Evaluation of Third-Order Weighted Essentially Non-Oscillatory Scheme Within Implicit Large Eddy Simulation Framework Using OpenFOAM
Abstract
:1. Introduction
2. Numerical Approach
2.1. The Governing Equations and Finite Volume Method
2.2. Spacial Discretization
2.3. Discretization for Convective Terms
2.3.1. LUST Discretization Scheme
2.3.2. WENO Reconstruction Scheme
2.4. Discretization of Viscous Terms and Gradient Terms
2.5. Sub-Grid-Scale Modeling
2.6. WALE SGS Model
2.7. Truncation Terms of WENO Scheme
2.8. Time Integration
3. Numercial Setup
3.1. Computational Domain and Grid Resolution
3.2. Boundary Conditions and Flow Initialization
4. Analysis and Discussion
4.1. Computational Cost
4.2. Mean Pressure Distribution and Skin Friction Along Surface
4.3. Mean Velocity, Turbulent Stress Profiles, and Flow Field
4.4. Boundary Layer Development
4.4.1. Instantaneous Flow Structure
4.4.2. Velocity Spectra and Time-Series
4.4.3. The Separation Bubble near the Trailing Edge
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CFD | Computational Fluid Dynamics |
LES | Large Eddy Simulation |
RANS | Reynolds Average Navier–Stokes |
PISO | Pressure-Implicit Splitting Operator |
WENO | Weighted Essentially Non-Oscillatory |
Kinematic viscosity (m2/s) | |
Weight (-) | |
Sub-Grid-Scale tensor | |
SGS viscosity | |
Filter width | |
Reynolds number (-) | |
p | Kinematic pressure (m2/s2) |
Velocity vector (m/s) | |
t | Time (s) |
Time unit (s) | |
V | Volume of a cell (m3) |
SGS kinetic energy | |
S | Area of a face (m2) |
Span-wise extend lenth | |
Surface flux (-) | |
Normal unit vector of a surface | |
Cartesian coordinates (m) | |
Dimensionless distance | |
U | Free-stream velocity (m/s) |
C | Cord length of aerofoil (m3) |
Velocity components | |
Q | Q criterion |
Flux | |
Mach number | |
Normal stress components | |
Shear stress component | |
Pressure coefficient (-) | |
Lift coefficient (-) | |
Drag coefficient (-) |
References
- Sakellariou, K.; Rana, Z.A.; Jenkins, K.W. Optimisation of the surfboard fin shape using computational fluid dynamics and genetic algorithms. Proc. Inst. Mech. Eng. Part P J. Sport. Eng. Technol. 2017, 231, 344–354. [Google Scholar] [CrossRef]
- Expósito, D.; Rana, Z.A. Computational investigations into heat transfer over a double wedge in hypersonic flows. Aerosp. Sci. Technol. 2019, 92, 839–846. [Google Scholar] [CrossRef]
- Bagul, P.; Rana, Z.A.; Jekins, K.W.; Konozsy, L. Computational engineering analysis of external geometrical modifications on MQ-1 unmanned combat aerial vehicle. Chin. J. Aeronaut. 2020, 33, 1154–1165. [Google Scholar] [CrossRef]
- Rodi, W. Comparison of LES and RANS calculations of the flow around bluff bodies. J. Wind. Eng. Ind. Aerodyn. 1997, 69–71, 55–75. [Google Scholar] [CrossRef]
- Rumsey, C.L.; Nishino, T. Numerical study comparing RANS and LES approaches on a circulation control airfoil. Int. J. Heat Fluid Flow 2011, 32, 847–864. [Google Scholar] [CrossRef]
- Zhang, Y.; van Zuijlen, A.; van Bussel, G. Massively separated turbulent flow simulation around non-rotating MEXICO blade by means of RANS and DDES approaches in OpenFOAM. In Proceedings of the 33rd AIAA Applied Aerodynamics Conference, Dallas, TX, USA, 22–26 June 2015; pp. 1–10. [Google Scholar] [CrossRef]
