent
and learn complex patterns and rules. However, the internal mechanisms of neural net-
works are highly complex and inherently difficult to interpret, making it challenging to
intuitively understand how features are extracted from input data and how decisions
are made [16]. Meanwhile, deploying AI technologies on real aircraft involves not only
significant technical thresholds and costs but also potential safety risks. In addition to
performance improvements, the safety and controllability of the overall system must be
prioritized in practical applications [17]. These factors collectively hinder the widespread
adoption of AI algorithms in actual combat scenarios, with the core issue being the uncer-
tainty surrounding the correctness of AI-generated decisions. Therefore, establishing trust
between humans and AI algorithms is of great significance. However, research in this area
remains relatively limited.

AI algorithms can provide extensive decision support information, such as real-time
battlefield data analysis [18], enemy tactics prediction [19,20], and threat assessment [21,22].
These methods primarily assist in analysis, requiring pilots to spend considerable time
understanding the final decisions made via AI algorithms. However, in aerial combat
scenarios where real-time decision-making is critical, pilots often lack the necessary time
to comprehend the information provided through AI. Therefore, more efficient and direct
interaction methods are required. Natural language serves as a direct means of information
conveyance, facilitating a rapid grasp of the actions and intentions of AI algorithms. Natural
language has been extensively employed across a multitude of tasks. For instance, natural
language is used to explain how end-to-end AI systems control vehicles in autonomous
driving technology [17,23]. Additionally, it can be applied to describe the informational
content within remote sensing images in the domain of remote sensing image event iden-
tification [24–27]. In aerial combat scenarios, concise natural language expressions can
effectively convey the decisions made via current AI algorithms and the reasons behind
them, thereby quickly gaining the trust of pilots.

To enhance mutual trust between humans and AI, this study proposes an approach for
describing and explaining AI decision-making behaviors using natural language. A highly
dynamic and uncertain air combat scenario is selected as the experimental environment
to better reflect the real-time demands of human–AI interaction. Multiple adversarial
agents are generated using advanced DRL algorithms, yielding time-series data of various
confrontational processes. These data are then combined with manually annotated texts
to construct a corresponding natural language description dataset. On this basis, an
attention-based encoder–decoder framework is designed. The encoder extracts critical
information from the adversarial sequences, while the attention-based decoder effectively
captures temporal context to enable more accurate language generation. Experimental
results demonstrate that the proposed method can accurately describe and interpret the
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decision-making behaviors of AI algorithms, offering a promising approach to fostering
mutual trust between humans and AI.

The main contributions and innovations of this study are summarized as follows:

• This work investigates the trust issues arising during the deployment of AI algorithms
in air combat games—a topic that has received limited attention in existing research
but holds significant practical importance.

• An approach is proposed to describe and interpret AI decision-making behaviors
using natural language, offering a feasible approach for the practical application of
AI algorithms.

• Validation results based on the constructed dataset demonstrate that the proposed
encoder–decoder architecture, enhanced with an attention mechanism, can accurately
describe and interpret the decision-making behaviors of AI algorithms.

The rest of this paper is structured as follows. Section 2 covers the preliminary
knowledge regarding the sequence-to-sequence model used in this study. Section 3 details
the construction and implementation of the aerial combat environment employed in our
experiments. Section 4 elaborates on the proposed methodology, including the dataset
construction and model architecture. Section 5 presents the main experimental results and
validates the effectiveness and superiority of the proposed approach through multiple
comparative experiments. Section 6 conducts a comprehensive discussion of the proposed
approach. Finally, Section 7 concludes the paper.

2. Preliminaries
To facilitate the understanding of the proposed model, this section introduces the

fundamental components employed in the approach. Specifically, a brief overview of the
gated recurrent unit (GRU) [28] is presented, which serves as the core of the sequence
encoder, followed by a description of the attention mechanism that enhances the decoder’s
ability to focus on salient parts of the input sequence during natural language generation.

