Quantifying Pilot Performance and Mental Workload in Modern Aviation Systems: A Scoping Literature Review
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Quantifying Pilot Performance and Workload
3.2. Evaluating Human–Automation Interactions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ECG | Heart rate/electrocardiogram |
EEG | Electroencephalogram |
EDA | Electrodermal activity |
fNIRS | Frontal near infrared spectroscopy |
Appendix A
# | Authors | Research Focus | Performance Measures |
---|---|---|---|
1 | (Massé et al., 2022) [137] | P, WL, F | 1, 8 |
2 | (Sarter et al., 2007) [27] | P, Au, A | 6, 7, 11 |
3 | (Alreshidi et al., 2023) [69] | P, A | 2, 8 |
4 | (Klaproth et al., 2020) [141] | P | 1, 2, 8 |
5 | (Schulte, 2002) [37] | Au | 3, 4, 5 |
6 | (Lefrançois et al., 2021) [70] | P | 5, 6 |
7 | (Maik et al., 2021) [130] | P, WL | 3, 5, 6 |
8 | (Yang et al., 2023) [21] | P, A | 5, 6, 7 |
9 | (Brams et al., 2018) [71] | P, E | 1, 6 |
10 | (Metzger & Parasuraman, 2005) [35] | Au | 1, 3, 5 |
11 | (Schmid & Stanton, 2019) [72] | Au, WL, S | 2, 3 |
12 | (Xing et al., 2023) [73] | P, WL, A | 1, 3, 6, 7, 9 |
13 | (Wickens et al., 2002) [13] | WL | 5, 6 |
14 | (Gateau et al., 2018) [74] | WL | 2, 5, 10 |
15 | (Mosier et al., 2013) [124] | Au, A, D | 11 |
16 | (Binias et al., 2023) [62] | P, A | 1, 8 |
17 | (Zanoni et al., 2023) [75] | P, WL | 5, 12 |
18 | (Verdière et al., 2018) [40] | Au | 2, 10 |
19 | (Gouraud et al., 2018) [126] | Au, A | 1, 4, 6, 11 |
20 | (Jankovics & Kale, 2019) [76] | P, MP, WL | 5, 6, 7, 9 |
21 | (Causse et al., 2011) [77] | D | 1, 9 |
22 | (Ma et al., 2022) [78] | P, A | 6 |
23 | (Fellah et al., 2016) [79] | C | 5, 12 |
24 | (Anneke & Nils, 2022) [65] | P, MP, WL, F | 1, 3, 8, 10, 11 |
25 | (Lassalle et al., 2017) [80] | P, MP, WL | 6, 9, 13, 14 |
26 | (Mohanavelu et al., 2020) [81] | P, WL | 1, 3, 5, 9 |
27 | (H. Sun et al., 2023) [82] | E | 5, 7, 11 |
28 | (Silva et al., 2021) [83] | P, MP, WL | 5, 9, 11, 13 |
29 | (Takahashi et al., 2022) [84] | Au | 5 |
30 | (Duchevet et al., 2022) [2] | P, Au, E, S | 5, 6, 7, 11 |
31 | (W.-C. Li et al., 2020) [44] | P, WL, Au, A | 3, 6, 11 |
32 | (Wei et al., 2014) [85] | P, WL | 1, 2, 3, 9 |
33 | (Haarmann et al., 2009) [142] | P, MP, Au | 5, 9, 11, 13, 14 |
34 | (Ahmadi et al., 2022) [86] | P | 6 |
35 | (Causse et al., 2024) [87] | P, WL, S | 10 |
36 | (Lin et al., 2012) [88] | WL, A | 11 |
37 | (X. Wang et al., 2020) [64] | P, MP, WL | 6, 8, 9 |
38 | (Lutnyk et al., 2023) [89] | P, MP | 6, 13 |
39 | (Yiu et al., 2022) [90] | P, WL | 2, 3, 8 |
40 | (Q. Li et al., 2023) [91] | P | 5, 8 |
41 | (Mohanavelu et al., 2020) [109] | P, MP, WL | 2, 8, 9 |
42 | (Chen et al., 2022) [92] | P, MP, WL | 2, 3, 6, 9, 14 |
43 | (Haslbeck & Zhang, 2017) [93] | P, E | 5, 6 |
44 | (Johnson & Pritchett, 1995) [43] | Au | 1, 5 |
45 | (Farjadian et al., 2017) [125] | Au | 1, 5 |
46 | (Jin et al., 2021) [94] | P, E | 6, 11 |
47 | (Hernández-Sabaté et al., 2024) [95] | P, WL | 1, 3, 8 |
48 | (Dong et al., 2023) [18] | S | 2, 7, 11 |
49 | (Thomas, 2011) [96] | Au | 11 |
50 | (Lounis et al., 2021) [97] | P, E, A | 5, 6 |
51 | (Suppiah et al., 2020) [98] | WL | 3 |
52 | (H. Wang et al., 2022) [129] | P, MP | 2, 9, 13, 14 |
53 | (Zhang et al., 2019) [99] | P, MP, WL | 3, 5, 6, 9, 14 |
54 | (Ververs et al., 2011) [100] | Au | 3, 5, 11 |
55 | (Gontar et al., 2017) [101] | WL | 1, 3, 5 |
56 | (Taheri Gorji et al., 2023) [66] | P, WL | 2, 5, 8, 11 |
57 | (Binias et al., 2023) [62] | P | 1, 8 |
58 | (Y. Li et al., 2013) [102] | P, MP | 8, 9 |
59 | (J. Sun et al., 2019) [103] | P, WL | 1, 3, 10 |
60 | (W.-C. Li et al., 2022) [104] | WL, A | 3, 4 |
61 | (Huettig et al., 1995) [105] | P | 3, 6 |
62 | (Socha et al., 2022) [106] | F | 5 |
63 | (Han et al., 2020) [61] | P, MP, WL, F | 2, 8, 9, 13, 14 |
64 | (Samel et al., 1997) [107] | P, MP, F | 3, 8, 9, 11 |
65 | (Škvareková et al., 2020) [108] | P, WL, E | 6 |
66 | (Y. Wang et al., 2024) [59] | P, WL | 1, 2, 8 |
67 | (K et al., 2020) [109] | P | 3, 8 |
68 | (Shao et al., 2021) [110] | P, A | 1, 6 |
69 | (Dorneich et al., 2017) [111] | P, Au | 1, 3, 7, 11 |
70 | (Lee et al., 2023) [112] | P | 1, 2, 8 |
71 | (Alaimo et al., 2020) [113] | P, WL, F | 3, 5, 9 |
72 | (Mansikka et al., 2016) [114] | P, WL | 5, 9 |
