Power Contingency/Margin Methodology and Operational Envelope Analysis for PlanarSats
Abstract
1. Introduction
2. Power-Based Satellite Design
2.1. Margin and Contingency: Agency and Textbook Definitions
Agency | Project Phase | Power Margin | Report Timing | Reference(s) |
---|---|---|---|---|
ESA | Equipment Level (Off-The-Shelf A/B) | ≥5% | During design and development | [32,33,34] |
ESA | Equipment Level (Off-The-Shelf C) | ≥10% | During design and development | [32,33,34] |
ESA | Equipment Level (New Design/Major Modification D) | ≥20% | During design and development | [32,33,34] |
ESA | System Level (General) | ≥20% of nominal power | Throughout project lifecycle | [32,34] |
ESA | System Level (IOD CubeSat at PDR) | 20% | At Preliminary Design Review (PDR) | [32,34] |
ESA | Pre-PDR | 20% | Before Preliminary Design Review (PDR) | [32,34] |
ESA | Pre-CDR | 10% | Before Critical Design Review (CDR) | [32,34] |
ESA | At PDR | 5–15% | Preliminary Design Review (PDR) | [32,34,35] |
ESA | At CDR | 5–15% | Critical Design Review (CDR) | [32,34,35] |
NASA | Phase B (Formulation) | ∼30% | During Preliminary Design Phase | [36,37,38] |
NASA | Initial Design (SMAD Recommendation) | 25% | Initial design phase | [36,38] |
NASA | Historical Average (Aerospace Corporation Study) | ∼40% | Throughout design phases | [36,37,38,39] |
NASA | At PDR | 20% | Preliminary Design Review (PDR) | [36,37,38] |
NASA | At CDR | 10% | Critical Design Review (CDR) | [36,38] |
JAXA | PDR (New bus & payload) | 15% | At Preliminary Design Review (PDR) | [38,40,41] |
JAXA | CDR (New bus & payload) | 10% | At Critical Design Review (CDR) | [38,40,41] |
JAXA | PSR (New bus & payload) | 6% | At Post-Shipment Review (PSR) | [38,40,41] |
JAXA | PDR (Large changes to existing bus/payload) | 10% | At Preliminary Design Review (PDR) | [38,40,41] |
JAXA | CDR (Large changes to existing bus/payload) | 8% | At Critical Design Review (CDR) | [38,40,41] |
JAXA | PSR (Large changes to existing bus/payload) | 6% | At Post-Shipment Review (PSR) | [38,40,41] |
JAXA | PDR (Minor changes to existing bus/payload) | 5% | At Preliminary Design Review (PDR) | [38,40,41] |
JAXA | CDR (Minor changes to existing bus/payload) | 8% | At Critical Design Review (CDR) | [38,40,41] |
JAXA | PSR (Minor changes to existing bus/payload) | 4% | At Post-Shipment Review (PSR) | [38,40,41] |
JAXA | PDR (Existing bus & payload) | 5% | At Preliminary Design Review (PDR) | [38,40,41] |
JAXA | CDR (Existing bus & payload) | 5% | At Critical Design Review (CDR) | [38,40,41] |
JAXA | PSR (Existing bus & payload) | 3% | At Post-Shipment Review (PSR) | [38,40,41] |
Proposal Stage | Design Development Stage | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bid Class | CoDR Class | PDR Class | CDR Class | PRR Class | |||||||||||
Description/ Categories | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 |
Category AP 0–500 W | 90 | 40 | 13 | 75 | 25 | 12 | 45 | 20 | 9 | 20 | 15 | 7 | 5 | 5 | 5 |
Category BP 500–1500 W | 80 | 35 | 13 | 65 | 22 | 12 | 40 | 15 | 9 | 15 | 10 | 7 | 5 | 5 | 5 |
Category CP 1500–5000 W | 70 | 30 | 13 | 60 | 20 | 12 | 30 | 15 | 9 | 15 | 10 | 7 | 5 | 5 | 5 |
Category DP 5000 W and up | 40 | 25 | 13 | 35 | 20 | 11 | 20 | 15 | 9 | 10 | 7 | 7 | 5 | 5 | 5 |
2.2. Definition of Power Subcategories
2.3. Investigation of Contingencies for Lower Power Categories
2.4. Sensitivity Analysis for Extrapolated Contingency Values
- Sweep A (left block): Vary the 500–1500 W anchor (5, 10, 15, 20%) with 100–500 W fixed at 20%.