2.1. GRU

The GRU is a type of recurrent neural network designed to manage long-term depen-
dencies effectively. This model employs a duo of gating mechanisms—the reset gate and
the update gate—to regulate the propagation of information. The reset gate functions to
ascertain the proportion of the anterior hidden state’s data that should be preserved or
dismissed. At the same time, the update gate regulates to what extent the current hidden
state’s information is incorporated into the output or excluded. The resulting hidden state
is a combination of the previous and candidate hidden states, adjusted by the update
gate, capturing the relevant information at the present moment. This selective retention
and obsolescence of information across various temporal intervals empower the GRU to
effectively encapsulate extended temporal dependencies within sequences. As shown in
Figure 1, the internal design is where the fundamental strength of the GRU lies.

At each time step, t, the GRU network first calculates two gate vectors, rt and zt, based
on the input vector xt and the previous hidden state vector, ht−1, representing the reset
gate and the update gate, respectively. Both gate vectors are computed via a sigmoid
function, yielding values between 0 and 1 and representing each gate’s degree of activation
or deactivation.

The reset and update gate calculation equations are as follows.

rt = σ(Wrxt + Urht−1 + br) (1)

zt = σ(Wzxt + Uzht−1 + bz) (2)
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where σ denotes the sigmoid function, Wr, Wz, Ur, and Uz denote the learnable weight
matrix, and br and bz denotes the learnable bias vector.

 

Figure 1. Structure of GRU network.

Next, the GRU network resets the hidden state vector, ht−1, of the previous time
step according to the reset gate vector, rt. It obtains a new vector, h̃t−1, representing the
information retained after the reset. Then, h̃t−1 is concatenated with the input vector xt,
and a candidate hidden state vector, h̃t, is obtained through a tanh function, indicating that
the current time step may need to add new information to the hidden state. The calculation
formulas of the reset operation and candidate hidden state are as follows:

h̃t−1 = rt ⊙ ht−1 (3)

h̃t = tanh(Whxt + Uh h̃t−1 + bh) (4)

where ⊙ denotes the product of vector elements, Wh and Uh denote the learnable weight
matrix, and bh denotes the learnable bias vector.

The last step of the GRU network is to linearly interpolate the hidden state vector
ht−1 and the candidate hidden state vector h̃t of the previous time step according to the
update gate vector zt, and obtain the hidden state vector ht of the current time step, which
represents the updated information. The calculation equation of the update operation is
as follows:

ht = (1 − zt)⊙ ht−1 + zt ⊙ h̃t (5)

Through this internal structure, the GRU network can realize the function of long-term
and short-term memory, that is, to retain or forget the past information when needed, and
to add or ignore the current information.

2.2. Attention Mechanism

The attention mechanism, drawing inspiration from the human capacity for selective
focus in visual and auditory processing, serves to augment the representational capacity
and optimize the learning dynamics of neural architectures. Central to this mechanism
is the adaptive allocation of varying degrees of significance, or attention weights, to the
constituents of a given input sequence. This allocation is contingent upon the specific
computational objective and the ambient context, thereby facilitating the accentuation of
critical data and the concurrent downplaying of peripheral or less pertinent information.

The attention mechanism, originally utilized in computer vision for selecting image
regions and detecting objects, was subsequently adopted in natural language processing
to address long-range dependencies in sequence-to- sequence (Seq2Seq) models. In con-
ventional Seq2Seq models, the encoder transforms the input sequence into a fixed-length
vector, which the decoder then utilizes as its initial state to generate the output sequence.
This method encounters two primary issues. First, the encoder is limited to producing



Aerospace 2025, 12, 722 5 of 19

a vector of constant length, impairing its capacity to capture the complete essence of the
source sequence. Second, the decoder, when constructing each term, relies solely on the
immediate state and the word that came before, without any direct reference to the other
elements in the original sequence.

To mitigate the aforementioned challenges, the mechanism of attention presents a
novel strategy. In the process of word generation through the decoder, an attentional distri-
bution is derived, contingent upon the decoder’s instantaneous state and the previously
generated word. This distribution serves as an indicator of the emphasis placed on each
element within the source language sequence. By leveraging this distribution, a composite
of the source language words, weighted accordingly, is computed to yield a context vector.
This vector is subsequently incorporated as a supplementary input into the decoder. Thus,
the decoder generates each word by integrating its current state, the context vector, and the
prior word. This technique allows the decoder to extract the most pertinent details from
the source sequence, thereby improving the accuracy and effectiveness.