73 | (Bennett, 2018) [50] | WL, F | 11 |
74 | (Mansikka et al., 2019) [115] | P, WL | 3, 9, 11 |
75 | (Diaz-Piedra et al., 2019) [131] | P, MP, WL | 3, 5, 6 |
76 | (Allsop & Gray, 2014) [133] | P, MP, A | 5, 6, 9, 11 |
77 | (Astolfi et al., 2011) [116] | P | 8 |
78 | (Di Nocera et al., 2007) [117] | P, WL | 3, 6 |
79 | (Di Stasi et al., 2015) [132] | P, WL | 8, 11 |
80 | (Thomas et al., 2015) [134] | P, MP, WL, F | 5, 6, 8, 9, 11 |
81 | (van de Merwe et al., 2012) [136] | P, A | 6 |
82 | (van Dijk et al., 2011) [135] | P, A | 6, 11 |
83 | (Bellenkes et al., 1997) [118] | P, E, A | 5, 674] |
84 | (Naeeri et al., 2021) [121] | P, Au, F, E | 6 |
85 | (Itoh et al., 1990) [119] | P, WL | 6, 9, 11 |
87 | (Wilson, 2002) [140] | P, MP, WL | 8, 9, 11, 13 |
88 | (Gibb et al., 2008) [120] | E | 5 |
89 | (Dehais et al., 2019) [139] | P, WL | 2, 8 |
90 | (Bromfield et al., 2023) [122] | Au | 3, 5 |
References
- Griffiths, N.; Bowden, V.; Wee, S.; Loft, S. Return-to-Manual Performance can be Predicted Before Automation Fails. Hum. Factors 2024, 66, 1333–1349. [Google Scholar] [CrossRef] [PubMed]
- Duchevet, A.; Imbert, J.P.; Hogue, T.D.L.; Ferreira, A.; Moens, L.; Colomer, A.; Cantero, J.; Bejarano, C.; Vázquez, A.R. HARVIS: A digital assistant based on cognitive computing for non-stabilized approaches in Single Pilot Operations. Transp. Res. Procedia 2022, 66, 253–261. [Google Scholar] [CrossRef]
- Vu, K.P.L.; Lachter, J.; Battiste, V.; Strybel, T.Z. Single Pilot Operations in Domestic Commercial Aviation. Hum. Factors 2018, 60, 755–762. [Google Scholar] [CrossRef]
- Myers, C.; Ball, J.; Cooke, N.; Freiman, M.; Caisse, M.; Rodgers, S.; Demir, M.; McNeese, N. Autonomous Intelligent Agents for Team Training. IEEE Intell. Syst. 2019, 34, 3–14. [Google Scholar] [CrossRef]
- Haslbeck, A.; Hoermann, H.J. Flying the Needles: Flight Deck Automation Erodes Fine-Motor Flying Skills Among Airline Pilots. Hum. Factors 2016, 58, 533–545. [Google Scholar] [CrossRef]
- Parasuraman, R.; Sheridan, T.B.; Wickens, C.D. A model for types and levels of human interaction with automation. IEEE Trans. Syst. Man. Cybern. Part A Syst. Hum. 2000, 30, 286–297. [Google Scholar] [CrossRef]
- Geiselman, E.E.; Johnson, C.M.; Buck, D.R. Flight Deck Automation: Invaluable Collaborator or Insidious Enabler? Ergon. Des. 2013, 21, 22–26. [Google Scholar] [CrossRef]
- Butterworth-Hayes, P. Pilot training for fifth-generation fighters. Aerosp. Am. 2012, 50, 4–6. [Google Scholar]
- Svoboda, A.; Boril, J.; Bauer, M.; Costa, P.C.G.; Blasch, E. Information Overload in Tactical Aircraft. In Proceedings of the 2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC), San Diego, CA, USA, 8–12 September 2019; pp. 1–5. Available online: https://ieeexplore.ieee.org/abstract/document/9081763 (accessed on 2 August 2024).
- Summerfield, D.; Raslau, D.; Johnson, B.; Steinkraus, L. Physiologic Challenges to Pilots of Modern High Performance Aircraft. In Aircraft Technology; IntechOpen: London, UK, 2018; Available online: https://www.intechopen.com/chapters/61486 (accessed on 4 June 2025).
- Baxter, G.; Rooksby, J.; Wang, Y.; Khajeh-Hosseini, A. The ironies of automation: Still going strong at 30? In Proceedings of the ECCE’12: 30th European Conference on Cognitive Ergonomics, New York, NY, USA, 28–31 August 2012; pp. 65–71. [Google Scholar] [CrossRef]
- Parnell, K.J.; Banks, V.A.; Allison, C.K.; Plant, K.L.; Beecroft, P.; Stanton, N.A. Designing flight deck applications: Combining insight from end-users and ergonomists. Cogn. Technol. Work 2021, 23, 353–365. [Google Scholar] [CrossRef]
- Wickens, C.D.; Helleberg, J.; Xu, X. Pilot maneuver choice and workload in free flight. Hum. Factors 2002, 44, 171. [Google Scholar] [CrossRef]
- Harris, D. Distributed Cognition in Flight Operations. In Engineering Psychology and Cognitive Ergonomics Applications and Services; Lecture Notes in Computer Science; Harris, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 125–133. [Google Scholar]
- National Academies of Sciences, Engineering, and Medicine. Review of Methods Used by the U.S. Department of Energy in Setting Appliance and Equipment Standards; National Academies Press: Washington, DC, USA, 2021; Available online: https://www.nap.edu/catalog/25992 (accessed on 7 July 2025).