- Zhang, Y.; Deng, S.; Wang, X. RANS and DDES simulations of a horizontal-axis wind turbine under stalled flow condition using OpenFOAM. Energy 2018, 167, 1155–1163. [Google Scholar] [CrossRef]
- Spalart, P.R.; Strelets, M.K. Mechanisms of transition and heat transfer in a separation bubble. J. Fluid Mech. 2000, 403, 329–349. [Google Scholar] [CrossRef]
- Chapman, D. Computational Aerodynamics Development and Outlook. AIAA J. 1979, 17, 1293–1313. [Google Scholar] [CrossRef]
- Choi, H.; Moin, P. Grid-point requirements for large eddy simulation: Chapman’s estimates revisited. Phys. Fluids 2012, 24, 011702. [Google Scholar] [CrossRef]
- Drikakis, D.; Fureby, C.; Grinstein, F.F.; Youngs, D. Simulation of transition and turbulence decay in the Taylor-Green vortex. J. Turbul. 2007, 8, 1–12. [Google Scholar] [CrossRef]
- Grinstein, F.F.; Margolin, L.G.; Rider, W.J. Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar] [CrossRef]
- Davidson, L.; Cokljat, D.; Frohlich, J.; Leschziner, M.A.; Mellen, C.; Rodi, W. LESFOIL: Large Eddy Simulation of Flow Around a High Lift Airfoil; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar] [CrossRef]
- Smith, T.A.; Ventikos, Y. Boundary layer transition over a foil using direct numerical simulation and large eddy simulation. Phys. Fluids 2019, 31, 124102. [Google Scholar] [CrossRef]
- Boris, J.P. On large eddy simulation using subgrid turbulence models Comment. In Whither Turbulence? Or Turbulence at the Crossroads; Springer: Berlin/Heidelberg, Germany, 1990; pp. 344–353. [Google Scholar] [CrossRef]
- Beaudan, P.; Moin, P. Numerical Experiments on the Flow Past a Circular Cylinder at Sub-Critical Reynolds Number; Stanford University: Palo Alto, CA, USA, 1994; pp. 1–262. [Google Scholar]
- Breuer, M. Large eddy simulation of the subcritical flow past a circular cylinder: Numerical and modeling aspects. Int. J. Numer. Methods Fluids 1998, 28, 1281–1302. [Google Scholar] [CrossRef]
- Kravchenko, A.; Moin, P. Numerical simulation of flow over a circular cylinder at low Reynolds number. Phys. Fluids 2000, 12, 942–946. [Google Scholar] [CrossRef]
- Ouvrard, H.; Koobus, B.; Dervieux, A.; Salvetti, M.V. Classical and variational multiscale LES of the flow around a circular cylinder on unstructured grids. Comput. Fluids 2010, 39, 1083–1094. [Google Scholar] [CrossRef]
- Drikakis, D.; Rider, W. High-Resolution Methods for Incompressible and Low-Speed Flows; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar] [CrossRef]
- Liu, X.D.; Osher, S.; Chan, T. Weighted Essentially Non-Oscillatory Schemes. J. Comput. Phys. 1994, 115, 200–212. [Google Scholar] [CrossRef]
- Hahn, M. Implicit Large-Eddy Simulation of Low-Speed Separated Flows Using High-Resolution Methods. Ph.D. Thesis, Cranfield University, Cranfield, UK, 2008. [Google Scholar]
- Dumbser, M.; Käser, M. Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems. J. Comput. Phys. 2007, 221, 693–723. [Google Scholar] [CrossRef]
- Tsoutsanis, P.; Titarev, V.A.; Drikakis, D. WENO schemes on arbitrary mixed-element unstructured meshes in three space dimensions. J. Comput. Phys. 2011, 230, 1585–1601. [Google Scholar] [CrossRef]