Figure 2 illustrates the structure of the attention mechanism, with st indicating the
hidden state of the RNN at time step t, which is determined via

st = f (st−1, ct, Yt−1) (6)

where ct representing the contextual information, is derived from annotations (h1, · · · , hT)
obtained via the encoder when processing the input sentence. It can be computed by

ct =
T

∑
j=1

atjhj (7)

where atj represents the weight for each annotation, hj, and it can be calculated via

atj =
exp

(
etj
)

∑T
k=1 exp(etk)

(8)

where etj = a(st−1, hj) represents a model for alignment, assessing the degree of correspon-
dence between the output at the t-th instance and the input segment near index j.

ℎ3ℎ1 ℎ2 ℎ𝑇

𝑋1 𝑋𝑇

s𝑡−1 s𝑡

𝑌𝑡−1 𝑌𝑡

𝑋2 𝑋3

𝑎𝑡,1

𝑎𝑡,2 𝑎𝑡,3

𝑎𝑡,𝑇

𝑐𝑡

Figure 2. Structure of attention mechanism.
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3. Aerial Combat Scenario Modeling
This study adopts a commonly used Dogfight scenario as the simulated aerial combat

environment. In this setting, both the red and blue sides deploy a single aircraft to engage
in close-range combat, with the objective of shooting down the opponent. The engage-
ment emphasizes real-time situational awareness, action decision-making, and maneuver
execution, and is characterized by high uncertainty and dynamic interactions.

Subsequent sections will provide a detailed description of the system modeling ap-
proach, the composition of states and actions, and the definition of the game objectives.

3.1. System Modeling

In order to provide a thorough depiction of the aircraft’s status, the present study
utilizes the terrestrial coordinate system as the fiducial framework. The aircraft’s state is
characterized by three-dimensional coordinates (x, y, and z), velocity (v), and the angles of
pitch, yaw, and roll (γ, ψ, ϕ), as illustrated in Figure 3.

𝜓

𝜙

𝛾

Center of gravity

𝑿

𝒀
𝒁

Figure 3. Schematic representation of the 3-DoF particle model for aircraft dynamics analysis.

To simplify the analysis and focus on the flight trajectories of both aircraft within a
specific time frame, as well as to infer the AI algorithms’ decision-making behavior and
rationale, this paper omits the modeling of certain detailed moments acting on the aircraft.
Instead, a simplified three-degree-of-freedom (3-DoF) point-mass model [2] of the aircraft
is employed for the simulation. Utilizing this model, the temporal correlations between the
aircraft’s positional coordinates and velocities are established. The differential equations
that govern the aircraft’s movement are shown below.

dv
dt

= g(nx − sin γ)

dx
dt

= v cos ψ cos γ

dy
dt

= v sin ψ cos γ

dz
dt

= v sin γ

(9)

where g denotes gravitational acceleration, and nx signifies the tangential overload.

3.2. Goal of the Game

The objective of both aircraft in the engagement is to achieve ultimate victory in the
adversarial encounter. This study primarily focuses on the relative states of aircraft during
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dogfight scenarios, aiming to infer the intentions of AI algorithms and their corresponding
aerial combat maneuvers. Consequently, the modeling of destructive weapons such as
missiles is excluded. Instead, the outcome is determined based on metrics such as relative
angles and distances between the aircraft.

To exemplify, Figure 4 depicts the positional relationship between two aircraft engaged
in an offensive maneuver. The aspect angle (AA) and antenna train angle (ATA) emerge
as pivotal parameters in assessing the engagement’s outcome. The methodologies for
computing these angles are delineated below.

AA = arccos
(

ρ · V o
|ρ||Vo|

)
ATA = arccos

(
ρ · V a
|ρ||V a|

) (10)

The AA between the aggressor and target aircraft indicates the hardship of evasion,
with a smaller AA indicating greater difficulty. A smaller AA indicates greater difficulty
in evasion. Conversely, the ATA between the target and the aggressor aircraft indicates
the precision of the attacker’s aim, with a smaller ATA indicating higher accuracy. When
the distance, |ρ|, between the two aircraft falls below a certain threshold, the target aircraft
is considered to be within the attacker’s engagement range. To gain a tactical edge, the
attacking aircraft must meet these criteria: |ATA| < 30◦ & |AA| < 60◦ & |ρ| < 1 km.
Maintaining this posture for an extended duration can classify the attacking aircraft as the
victor in the engagement.