- Brand, Y.; Schulte, A. Workload-adaptive and task-specific support for cockpit crews: Design and evaluation of an adaptive associate system. Hum-Intell. Syst. Integr. 2021, 3, 187–199. [Google Scholar] [CrossRef]
- Austin, R. Introduction to Unmanned Aircraft Systems (UAS). In Unmanned Aircraft Systems; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2010; pp. 1–15. [Google Scholar] [CrossRef]
- Dong, L.; Chen, H.; Zhao, C.; Wang, P. Analysis of Single-Pilot Intention Modeling in Commercial Aviation. Int. J. Aerosp. Eng. 2023, 2023, 9713312. [Google Scholar] [CrossRef]
- Passarella, R.; Veny, H.; Fachrurrozi, M.; Samsuryadi, S.; Vindriani, M. Evaluating the influence of the international civil aviation organization on aircraft accident rates and fatalities: A seven-decade historical data analysis. Acadlore Trans. Appl. Math. Stat. 2023, 1, 33–43. [Google Scholar] [CrossRef]
- O’Connor, R.; Roberts, Z.; Ziccardi, J.; Koteskey, R.; Lachter, J.; Dao, Q.; Johnson, W.; Battiste, V.; Vu, K.-P.L.; Strybel, T.Z. Pre-study Walkthrough with a Commercial Pilot for a Preliminary Single Pilot Operations Experiment. In Human Interface and the Management of Information Information and Interaction for Health, Safety, Mobility and Complex Environments; Yamamoto, S., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 136–142. [Google Scholar]
- Yang, J.; Qu, Z.; Song, Z.; Yu, Q.; Chen, X.; Li, X. Initial Student Attention-Allocation and Flight-Performance Improvements Based on Eye-Movement Data. Appl. Sci. 2023, 13, 9876. [Google Scholar] [CrossRef]
- Dehais, F.; Causse, M.; Vachon, F.; Régis, N.; Menant, E.; Tremblay, S. Failure to Detect Critical Auditory Alerts in the Cockpit: Evidence for Inattentional Deafness. Hum. Factors 2014, 56, 631–644. [Google Scholar] [CrossRef]
- Endsley, M.R. Toward a Theory of Situation Awareness in Dynamic Systems. Hum. Factors 1995, 37, 32–64. [Google Scholar] [CrossRef]
- McGiffin, J. Mission (Command) Complete: Implications of JADC2. Jt. Force Q. 2024, 113, 14. [Google Scholar]
- Bainbridge, L. Ironies of automation. Automatica 1983, 19, 775–779. [Google Scholar] [CrossRef]
- Hancke, T. Ironies of Automation 4.0. IFAC-Pap. 2020, 53, 17463–17468. [Google Scholar] [CrossRef]
- Sarter, N.B.; Mumaw, R.J.; Wickens, C.D. Pilots’ Monitoring Strategies and Performance on Automated Flight Decks: An Empirical Study Combining Behavioral and Eye-Tracking Data. Hum. Factors 2007, 49, 347–357. [Google Scholar] [CrossRef]
- Balfe, N.; Sharples, S.; Wilson, J.R. Impact of automation: Measurement of performance, workload and behaviour in a complex control environment. Appl. Ergon. 2015, 47, 52–64. [Google Scholar] [CrossRef]
- Harris, W.C.; Hancock; Arthur, P.A.; Erik, J.; Caird, J.K. Performance, Workload, and Fatigue Changes Associated with Automation. Int. J. Aviat. Psychol. 1995, 5, 169–185. [Google Scholar] [CrossRef] [PubMed]
- Moray, N. Models and Measures of Mental Workload. In Mental Workload: Its Theory and Measurement; Moray, N., Ed.; Springer: Boston, MA, USA, 1979; pp. 13–21. [Google Scholar] [CrossRef]
- Hancock, P.; Warm, J. A Dynamic Model of Stress and Sustained Attention. J. Hum. Perform. Extreme Environ. 2003, 7, 4–28. [Google Scholar] [CrossRef] [PubMed]
- Young, M.S.; Brookhuis, K.A.; Wickens, C.D.; Hancock, P.A. State of science: Mental workload in ergonomics. Ergonomics 2015, 58, 1–17. [Google Scholar] [CrossRef]
- Wickens, C.D. Multiple Resources and Mental Workload. Hum. Factors 2008, 50, 449–455. [Google Scholar] [CrossRef]
- Hart, S.G. Nasa-Task Load Index (NASA-TLX); 20 Years Later. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2006, 50, 904–908. [Google Scholar] [CrossRef]
- Metzger, U.; Parasuraman, R. Automation in Future Air Traffic Management: Effects of Decision Aid Reliability on Controller Performance and Mental Workload. Hum. Factors 2005, 47, 35–49. [Google Scholar] [CrossRef]
- Hancock, P.A.; Jagacinski, R.J.; Parasuraman, R.; Wickens, C.D.; Wilson, G.F.; Kaber, D.B. Human-Automation Interaction Research: Past, Present, and Future. Ergon. Des. 2013, 21, 9–14. [Google Scholar] [CrossRef]
- Schulte, A. Cognitive Automation for Tactical Mission Management: Concept and Prototype Evaluation in Flight Simulator Trials. Cogn. Technol. Work. 2002, 4, 146–159. [Google Scholar] [CrossRef]
- Edwards, T.; Homola, J.; Mercer, J.; Claudatos, L. Multifactor interactions and the air traffic controller: The interaction of situation awareness and workload in association with automation. IFAC-PapersOnLine 2016, 49, 597–602. [Google Scholar] [CrossRef]
- Endsley, M.R.; Kiris, E.O. The Out-of-the-Loop Performance Problem and Level of Control in Automation. Hum. Factors 1995, 37, 381–394. [Google Scholar] [CrossRef]
- Verdière, K.J.; Roy, R.N.; Dehais, F. Detecting Pilot’s Engagement Using fNIRS Connectivity Features in an Automated vs. Manual Landing Scenario. Front. Hum. Neurosci. 2018, 12, 6. [Google Scholar]