- Tsoutsanis, P.; Antoniadis, A.F.; Drikakis, D. WENO schemes on arbitrary unstructured meshes for laminar, transitional and turbulent flows. J. Comput. Phys. 2014, 256, 254–276. [Google Scholar] [CrossRef]
- Zeng, K.; Li, Z.; Rana, Z.A.; Jenkins, K.W. Implicit Large Eddy Simulations of Turbulent Flow around a Square Cylinder at Reynolds Number of 22,000. Comput. Fluids 2021, 226, 105000. [Google Scholar] [CrossRef]
- Martin, T.; Shevchuk, I. Implementation and Validation of Semi-Implicit WENO Schemes Using OpenFOAM®. Computation 2018, 6, 6. [Google Scholar] [CrossRef]
- Rad, S.H.; Ghafoorian, F.; Taraghi, M.; Moghimi, M.; Asl, F.G.; Mehrpooya, M. A systematic study on the aerodynamic performance enhancement in H-type Darrieus vertical axis wind turbines using vortex cavity layouts and deflectors. Phys. Fluids 2024, 36, 125170. [Google Scholar] [CrossRef]
- Mirmotahari, S.R.; Ghafoorian, F.; Mehrpooya, M.; Rad, S.H.; Taraghi, M.; Moghimi, M. A comprehensive investigation on Darrieus vertical axis wind turbine performance and self-starting capability improvement by implementing a novel semi-directional airfoil guide vane and rotor solidity. Phys. Fluids 2024, 36, 065151. [Google Scholar] [CrossRef]
- Lissaman, P.B.S. Low-reynolds-number airfoils. Annu. Rev. Fluid Mech. 1983, 223–239. [Google Scholar] [CrossRef]
- Jones, L.E.; Sandberg, R.D.; Sandham, N.D. Direct numerical simulations of forced and unforced separation bubbles on an airfoil at incidence. J. Fluid Mech. 2008, 602, 175–207. [Google Scholar] [CrossRef]
- Bertolotti, F.P.; Herbert, T.; Spalart, P.R. Linear and nonlinear stability of the blasius boundary layer. J. Fluid Mech. 1992, 242, 441–474. [Google Scholar] [CrossRef]
- Herbert, T. Parabolized stability equations. Annu. Rev. Fluid Mech. 1997, 29, 245–283. [Google Scholar] [CrossRef]
- Rodríguez, I.; Lehmkuhl, O.; Borrell, R.; Oliva, A. Direct numerical simulation of a NACA0012 in full stall. Int. J. Heat Fluid Flow 2013, 43, 194–203. [Google Scholar] [CrossRef]
- Shan, H.; Jiang, L.; Liu, C. Direct numerical simulation of flow separation around a NACA0012 airfoil. Comput. Fluids 2005, 34, 1096–1114. [Google Scholar] [CrossRef]
- Mellen, C.P.; Fröhlich, J.; Rodi, W. Lessons from the European LESFOIL project on LES of flow around an airfoil. In Proceedings of the 40th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 14–17 January 2002. [Google Scholar] [CrossRef]
- Nicoud, F.; Ducros, F. Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor. Flow Turbul. Combust. 1999, 62, 183–200. [Google Scholar] [CrossRef]
- Moukalled, F.; Mangani, L.; Darwish, M. The Finite Volume Method in Computational Fluid Dynamics; Springer: Berlin/Heidelberg, Germany, 2016; Volume 113, pp. 535–557. [Google Scholar] [CrossRef]
- Jasak, H. Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flows. Ph.D. Thesis, Imperial College London, London, UK, 1996. [Google Scholar]
- Cao, Y.; Tamura, T. Large-eddy simulations of flow past a square cylinder using structured and unstructured grids. Comput. Fluids 2016, 137, 36–54. [Google Scholar] [CrossRef]