𝑉o

𝑉a

Aspect Angle(AA)

Antenna Train Angle(ATA)

𝜌

Target

Attacker

Figure 4. Spatial relationship between two aircraft during an attack.

3.3. State Definition

In this environment, the state at any given time encompasses all relevant information
regarding both aircraft, and it is expressed as follows.

S = [xa, xo, ya, yo, za, zo, va, vo, γa, γo, ψa, ψo] (11)

3.4. Action Definition

In the dogfight game scenario employed in this study, three consecutive action com-
mands are used to operate the aircraft. The action space of the environment is depicted
as follows.

A = [ψcmd, γcmd, nxcmd] → [−1, 1] (12)

where ψcmd changes the yaw angle, ψ, γcmd changes the aircraft’s pitch angle, γ, and nxcmd

controls the speed, v.
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To enhance the alignment between the aircraft model’s control processes in the simula-
tion and those of the actual aircraft, a first-order inertia component is incorporated into the
three control directives. The corresponding relationship can be delineated as follows.

ψ

ψcmd
=

1
1 + τψs

γ

γcmd
=

1
1 + τγs

nx

nxcmd
=

1
1 + τxs

(13)

where τψ, τγ, τx are the time constants for ψ, γ, and nx, respectively.

4. Method
4.1. Overview

This study aims to describe and interpret the decision-making behavior of current
AI algorithms using natural language. Specifically, the objective is to generate a complete
natural language sentence based on a sequence of confrontation data over a period of time.
The confrontation sequence used in this study consists of flight data over T consecutive time
steps, with each time step represented by an N-dimensional feature vector encompassing
various state information of both red and blue aircraft, as outlined in Equation (11). As
both the input and output of this task are sequences, it can be regarded as a typical Seq2Seq
problem, with a structure similar to that of machine translation.

Typically, the Seq2Seq problem is addressed using an encoder–decoder architec-
ture [29], which consists of an encoder and a decoder. The encoder is responsible for
extracting information from the input sequence and generating a context vector. The de-
coder then generates the next output word based on this context vector, the previously
generated word, and its own hidden state. Figure 5 illustrates the overall framework of the
proposed task. The input sequence is first extracted from the confrontation data and then
processed via the encoder–decoder architecture to generate a complete natural language
sentence that describes and explains the decision-making behavior of the AI algorithm.

Context

Our aircraft is …… to ……

Encoder

……

Decoder

𝑆1 𝑆2 𝑆3 𝑆4 𝑆𝑇

……

Figure 5. Overview of the issue.
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4.2. Database Establishment

Given the current lack of publicly available dogfight databases, it is necessary to
construct the required experimental dataset based on the dogfight environment described
in Section 3.

4.2.1. Learning Dogfight Adversarial Agents

To enable an approach to describing and interpreting current AI decision-making
behaviors using natural language, it is essential to construct a high-quality adversarial
game dataset that encompasses diverse combat scenarios. This, in turn, requires the devel-
opment of high-performance game-playing agents capable of generating the underlying
adversarial data. Given the widespread adoption and strong performance potential of DRL
algorithms in training intelligent agents [7,8], this study adopts the soft actor–critic (SAC)
algorithm [30] for subsequent agent training. Following the scheme proposed in [2], the
design of the reward function takes into account critical combat-related factors, including
the relative velocity and distance between the agent and its opponent, as well as angular
metrics such as AA and ATA. This design aims to guide the agent toward advantageous
tactical positions while minimizing exposure to potential threats, thereby enhancing its
decision-making capability in dynamic aerial combat environments.

The training of agents is divided into two stages. In the first stage, agents are trained
in a one-on-one manner. Initially, multiple dogfight algorithms with diverse styles are
designed based on an expert system and used as opponents to train the initial agent.
Subsequently, the trained agents serve as new opponents for the further iterative training
of the next generation of agents. During this process, the agents reinforce themselves by
exploiting the weaknesses of their training opponents, resulting in high win rates against
them. However, when facing unfamiliar opponents, their performance tends to decline
markedly, revealing a lack of adaptability to more complex adversarial scenarios. Therefore,
agents trained solely through one-on-one encounters in the first stage exhibit an insufficient
generalization capability. To enhance overall performance, it is necessary to expose the
agents to more diverse adversarial experiences [31], thereby improving their comprehensive
combat effectiveness.