- Jones, D.G.; Endsley, M.R. Sources of situation awareness errors in aviation. Aviat. Space Environ. Med. 1996, 67, 507–512. [Google Scholar]
- Naranji, E.; Sarkani, S.; Mazzuchi, T. Reducing Human/Pilot Errors in Aviation Using Augmented Cognition and Automation Systems in Aircraft Cockpit. AIS Trans. Hum.-Comput. Interact. 2015, 7, 71–96. [Google Scholar] [CrossRef]
- Johnson, E.N.; Pritchett, A.R. Experimental Study of Vertical Flight Path Mode Awareness. IFAC Proc. Vol. 1995, 28, 153–158. [Google Scholar] [CrossRef]
- Li, W.C.; Horn, A.; Sun, Z.; Zhang, J.; Braithwaite, G. Augmented visualization cues on primary flight display facilitating pilot’s monitoring performance. Int. J. Hum.-Comput. Stud. 2020, 135, 102377. [Google Scholar] [CrossRef]
- Pope, A.T.; Bogart, E.H.; Bartolome, D.S. Biocybernetic system evaluates indices of operator engagement in automated task. Biol. Psychol. 1995, 40, 187–195. [Google Scholar] [CrossRef]
- Khan, M.J.; Hong, K.S. Passive BCI based on drowsiness detection: An fNIRS study. Biomed. Opt. Express 2015, 6, 4063–4078. [Google Scholar] [CrossRef]
- Roy, R.N.; Frey, J. Neurophysiological Markers for Passive Brain–Computer Interfaces. In Brain–Computer Interfaces; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016; pp. 85–100. [Google Scholar] [CrossRef]
- Zander, T.O.; Kothe, C. Towards passive brain–computer interfaces: Applying brain–computer interface technology to human–machine systems in general. J. Neural Eng. 2011, 8, 025005. [Google Scholar] [CrossRef]
- Wright, N.; McGown, A. Vigilance on the civil flight deck: Incidence of sleepiness and sleep during long-haul flights and associated changes in physiological parameters. Ergonomics 2001, 44, 82–106. [Google Scholar] [CrossRef]
- Bennett, S.A. Pilot workload and fatigue on short-haul routes: An evaluation supported by instantaneous self-assessment and ethnography. J. Risk Res. 2018, 21, 645–677. [Google Scholar] [CrossRef]
- Shanker, T.; Richtel, M. In new military, data overload can be deadly. The New York Times, 16 January 2011. [Google Scholar]
- Darzi, A.; Gaweesh, S.M.; Ahmed, M.M.; Novak, D. Identifying the Causes of Drivers’ Hazardous States Using Driver Characteristics, Vehicle Kinematics, and Physiological Measurements. Front. Neurosci. 2018, 12, 568. [Google Scholar] [CrossRef]
- Ebbatson, M.; Harris, D.; Huddlestone, J.; Sears, R. The relationship between manual handling performance and recent flying experience in air transport pilots. Ergonomics 2010, 53, 268–277. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An Updated Guideline for Reporting Systematic Reviews. 29 March 2021. Available online: https://www.bmj.com/content/372/bmj.n71 (accessed on 7 July 2025).
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savović, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.C.; et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [PubMed]
- McGuinness, L.A.; Higgins, J.P.T. Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Res. Synth. Methods. 2021, 12, 55–61. [Google Scholar] [CrossRef]
- Wang, Y.; Han, M.; Peng, Y.; Zhao, R.; Fan, D.; Meng, X.; Xu, H.; Niu, H.; Cheng, J. LGNet: Learning local–global EEG representations for cognitive workload classification in simulated flights. Biomed. Signal Process Control 2024, 92, 106046. [Google Scholar] [CrossRef]
- Mohanavelu, K.; Poonguzhali, S.; Janani, A.; Vinutha, S. Machine learning-based approach for identifying mental workload of pilots. Biomed. Signal Process Control 2022, 75, 103623. [Google Scholar] [CrossRef]
- Han, S.Y.; Kwak, N.S.; Oh, T.; Lee, S.W. Classification of pilots’ mental states using a multimodal deep learning network. Biocybern. Biomed. Eng. 2020, 40, 324–336. [Google Scholar] [CrossRef]
- Binias, B.; Myszor, D.; Binias, S.; Cyran, K.A. Analysis of Relation between Brainwave Activity and Reaction Time of Short-Haul Pilots Based on EEG Data. Sensors. 2023, 23, 6470. [Google Scholar] [CrossRef]
- Li, H.; Zhu, P.; Shao, Q. Rapid Mental Workload Detection of Air Traffic Controllers with Three EEG Sensors. Sensors 2024, 24, 4577. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Gong, G.; Li, N.; Ding, L. Use of multimodal physiological signals to explore pilots’ cognitive behaviour during flight strike task performance. Med. Nov. Technol. Devices 2020, 5, 100030. [Google Scholar] [CrossRef]
- Anneke, H.; Nils, C. Investigating mental workload-induced changes in cortical oxygenation and frontal theta activity during simulated flights. Sci. Rep. Nat. Publ. Group 2022, 12, 6449. [Google Scholar]
- Taheri Gorji, H.; Wilson, N.; VanBree, J.; Hoffmann, B.; Petros, T.; Tavakolian, K. Using machine learning methods and EEG to discriminate aircraft pilot cognitive workload during flight. Sci. Rep. Nat. Publ. Group. 2023, 13, 2507. [Google Scholar] [CrossRef]