- Warming, R.F.; Beam, R.M. Upwind second-order difference schemes and applications in aerodynamic flows. AIAA J. 1976, 14, 1241–1249. [Google Scholar] [CrossRef]
- Khosla, P.K.; Rubin, S.G. A diagonally dominant second-order accurate implicit scheme. Comput. Fluids 1974, 2, 207–209. [Google Scholar] [CrossRef]
- Pringuey, T.; Cant, R.S. High order schemes on three-dimensional general polyhedral meshes—Application to the level set method. Commun. Comput. Phys. 2012, 12, 1–41. [Google Scholar] [CrossRef]
- Ollivier-Gooch, C.; Van Altena, M. A high-order-accurate unstructured mesh finite-volume scheme for the advection-diffusion equation. J. Comput. Phys. 2002, 181, 729–752. [Google Scholar] [CrossRef]
- Gärtner, J.W.; Kronenburg, A.; Martin, T. Efficient WENO library for OpenFOAM. SoftwareX 2020, 12, 100611. [Google Scholar] [CrossRef]
- Parnaudeau, P.; Carlier, J.; Heitz, D.; Lamballais, E. Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900. Phys. Fluids 2008, 20, 085101. [Google Scholar] [CrossRef]
- Lysenko, D.A.; Ertesvåg, I.S.; Rian, K.E. Large-Eddy Simulation of the Flow Over a Circular Cylinder at Reynolds Number 3900 Using the OpenFOAM Toolbox. Flow Turbul. Combust. 2012, 89, 491–518. [Google Scholar] [CrossRef]
- Tian, G.; Xiao, Z. New insight on large-eddy simulation of flow past a circular cylinder at subcritical Reynolds number 3900. AIP Adv. 2020, 10, 085321. [Google Scholar] [CrossRef]
- Dahlstrom, S.; Davidson, L. Large eddy simulation of the flow around an airfoil. In Proceedings of the 39th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 8–11 January 2001; Volume 425, p. 425. [Google Scholar] [CrossRef]
- Zhang, W.; Samtaney, R. Assessment of spanwise domain size effect on the transitional flow past an airfoil. Comput. Fluids 2016, 124, 39–53. [Google Scholar] [CrossRef]
- Asada, K.; Kawai, S. Revisiting LESFOIL: Wall-resolved LES of Flow Around an Airfoil at Reynolds number of 2,100,000. In Proceedings of the 2018 AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA, 8–12 January 2018; pp. 1–18. [Google Scholar] [CrossRef]
- Castiglioni, G.; Domaradzki, J.A. A numerical dissipation rate and viscosity in flow simulations with realistic geometry using low-order compressible Navier-Stokes solvers. Comput. Fluids 2015, 119, 37–46. [Google Scholar] [CrossRef]
- Fröhlich, J.; Mellen, C.P.; Rodi, W.; Temmerman, L.; Leschziner, M.A. Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions. J. Fluid Mech. 2005, 526, 19–66. [Google Scholar] [CrossRef]
- Asada, K.; Kawai, S. Large-eddy simulation of airfoil flow near stall condition at Reynolds number 2,100,000. Phys. Fluids 2018, 30, 085103. [Google Scholar] [CrossRef]
- Piomelli, U.; Balaras, E. Wall-Layer Models for Largy-Eddy Simulations. Annu. Rev. Fluid Mech. 2002, 34, 349–374. [Google Scholar] [CrossRef]
- Piomelli, U. Wall-layer models for large-eddy simulations. Prog. Aerosp. Sci. 2008, 44, 437–446. [Google Scholar] [CrossRef]
- Alam, M.; Sandham, N.D. Direct numerical simulation of ‘short’ laminar separation bubbles with turbulent reattachment. J. Fluid Mech. 2000, 403, 223–250. [Google Scholar] [CrossRef]