In the second stage of training, the agent is confronted with multiple opponents.
Agents obtained from the first stage are first evaluated, and those demonstrating strong
performance are selected as opponents for this phase. During training, an opponent is
randomly selected from the existing pool of trained agents for each independent episode,
and the interaction data are stored in a shared experience buffer. This approach allows
the experience buffer to accumulate diverse combat experiences against opponents with
varying strategies, thereby enabling the new agent to learn more generalized policies.
Newly trained agents that exhibit strong performance are incorporated into the agent pool
to participate in subsequent iterations of training.

After two stages of training, a set of high-performing agents was obtained. These
agents possess independent and effective combat strategies, enabling the generation of
diverse aerial combat trajectory sequences. However, since their strategies are learned
through DRL algorithms, the decision-making process lacks interpretability and is difficult
for humans to comprehend. Therefore, it is essential to develop methods that can enhance
human–AI trust.

4.2.2. Construction of the Raw Dataset

During the confrontation, the duration of engagement between the two sides may
range from a few seconds to several minutes. Since this study primarily focuses on the
natural language description and explanation of AI decision-making behavior at the current
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moment, only the most recent engagement sequence is considered. Specifically, a 5 s
segment of the engagement sequence is selected for analysis.

To construct the dataset, two agents are randomly selected from the agent pool to
engage in an aerial dogfight, thereby generating a complete combat sequence. Figure 6
illustrates the full course of a representative engagement, where the red and blue curves
represent the flight trajectories of the two opposing aircraft throughout the encounter. The
movement directions of both sides at each time step can be used to infer their respective
strategies. A continuous 5 s segment is randomly selected from the full trajectory for
dataset construction. As shown in Figure 6, an example is provided in which the final 5 s
are extracted, with the corresponding trajectories highlighted in darker colors, while the
remaining trajectories are shown in lighter shades.

X(m)
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400

Y(m)

1400

1200

1000

800

600

400

200

Z(m)

1100

1200

1300

1400

1500

Red aircraft
Blue aircraft

Figure 6. Example of flight trajectories of both agents during a dogfight. Dots along the trajectories
indicate 1 s time intervals.

Figure 7 illustrates a 5 s sequence extracted from the example shown in Figure 6, where
features such as position, velocity, and attitude angles are represented as time-varying
curves. These data capture the dynamic states of both aircraft within the 5 s interval,
forming the initial input format. After preprocessing, they are used as input to the encoder.
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Figure 7. Extracted 5 s sequence data from the entire engagement. The red curve represents the red
aircraft, and the blue curve represents the blue aircraft.
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Through the above procedure, the raw data can be constructed. Subsequently, an ex-
pert system is employed to annotate the sequence data with natural language descriptions,
thereby generating the corresponding data labels and building a complete dataset.

4.2.3. Dataset Augmentation

Given the challenges associated with dataset annotation, it is essential to make full
use of the available data resources. When describing and interpreting the current decision-
making behavior of AI using natural language, it is particularly important to learn and
attend to the spatial relative positions between the red and blue aircraft in the adversarial
data. In the original dogfight environment, differences in initial positions and combat
strategies between the two sides lead to significant variations in their spatial distributions.
Therefore, to enable the model to better capture the relative, rather than the absolute
positional information of the red and blue aircraft, two data augmentation strategies are
proposed based on the characteristics of the dogfight environment.

(1) Rotating the entire trajectory around the Z-axis. This method preserves the physical
consistency of the trajectory data and does not alter the relative positions of the red and
blue aircraft. Assuming there exists a three-dimensional coordinate point P = (x, y, z)
with a yaw angle ψ. When this point is rotated around the Z-axis by an angle θ, the
resulting coordinates, P′, and the updated yaw angle, ψ′, can be computed using the
following formulas.

x′ = x cos θ − y sin θ

y′ = x sin θ + y cos θ

z′ = z

ψ′ = ψ + θ

(14)

(2) Translating the entire trajectory. The overall trajectory can be translated along the
x, y, and z directions. It should be noted that the z-axis data in the trajectory represents the
altitude of the aircraft; therefore, the range of variation in this direction should be properly
constrained during translation.