- Manzey, D.; Reichenbach, J.; Onnasch, L. Human Performance Consequences of Automated Decision Aids: The Impact of Degree of Automation and System Experience. J. Cogn. Eng. Decis. Mak. 2012, 6, 57–87. [Google Scholar] [CrossRef]
- Onnasch, L.; Wickens, C.D.; Li, H.; Manzey, D. Human Performance Consequences of Stages and Levels of Automation: An Integrated Meta-Analysis. Hum. Factors 2014, 56, 476–488. [Google Scholar] [CrossRef]
- Alreshidi, I.; Moulitsas, I.; Jenkins, K.W. Multimodal Approach for Pilot Mental State Detection Based on EEG. Sensors 2023, 23, 7350. [Google Scholar] [CrossRef] [PubMed]
- Lefrançois, O.; Matton, N.; Causse, M. Improving Airline Pilots’ Visual Scanning and Manual Flight Performance through Training on Skilled Eye Gaze Strategies. Safety 2021, 7, 70. [Google Scholar] [CrossRef]
- Brams, S.; Hooge, I.T.J.; Ziv, G.; Dauwe, S.; Evens, K.; De Wolf, T.; Levin, O.; Wagemans, J.; Helsen, W.F. Does effective gaze behavior lead to enhanced performance in a complex error-detection cockpit task? PLoS ONE 2018, 13, e0207439. [Google Scholar] [CrossRef]
- Schmid, D.; Stanton, N.A. Exploring Bayesian analyses of a small-sample-size factorial design in human systems integration: The effects of pilot incapacitation. Hum.-Intell. Syst. Integr. 2019, 1, 71–88. [Google Scholar] [CrossRef]
- Xing, G.; Sun, Y.; He, F.; Wei, P.; Wu, S.; Ren, H.; Chen, Z. Analysis of Human Factors in Typical Accident Tests of Certain Type Flight Simulator. Sustainability. 2023, 15, 2791. [Google Scholar] [CrossRef]
- Gateau, T.; Ayaz, H.; Dehais, F. In silico vs. Over the Clouds: On-the-Fly Mental State Estimation of Aircraft Pilots, Using a Functional Near Infrared Spectroscopy Based Passive-BCI. Front. Hum. Neurosci. 2018, 12, 187. [Google Scholar]
- Zanoni, A.; Garbo, P.; Masarati, P.; Quaranta, G. Frustrated Total Internal Reflection Measurement System for Pilot Inceptor Grip Pressure. Sensors 2023, 23, 6308. [Google Scholar] [CrossRef]
- Jankovics, I.; Kale, U. Developing the pilots’ load measuring system. Aircr. Eng. Aerosp. Technol. 2019, 91, 281–288. [Google Scholar] [CrossRef]
- Causse, M.; Baracat, B.; Pastor, J.; Dehais, F. Reward and Uncertainty Favor Risky Decision-Making in Pilots: Evidence from Cardiovascular and Oculometric Measurements. Appl. Psychophysiol. Biofeedback 2011, 36, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Guo, J.; Zeng, S.; Che, H.; Pan, X. Modeling eye movement in dynamic interactive tasks for maximizing situation awareness based on Markov decision process. Sci. Rep. Nat. Publ. Group 2022, 12, 6449. [Google Scholar] [CrossRef]
- Fellah, K.; Guiatni, M.; Ournid, A.K.; Boulahlib, M.A. Fuzzy-PID side-stick force control for flight simulation. Aeronaut. J. 2016, 120, 845–872. [Google Scholar] [CrossRef]
- Lassalle, J.; Rauffet, P.; Leroy, B.; Guérin, C.; Chauvin, C.; Coppin, G.; Saïd, F. Communication and Workload Analyses to Study the Collective Work of Fighter Pilots: The COWORK2 method. Cogn. Technol. Work 2017, 19, 477–491. [Google Scholar] [CrossRef]
- Mohanavelu, K.; Poonguzhali, S.; Ravi, D.; Singh, P.K.; Mahajabin, M.; Ramachandran, K.; Singh, U.K.; Jayaraman, S. Cognitive Workload Analysis of Fighter Aircraft Pilots in Flight Simulator Environment. Def. Sci. J. 2020, 70, 131–139. [Google Scholar] [CrossRef]
- Sun, H.; Zhou, X.; Zhang, P.; Liu, X.; Lu, Y.; Huang, H.; Song, W. Competency-based assessment of pilots’ manual flight performance during instrument flight training. Cogn. Technol. Work. 2023, 25, 345–356. [Google Scholar] [CrossRef]
- Silva, J.R.; Ribeiro, M.W.; Deolindo, C.S.; Aratanha, M.A.; de Andrade, D.; Forster, C.H.; Figueira, J.M.; Corrêa, F.L.; Lacerda, S.S.; Machado, B.S.; et al. Quantitative assessment of pilot-endured workloads during helicopter flying emergencies: An analysis of physiological parameters during an autorotation. Sci. Rep. Nat. Publ. Group. 2021, 11, 17734. [Google Scholar]
- Takahashi, M.D.; Fujizawa, B.T.; Lusardi, J.A.; Goerzen, C.L.; Cleary, M.J.; Carr, J.P.; Waldman, D.W. Comparison of Autonomous Flight Control Performance Between Partial- and Full-Authority Helicopters. J. Guid. Control Dyn. 2022, 45, 885–901. [Google Scholar] [CrossRef]
- Wei, Z.; Zhuang, D.; Wanyan, X.; Liu, C.; Zhuang, H. A model for discrimination and prediction of mental workload of aircraft cockpit display interface. Chin. J. Aeronaut. 2014, 27, 1070–1077. [Google Scholar] [CrossRef]
- Ahmadi, N.; Romoser, M.; Salmon, C. Improving the tactical scanning of student pilots: A gaze-based training intervention for transition from visual flight into instrument meteorological conditions. Appl. Ergon. 2022, 100, 103642. [Google Scholar] [CrossRef] [PubMed]