- Lehmkuhl, O.; Rodríguez, I.; Baez, A.; Oliva, A.; Pérez-Segarra, C.D. On the large-eddy simulations for the flow around aerodynamic profiles using unstructured grids. Comput. Fluids 2013, 84, 176–189. [Google Scholar] [CrossRef]
- Kojima, R.; Nonomura, T.; Oyama, A.; Fujii, K. Large-Eddy Simulation of Low-Reynolds-Number Flow Over Thick and Thin NACA Airfoils. J. Aircr. 2013, 50, 187–196. [Google Scholar] [CrossRef]
- Lee, D.; Kawai, S.; Nonomura, T.; Anyoji, M.; Aono, H.; Oyama, A.; Asai, K.; Fujii, K. Mechanisms of surface pressure distribution within a laminar separation bubble at different Reynolds numbers. Phys. Fluids 2015, 27, 023602. [Google Scholar] [CrossRef]
- Thomareisa, N.; Papadakis, G. Effect of trailing edge shape on the separated flow characteristics around an airfoil at low reynolds number: A numerical study. Phys. Fluids 2017, 29, 014101. [Google Scholar] [CrossRef]
- Yang, Z.; Voke, P.R. Large-eddy simulation of boundary-layer separation and transition at a change of surface curvature. J. Fluid Mech. 2001, 439, 305–333. [Google Scholar] [CrossRef]
- Sato, M.; Asada, K.; Nonomura, T.; Kawai, S.; Fujii, K. Large-Eddy Simulation of NACA0015 Airfoil Flow at Reynolds Number of 1,600,000. AIAA J. 2017, 55, 673–679. [Google Scholar] [CrossRef]
- Roshko, A. Flow Visualization Results and Three Dimensional Effects. In The Role of Coherent Structures in Modelling Turbulence and Mixing; Springer: Berlin/Heidelberg, Germany, 1981. [Google Scholar]
Case | Re | Mach | AoA | Total Grid Number | z | lz |
---|---|---|---|---|---|---|
Shan et al. [35] | 0.2 | 4 | 180 | 0.1 | ||
Rodriguez et al. [34] | - | 12 | - | 0.2 | ||
Zhang [50] | - | 5 | 256 | 0.8 | ||
Smith and Ventikos Grid D [14] | 0.015 | 4 | - | 0.2 | ||
Current | 0.1 | 4 | 150 | 0.2 |
Case | ||||
---|---|---|---|---|
DNS of Shan et al. [35] | 13 | 1 | 15 | c/U |
DNS of Rodriguez et al. [34] | 7 | 0.8 | 3 | - |
DNS of Zhang [50] | 5.6 | 0.9 | 10.8 | c/U |
DNS of Smith and Ventikos Grid D [14] | 8 | 0.6 | 8 | c/U |
LES of Asada and Kawai [54] | 25 | 0.8 | 13 | - |
Current | 20 | 0.8 | 10 | c/U |
Case | Duration (T*) | Total CPU Time (hours) |
---|---|---|
LES | 24 | 1214 |
iLES | 24 | 2280 |
DNS case D [14] | 30 | 50,000 |
Probe | P1 | P2 | P3 | P4 | P5 | P6 |
---|---|---|---|---|---|---|
x/C | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Rana, Z.A. Evaluation of Third-Order Weighted Essentially Non-Oscillatory Scheme Within Implicit Large Eddy Simulation Framework Using OpenFOAM. Aerospace 2025, 12, 108. https://doi.org/10.3390/aerospace12020108
Li Z, Rana ZA. Evaluation of Third-Order Weighted Essentially Non-Oscillatory Scheme Within Implicit Large Eddy Simulation Framework Using OpenFOAM. Aerospace. 2025; 12(2):108. https://doi.org/10.3390/aerospace12020108
Chicago/Turabian StyleLi, Zhuoneng, and Zeeshan A. Rana. 2025. "Evaluation of Third-Order Weighted Essentially Non-Oscillatory Scheme Within Implicit Large Eddy Simulation Framework Using OpenFOAM" Aerospace 12, no. 2: 108. https://doi.org/10.3390/aerospace12020108
APA StyleLi, Z., & Rana, Z. A. (2025). Evaluation of Third-Order Weighted Essentially Non-Oscillatory Scheme Within Implicit Large Eddy Simulation Framework Using OpenFOAM. Aerospace, 12(2), 108. https://doi.org/10.3390/aerospace12020108