After data augmentation, a total of 10,500 samples were obtained. Each sample
contains the state information of both the red and blue sides over a duration of 5 s, recorded
at 0.1 s intervals. Among them, 80% were used for the training set, 10% for the validation
set, and the remaining 10% for testing the model’s performance.

4.3. Structure of the Model

The model architecture is illustrated in Figure 8. Figure 8a presents the proposed
encoder–decoder framework, with the encoder on the left and the decoder on the right.
The decoder section in the figure details the process of generating the first word. Figure 8b
demonstrates the computation flow of the attention mechanism. The following sections
will provide a detailed explanation of the implementation and functionality of these
two components.

4.3.1. Encoder

The primary function of the encoder is to extract information from the input sequence
and transform it into hidden state vectors for use by the decoder, thereby completing the
decoding task. The GRU network is adopted as the core structure of the encoder due to
its ability to effectively capture semantic dependencies in long sequences, as well as its
simplicity and computational efficiency.
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Figure 8. Structure of the model. (a) Schematic of the encoder–decoder architecture. (b) Computation
flow of the attention mechanism.

This study uses a sequence of combat states as input to the encoder, with T time steps,
and each step containing N state variables. As illustrated in Figure 8a, the left part depicts
the structure of the encoder. Initially, the input state at each time step is mapped to a fixed-
length vector. Subsequently, the GRU network continuously extracts temporal information,
ultimately yielding a T × C-dimensional hidden state vector. Here, C denotes the output
feature layer dimension. The hidden state vector, which encapsulates the information
extracted from the input sequence, will be utilized via the decoder.

4.3.2. Attention Decoder

In this study, an attention mechanism is employed to enhance the decoder’s perfor-
mance. This mechanism enables the decoder to concentrate on the key aspects of the
encoder’s output as it constructs each word. As a result, the improved decoder can utilize
context from the full sequence instead of relying solely on the last encoder output, leading
to better output accuracy and quality.
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The decoder’s core structure remains a GRU. The operation proceeds as follows:
initially, the decoder’s hidden state is initialized (usually with the last hidden state of
the encoder), and a start token < BOS > is input to mark the beginning of the sentence.
Following this, the initial hidden state and the encoder’s hidden state vectors are used to
compute the attention mechanism’s context vector, as depicted in Figure 8b. The context
vector is combined with the embedded vector of the input word and fed into the GRU
network to generate both the updated hidden state and the output vector. The updated
hidden state is subsequently employed to predict the next words, with the output vector
being processed through a fully connected layer and softmax activation, producing a vector
with a dimension of M, where M denotes the number of words in the vocabulary. This
vector indicates the probability distribution of each word in the vocabulary at the current
position. The word with the highest probability is selected as the current output and used
as the input for the next step. This iterative process continues until the end-of-sentence
token < EOS > is encountered, thus completing the sentence generation.

5. Experiment
This section provides the experimental evaluation of the proposed model. The first part

introduces the evaluation metrics for performance assessment. The second part presents
the main experimental results to demonstrate the effectiveness of the approach. The third
part reports ablation studies conducted to further investigate the model.

5.1. Evaluation Metrics

In this study, our model produces descriptive narratives in natural language for AI’s
decision-making actions, utilizing adversarial dogfight data sequences as the foundation.
To evaluate the accuracy of the generated sentences, appropriate evaluation metrics need
to be selected.

In natural language processing evaluation, frequently employed metrics are Bilin-
gual Evaluation Understudy (BLEU) [32], Consensus-Based Image Description Evaluation
(CIDEr) [33], Recall Oriented Understudy for Gisting Evaluation-Longest Common Subse-
quence (ROUGE-L) [34], and Metric for Evaluation of Translation with Explicit Ordering
(METEOR) [35]. Our research utilizes BLEU as one of the evaluation criteria.

The BLEU score is calculated using the following equation.