- Causse, M.; Mouratille, D.; Rouillard, Y.; El Yagoubi, R.; Matton, N.; Hidalgo-Muñoz, A. How a pilot’s brain copes with stress and mental load? Insights from the executive control network. Behav. Brain Res. 2024, 456, 114698. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.J.; Lin, P.H.; Chen, H.J.; Hsieh, M.C.; Yu, H.C.; Wang, E.M.; Ho, H.L. Effects of controller-pilot communication medium, flight phase and the role in the cockpit on pilots’ workload and situation awareness. Saf. Sci. 2012, 50, 1722–1731. [Google Scholar] [CrossRef]
- Lutnyk, L.; Rudi, D.; Schinazi, V.R.; Kiefer, P.; Raubal, M. The effect of flight phase on electrodermal activity and gaze behavior: A simulator study. Appl. Ergon. 2023, 109, 103989. [Google Scholar] [CrossRef]
- Yiu, C.Y.; Ng, K.K.H.; Li, X.; Zhang, X.; Li, Q.; Lam, H.S.; Chong, M.H. Towards safe and collaborative aerodrome operations: Assessing shared situational awareness for adverse weather detection with EEG-enabled Bayesian neural networks. Adv. Eng. Inform. 2022, 53, 101698. [Google Scholar] [CrossRef]
- Li, Q.; Ng, K.K.H.; Yiu, C.Y.; Yuan, X.; So, C.K.; Ho, C.C. Securing air transportation safety through identifying pilot’s risky VFR flying behaviours: An EEG-based neurophysiological modelling using machine learning algorithms. Reliab. Eng. Syst. Saf. 2023, 238, 109449. [Google Scholar] [CrossRef]
- Chen, J.; Xue, L.; Rong, J.; Gao, X. Real-time evaluation method of flight mission load based on sensitivity analysis of physiological factors. Chin. J. Aeronaut. 2022, 35, 450–463. [Google Scholar] [CrossRef]
- Haslbeck, A.; Zhang, B. I spy with my little eye: Analysis of airline pilots’ gaze patterns in a manual instrument flight scenario. Appl. Ergon. 2017, 63, 62–71. [Google Scholar] [CrossRef]
- Jin, H.; Hu, Z.; Li, K.; Chu, M.; Zou, G.; Yu, G.; Zhang, J. Study on How Expert and Novice Pilots Can Distribute Their Visual Attention to Improve Flight Performance. IEEE Access 2021, 9, 44757–44769. [Google Scholar] [CrossRef]
- Hernández-Sabaté, A.; Yauri, J.; Folch, P.; Álvarez, D.; Gil, D. EEG Dataset Collection for Mental Workload Predictions in Flight-Deck Environment. Sensors 2024, 24, 1174. [Google Scholar] [CrossRef] [PubMed]
- Thomas, L.C. Evaluation of Levels of Automation for Non-Normal Event Resolution. SAE Int. J. Aerosp. 2011, 4, 1191–1196. [Google Scholar] [CrossRef]
- Lounis, C.; Peysakhovich, V.; Causse, M. Visual scanning strategies in the cockpit are modulated by pilots’ expertise: A flight simulator study. PLoS ONE 2021, 16, e0247061. [Google Scholar] [CrossRef]
- Suppiah, S.; Liu, D.; Sang, A.L.; Dattel, A.; Vincenzi, D. Impact of Electronic Flight Bag (efb) on Single Pilot Performance and Workload. Int. J. Aviat. Aeronaut. Aerosp. 2020, 7, 4. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, Y.; Qiu, Z.; Bao, J.; Zhang, Y. Adaptive Neuro-Fuzzy Fusion of Multi-Sensor Data for Monitoring a Pilot’s Workload Condition. Sensors 2019, 19, 3629. [Google Scholar] [CrossRef] [PubMed]
- Ververs, P.M.; He, G.; Suddreth, J.; Odgers, R.; Engels, J.; Wyatt, I.; Hughes, K.; Hamblin, C.; Feyereisen, T. Design and Flight Test of a Primary Flight Display Combined Vision System. SAE Int. J. Aerosp. 2011, 4, 738–750. [Google Scholar] [CrossRef]
- Gontar, P.; Schneider, S.A.E.; Schmidt-Moll, C.; Bollin, C.; Bengler, K. Hate to interrupt you, but… analyzing turn-arounds from a cockpit perspective. Cogn. Technol. Work. 2017, 19, 837–853. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, T.; Deng, L.; Wang, B.; Nakamura, M. EEG Physiological Signals Correlation under Condition of +Gz Accelerations. J. Multimed. 2013, 8, 64–71. [Google Scholar] [CrossRef]
- Sun, J.; Cheng, S.; Ma, J.; Xiong, K.; Su, M.; Hu, W. Assessment of the static upright balance index and brain blood oxygen levels as parameters to evaluate pilot workload. PLoS ONE 2019, 14, e0214277. [Google Scholar] [CrossRef]
- Li, W.C.; Zhang, J.; Court, S.; Kearney, P.; Braithwaite, G. The influence of augmented reality interaction design on Pilot’s perceived workload and situation awareness. Int. J. Ind. Ergon. 2022, 92, 103382. [Google Scholar] [CrossRef]
- Huettig, G.; Hotes, A.; Tautz, A. Design and Evaluation of an ATC-Display in Modern Glass Cockpit. IFAC Proc. Vol. 1995, 28, 541–545. [Google Scholar] [CrossRef]
- Socha, V.; Hanáková, L.; Weiss, J.; Matyáš, R.; Karapetjan, L.; Pilmannová, T.; Kušmírek, S. The Influence of Fatigue on an Instrument Approach. Transp. Res. Procedia 2022, 65, 275–282. [Google Scholar] [CrossRef]
- Samel, A.; Wegmann, H.M.; Vejvoda, M. Aircrew fatigue in long-Haul operations. Accid. Anal. Prev. 1997, 29, 439–452. [Google Scholar] [CrossRef]
- Škvareková, I.; Pecho, P.; Ažaltovič, V.; Kandera, B. Number of Saccades and Fixation Duration as Indicators of Pilot Workload. Transp. Res. Procedia 2020, 51, 67–74. [Google Scholar] [CrossRef]
- Mohanavelu, K.; Poonguzhali, S.; Adalarasu, K.; Ravi, D.; Chinnadurai, V.; Vinutha, S.; Ramachandran, K.; Jayaraman, S. Dynamic cognitive workload assessment for fighter pilots in simulated fighter aircraft environment using EEG. Biomed. Signal. Process Control. 2020, 61, 102018. [Google Scholar]