BLEU = BP × exp

(
N

∑
n=1

wn log pn

)
(15)

where wn is the weights for each n-gram’s precision. In the field of natural language
processing, an n-gram refers to a sequence consisting of n consecutive words. pn represents
the precision of n-grams, defined as

pn =
matched n-grams

candidate n-grams
(16)

BP represents the brevity penalty, defined as

BP =

1 if c > r

e1−r/c if c ≤ r
(17)

where c is the output sentence length, and r is the reference sentence’s effective length.
This study sets N = 4 and uses uniform weights wn = 1/N.
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Furthermore, due to the brevity and fixed format of the sentences designed in this
study, accuracy is directly employed as the evaluation metric. A test sample is considered
accurate when its output sentence matches the correct label exactly. During the evaluation
process, padding positions are ignored.

5.2. Main Results

The proposed model was trained and evaluated on the experimental dataset. Figure 9
presents a selection of the experimental results. The red trajectory represents the flight path
of our aircraft, while the blue trajectory indicates the flight path of the opponent aircraft.
As illustrated in the figure, the produced sentences provide an accurate depiction of the
AI’s decision-making behavior and the motivations behind it.

With Figure 9a taken as an example, at the current moment, our aircraft holds a relative
advantage. It is positioned at the enemy aircraft’s side-rear, thus possessing a positional
advantage, and it has been pursuing the enemy continuously for the past five seconds. By
seizing the right timing to further adjust its angle, it can achieve successful targeting and
engagement of the enemy. In Figure 9b, both sides are currently in a state of equilibrium,
each seeking an opportunity to initiate an attack. At this stage, our aircraft is turning right
to find an advantageous attack angle. Figure 9c depicts our aircraft swiftly transitioning
from a balanced position within 5 s, successfully aligning its sights on the enemy. Figure 9d
shows our aircraft performing a rapid upward maneuver to gain altitude advantage in
the upcoming confrontation. In Figure 9e, after being pursued by the enemy aircraft for
an extended period, our aircraft executes a swift downward maneuver to evade further
pursuit. Finally, in Figure 9f, following the completion of turning maneuvers by both
aircraft, a head-on engagement is imminent; at this point, our aircraft turns right to avoid
the enemy’s targeting.

5.3. Ablation Study
5.3.1. Comparative Evaluation

To objectively evaluate the performance of the proposed model, three different models
were designed for comparison. These models consist of one employing both an encoder
and a conventional decoder, one using only an attention-based decoder, and one using only
a conventional decoder. For the two approaches that utilize only a decoder, the sequential
data are directly input into the decoder. Each algorithm was trained five times using
different random seeds. Figure 10 shows the loss curves for the different algorithms, and
Table 1 presents the accuracy and BLEU4 scores for the various algorithms. The results
show that, performance-wise, our proposed algorithm outperforms the other compared
algorithms.

Table 1. Performance comparison of different algorithms. ± symbol signifies one standard deviation
based on a series of five repetitions.

Algorithm Accuracy (%) BLEU4

Encoder + Attention Decoder 96.84 ± 2.05 0.9836 ± 0.0162
Encoder + Decoder 89.68 ± 6.02 0.9380 ± 0.0362

Attention Decoder only 80.28 ± 6.52 0.8762 ± 0.0391
Decoder only 75.32 ± 4.78 0.8424 ± 0.0290

By analyzing Table 1, it is evident that algorithms using an encoder–decoder archi-
tecture perform significantly better than those using only a decoder. This suggests that
the application of an encoder effectively captures temporal adversarial data, thereby as-
sisting the decoder in achieving more precise task completion. Furthermore, compared to
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algorithms employing conventional decoders, those adopting attention-based decoders
also exhibit significant performance improvements, with accuracy gains of 8% and 6.6%,
respectively, for the encoder–decoder and standalone decoder approaches.
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Figure 9. Results display. The sentence above each 3D scene graph is generated by the model.
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Figure 10. Loss curves for different algorithms. The solid lines indicate the average values, and the
shaded areas depict the 95% confidence interval derived from five runs.

5.3.2. Impact of Data Augmentation Techniques

Due to the limited amount of original combat data and the high cost of annotation, it
is crucial to make full use of the annotated data available. As discussed in Section 4.2.3,
two data augmentation techniques—rotation and translation—are employed. These meth-
ods do not alter the relative spatial positions of the aircraft, thus preserving the integrity
of the annotations. By enriching the spatial distribution of flight trajectories, these aug-
mentation methods enable the model to learn the relative spatial relationships between the
two aircraft, rather than focusing on their absolute positions.