- Shao, F.; Lu, T.; Wang, X.; Liu, Z.; Zhang, Y.; Liu, X.; Wu, S. The influence of pilot’s attention allocation on instrument reading during take-off: The mediating effect of attention span. Appl. Ergon. 2021, 90, 103245. [Google Scholar] [CrossRef] [PubMed]
- Dorneich, M.C.; Dudley, R.; Letsu-Dake, E.; Rogers, W.; Whitlow, S.D.; Dillard, M.C.; Nelson, E. Interaction of Automation Visibility and Information Quality in Flight Deck Information Automation. IEEE Trans. Hum.-Mach. Syst. 2017, 47, 915–926. [Google Scholar] [CrossRef]
- Lee, D.H.; Jeong, J.H.; Yu, B.W.; Kam, T.E.; Lee, S.W. Autonomous System for EEG-Based Multiple Abnormal Mental States Classification Using Hybrid Deep Neural Networks Under Flight Environment. IEEE Trans. Syst. Man. Cybern. Syst. 2023, 53, 6426–6437. [Google Scholar] [CrossRef]
- Alaimo, A.; Esposito, A.; Orlando, C.; Simoncini, A. Aircraft Pilots Workload Analysis: Heart Rate Variability Objective Measures and NASA-Task Load Index Subjective Evaluation. Aerospace 2020, 7, 137. [Google Scholar] [CrossRef]
- Mansikka, H.; Simola, P.; Virtanen, K.; Harris, D.; Oksama, L. Fighter pilots’ heart rate, heart rate variation and performance during instrument approaches. Ergonomics 2016, 59, 1344–1352. [Google Scholar] [CrossRef] [PubMed]
- Mansikka, H.; Virtanen, K.; Harris, D. Comparison of NASA-TLX scale, modified Cooper-Harper scale and mean inter-beat interval as measures of pilot mental workload during simulated flight tasks. Ergonomics 2019, 62, 246–254. [Google Scholar] [CrossRef]
- Astolfi, L.; Toppi, J.; Borghini, G.; Vecchiato, G.; Isabella, R.; De Vico Fallani, F.; Cincotti, F.; Salinari, S.; Mattia, D.; He, B.; et al. Study of the functional hyperconnectivity between couples of pilots during flight simulation: An EEG hyperscanning study. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Boston, MA, USA, 30 August–3 September 2011; pp. 2338–2341. Available online: https://ieeexplore.ieee.org/abstract/document/6090654?casa_token=An2x3IX22sAAAAAA:qY7ELDrykcImVLclXEwVv3lQtUDQ5onquK6Y-F3x3vPGAaoy4SAqVbi49ADfir2VLXKRhp832A (accessed on 9 October 2024).
- Di Nocera, F.; Camilli, M.; Terenzi, M. A Random Glance at the Flight Deck: Pilots’ Scanning Strategies and the Real-Time Assessment of Mental Workload. J. Cogn. Eng. Decis. Mak. 2007, 1, 271–285. [Google Scholar] [CrossRef]
- Bellenkes, A.H.; Wickens, C.D.; Kramer, A.F. Visual scanning and pilot expertise: The role of attentional flexibility and mental model development. Aviat. Space Environ. Med. 1997, 68, 569–579. [Google Scholar] [PubMed]
- Itoh, Y.; Hayashi, Y.; Tsukui, I.; Saito, S. The ergonomic evaluation of eye movement and mental workload in aircraft pilots. Ergonomics 1990, 33, 719–732. [Google Scholar] [CrossRef]
- Gibb, R.; Schvaneveldt, R.; Gray, R. Visual Misperception in Aviation: Glide Path Performance in a Black Hole Environment. Hum. Factors 2008, 50, 699–711. [Google Scholar] [CrossRef] [PubMed]
- Naeeri, S.; Kang, Z.; Mandal, S.; Kim, K. Multimodal Analysis of Eye Movements and Fatigue in a Simulated Glass Cockpit Environment. Aerospace 2021, 8, 283. [Google Scholar] [CrossRef]
- Bromfield, M.A.; Milward, T.; Everett, S.B.; Stedmon, A. Pilot performance and workload whilst using an angle of attack system. Appl. Ergon. 2023, 113, 104101. [Google Scholar] [CrossRef]
- Ruff, H.A.; Narayanan, S.; Draper, M.H. Human Interaction with Levels of Automation and Decision-Aid Fidelity in the Supervisory Control of Multiple Simulated Unmanned Air Vehicles. Presence 2002, 11, 335–351. [Google Scholar] [CrossRef]
- Mosier, K.L.; Fischer, U.; Morrow, D.; Feigh, K.M.; Durso, F.T.; Sullivan, K.; Pop, V. Automation, task, and context features: Impacts on pilots’ judgments of human-automation interaction. J. Cogn. Eng. Decis. Mak. 2013, 7, 377–399. [Google Scholar] [CrossRef]
- Farjadian, A.B.; Annaswamy, A.M.; Woods, D. Bumpless Reengagement Using Shared Control between Human Pilot and Adaptive Autopilot. IFAC-PapersOnLine 2017, 50, 5343–5348. [Google Scholar] [CrossRef]
- Gouraud, J.; Delorme, A.; Berberian, B. Out of the Loop, in Your Bubble: Mind Wandering Is Independent From Automation Reliability, but Influences Task Engagement. Front. Hum. Neurosci. 2018, 12, 383. [Google Scholar] [CrossRef]
- Corsi-Cabrera, M.; Ramos, J.; Guevara, M.A.; Arce, C.; Gutiérrez, S. Gender differences in the EEG during cognitive activity. Int. J. Neurosci. 1993, 72, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Dehais, F.; Lafont, A.; Roy, R.; Fairclough, S. A Neuroergonomics Approach to Mental Workload, Engagement and Human Performance. Front. Neurosci. 2020, 14, 268. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Pan, T.; Si, H.; Zhang, H.; Shang, L.; Liu, H. Time-Varying Pilot’s Intention Identification Based on ESAX-CSA-ELM Classification Method in Complex Environment. Appl. Sci. 2022, 12, 4858. [Google Scholar] [CrossRef]