Four different strategies were employed to construct the training and testing datasets:
one using both rotation and translation as data augmentation techniques, one using only
rotation, one using only translation, and one based on the original dataset without any
augmentation. The total amount of data was kept consistent across all four strategies. For
performance comparison, the testing dataset generated using both rotation and translation
was uniformly adopted. Table 2 presents the performance results of the model trained on
these four datasets.

Table 2. Performance comparison of different data augmentation techniques. ± symbol signifies one
standard deviation based on a series of five repetitions.

Method Accuracy(%) BLEU4

Rotation + Translation 96.84 ± 2.05 0.9836 ± 0.0162
Rotation 72.32 ± 6.34 0.8396 ± 0.0422

Translation 38.00 ± 1.94 0.5775 ± 0.0194
Original 34.40 ± 4.80 0.5396 ± 0.0380

An analysis of Table 2 reveals that the model achieves the best performance when
trained on the dataset augmented with both rotation and translation. Although these
methods do not alter the relative spatial positions of the aircraft, training on the original
dataset fails to accurately capture this information, resulting in an accuracy of only 34.4%
on the test dataset. In contrast, the dataset augmented with rotation significantly improves
accuracy, as rotation substantially diversifies the data, enriching the training set and
enabling the model to learn more precise information. Overall, the same dataset can be
transformed into various forms in space, and augmenting the training data with diverse
yet relevant information can significantly enhance the model’s learning effectiveness.
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6. Discussion
With the continuous advancement of AI technology, the integration of AI algorithms

in various applications is increasing. In the field of aircraft automatic control, especially
in highly dynamic and complex aerial combat environments, there is a pressing need to
enhance combat effectiveness through the introduction of AI algorithms. In this process, the
issue of trust between humans and AI algorithms cannot be ignored. To address this issue,
this paper proposes an approach that utilizes natural language to describe and explain AI
decision-making behaviors. Experimental results demonstrate that the proposed approach
can accurately describe and explain current AI decision-making behaviors, providing an
effective solution for promoting the practical application of AI algorithms.

Previous studies have shown that using AI algorithms in aerial combat scenarios can
achieve significant results, confirming that AI algorithms possess capabilities that surpass
human performance in such contexts. These findings suggest that AI algorithms have the
potential to be practically applied in aircraft to enhance military combat effectiveness in
the future. However, applying AI algorithms to actual combat aircraft still faces numerous
challenges, such as technical barriers and cost issues. In reality, if humans lack sufficient
trust in AI algorithms, the performance of these algorithms will be difficult to fully realize.
Currently, research on this issue is still limited, and this paper has aimed to draw academic
attention to the issue of human–AI trust.

Although this paper has made some progress in addressing the issue of human–AI
trust, several limitations remain. First, the proposed solution has not yet been validated
in real-world scenarios. Future work needs to test and evaluate its practical feasibility in
more complex environments. Second, the choice of sequence segment length significantly
impacts natural language descriptions, requiring a balance based on specific circumstances
to achieve optimal descriptive effects. Finally, this study requires more data and better
annotations to support further improvements. Learning from more comprehensive data
can further enhance the overall performance of the model. When constructing datasets,
it is essential to consider the inclusion of agents with varying capabilities and ensure
comprehensive coverage of the relative states of both aircraft. Despite these limitations, this
study provides valuable insights and explorations into solving the issue of human–AI trust.

7. Conclusions
To advance the application of AI algorithms in aerial combat scenarios, it is imper-

ative to address the issue of mutual trust between humans and AI. This study investi-
gates this challenge in depth and proposes an approach for describing and explaining AI
decision-making behavior through natural language. The proposed approach employs an
encoder–decoder framework enhanced with an integrated attention mechanism, enabling
the generation of natural language descriptions based on a sequence of combat data over
a period of time. The approach is systematically evaluated in highly dynamic and uncer-
tain aerial combat environments. The experimental results demonstrate that the proposed
model achieves an accuracy of 96.84% and a BLEU4 score of 0.9836 on the test set, effectively
describing and explaining AI decision-making behaviors. This offers a promising solution
to enhance the trustworthiness of AI algorithms in real-world operational contexts.
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