- Maik, F.; Lee, S.Y.; Bates, P.; Martin, W.; Faulhaber, A.K. The influence of training level on manual flight in connection to performance, scan pattern, and task load. Cogn. Technol. Work. 2021, 23, 715–730. [Google Scholar]
- Diaz-Piedra, C.; Rieiro, H.; Cherino, A.; Fuentes, L.J.; Catena, A.; Di Stasi, L.L. The effects of flight complexity on gaze entropy: An experimental study with fighter pilots. Appl. Ergon. 2019, 77, 92–99. [Google Scholar] [CrossRef]
- Di Stasi, L.L.; Diaz-Piedra, C.; Suárez, J.; McCamy, M.B.; Martinez-Conde, S.; Roca-Dorda, J.; Catena, A. Task complexity modulates pilot electroencephalographic activity during real flights. Psychophysiology 2015, 52, 951–956. [Google Scholar] [CrossRef]
- Allsop, J.; Gray, R. Flying under pressure: Effects of anxiety on attention and gaze behavior in aviation. J. Appl. Res. Mem. Cogn. 2014, 3, 63–71. [Google Scholar] [CrossRef]
- Thomas, L.C.; Gast, C.; Grube, R.; Craig, K. Fatigue Detection in Commercial Flight Operations: Results Using Physiological Measures. Procedia Manuf. 2015, 3, 2357–2364. [Google Scholar] [CrossRef]
- van Dijk, H.; van de Merwe, K.; Zon, R. A Coherent Impression of the Pilots’ Situation Awareness: Studying Relevant Human Factors Tools. Int. J. Aviat. Psychol. 2011, 21, 343–356. [Google Scholar] [CrossRef]
- van de Merwe, K.; van Dijk, H.; Zon, R. Eye Movements as an Indicator of Situation Awareness in a Flight Simulator Experiment. Int. J. Aviat. Psychol. 2012, 22, 78–95. [Google Scholar] [CrossRef]
- Massé, E.; Bartheye, O.; Fabre, L. Classification of Electrophysiological Signatures With Explainable Artificial Intelligence: The Case of Alarm Detection in Flight Simulator. Front. Neuroinform. 2022, 16, 904301. [Google Scholar]
- Xue, H.; Zhang, Q.; Zhang, X. Research on the Applicability of Touchscreens in Manned/Unmanned Aerial Vehicle Cooperative Missions. Sensors 2022, 22, 8435. [Google Scholar] [CrossRef] [PubMed]
- Dehais, F.; Duprès, A.; Blum, S.; Drougard, N.; Scannella, S.; Roy, R.N.; Lotte, F. Monitoring Pilot’s Mental Workload Using ERPs and Spectral Power with a Six-Dry-Electrode EEG System in Real Flight Conditions. Sensors 2019, 19, 1324. [Google Scholar] [CrossRef]
- Wilson, G.F. An Analysis of Mental Workload in Pilots During Flight Using Multiple Psychophysiological Measures. Int. J. Aviat. Psychol. 2002, 12, 3–18. [Google Scholar] [CrossRef]
- Klaproth, O.W.; Vernaleken, C.; Krol, L.R.; Halbruegge, M.; Zander, T.O.; Russwinkel, N. Tracing Pilots’ Situation Assessment by Neuroadaptive Cognitive Modeling. Front. Neurosci. 2020, 14, 795. [Google Scholar]
- Haarmann, A.; Boucsein, W.; Schaefer, F. Combining electrodermal responses and cardiovascular measures for probing adaptive automation during simulated flight. Appl. Ergon. 2009, 40, 1026–1040. [Google Scholar] [CrossRef]
Performance Measurement Technique | Frequency |
---|---|
Alarm detection/SDT | 21 |
Classification algorithm | 16 |
NASA-TLX (perceived workload) | 27 |
SAGAT/SART (perceived situational awareness) | 5 |
Subjective questionnaires | 24 |
Contextual/flight metrics | 35 |
Joystick/control metrics | 3 |
Behavioral data | 8 |
Oculometrics/gaze behavior/eye movement | 33 |
Heart rate/electrocardiogram (ECG) | 23 |
Electroencephalogram (EEG) | 23 |
Respiration activity | 6 |
Electrodermal activity (EDA) | 7 |
Frontal near infrared spectroscopy (fNIRS) | 5 |
Manuscript Focus and Constructs of Interest | Frequency |
---|---|
Physiological measurement | 64 |
Multimodal physiology | 19 |
Automation/decision aid | 17 |
Single-pilot operations/reduced-crewing operations | 3 |
Workload/mental load | 40 |
Expertise | 9 |
Fatigue | 9 |
Attention | 17 |
Decision-making | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyle, A.R.; Rouser, B.; Paul, R.C.; Jurewicz, K.A. Quantifying Pilot Performance and Mental Workload in Modern Aviation Systems: A Scoping Literature Review. Aerospace 2025, 12, 626. https://doi.org/10.3390/aerospace12070626
Kyle AR, Rouser B, Paul RC, Jurewicz KA. Quantifying Pilot Performance and Mental Workload in Modern Aviation Systems: A Scoping Literature Review. Aerospace. 2025; 12(7):626. https://doi.org/10.3390/aerospace12070626
Chicago/Turabian StyleKyle, Ainsley R., Brock Rouser, Ryan C. Paul, and Katherina A. Jurewicz. 2025. "Quantifying Pilot Performance and Mental Workload in Modern Aviation Systems: A Scoping Literature Review" Aerospace 12, no. 7: 626. https://doi.org/10.3390/aerospace12070626
APA StyleKyle, A. R., Rouser, B., Paul, R. C., & Jurewicz, K. A. (2025). Quantifying Pilot Performance and Mental Workload in Modern Aviation Systems: A Scoping Literature Review. Aerospace, 12(7), 626. https://doi.org/10.3390/aerospace12070626