- Sweep B (right block): Vary the 100–500 W anchor (15, 20, 25, 30, 35%) with 500–1500 W fixed at 15%.
Sweep A: 500–1500 W Anchor (%), 100–500 W = 20% | 15 | 20 | 25 | 30 | 35 | ||||
---|---|---|---|---|---|---|---|---|---|
Power Bin (W) | 5 | 10 | 15 | 20 | Sweep B: 100–500 W Anchor (%), 500–1500 W = 15% | ||||
50–100 | 32.75 (35) | 28.50 (30) | 24.25 (25) | 20.00 (20) | 15.00 (15) | 24.25 (25) | 33.50 (35) | 42.75 (45) | 52.01 (50) |
20–50 | 45.48 (45) | 36.99 (35) | 28.49 (30) | 20.00 (20) | 15.00 (15) | 28.49 (30) | 41.99 (40) | 55.48 (55) | 60.48 (60) |
5–20 | 59.31 (60) | 42.15 (40) | 37.15 (35) | 20.00 (20) | 15.00 (15) | 37.15 (35) | 47.15 (45) | 69.31 (70) | 74.31 (75) |
1.2–5 | 78.33 (80) | 46.11 (45) | 41.11 (40) | 20.00 (20) | 15.00 (15) | 41.11 (40) | 51.11 (50) | 88.33 (90) | 93.33 (95) |
0–1.2 | 107.81 (110) | 51.95 (50) | 46.95 (45) | 20.00 (20) | 15.00 (15) | 46.95 (45) | 56.95 (55) | 117.81 (120) | 122.81 (125) |
- Rounding policy: per-step versus end-of-cascade.
- Baseline: 500–1500 W = 15%, 100–500 W = 20%.
- High-gradient: 500–1500 W = 15%, 100–500 W = 30%.
- Lower-bound check for the 0–1.2 W bin.
3. Case Study: Application to Real/Conceptual Satellites
- Mission set and phase/class assignment.
Specification/Satellite | Sprite V1 | Sprite V2 | PCBSat | SpaceChip | Lux-P | Lux-A&B |
---|---|---|---|---|---|---|
Power and Sizing | ||||||
CBE [mW] | 126 | 114 | 746 | 1.14 | 462 | 70 |
Total Solar Cell Area [] | 4.55 | 2.6 | 56 | 2.28 | 7.36 | 3.68 |
Max Power Generation [mW] | 123 | 68 | 1131 | 1.87 | 105.2 | 52.6 |
Solar Sized for Power [mW] | N/A | N/A | 821 () | 1.34 () | N/A | N/A |
Satellite Dimensions [cm × cm] | 3.5 × 3.5 | 3.5 × 3.5 | 9 × 9.5 | 2×2 | 5 × 2.5 | 2.5 × 2.5 |
Solar Cell Characteristics | ||||||
Cell Efficiency [%] | 27 | 28 | 15 | 1 | 25 | 25 |
Power Density [] | 27 | 26.15 | 15.88 | N/A | 14.3 | 14.3 |
Cell Technology | Triple-J GaAs | Triple-J GaAs | Silicon | N/A | Silicon | Silicon |
3.1. Case-by-Case Insights and Methodological Lessons
3.2. From MEV to MPV: Adding Operational and Heritage Margins
- Operational effect: Free tumbling or limited ADCS reduces average effective incidence; designs sometimes specify a worst-case incidence for sizing rather than relying on normal-incidence capability.
- Heritage effect: When a later-phase design has a lower MEV than an earlier phase but retains the earlier, larger array, the difference functions as a de facto margin at the later phase.
- Example: project-level illustration with the Sprite family.
- Design feasibility check.
4. PlanarSat System Development Approach
4.1. A PlanarSat Design: Operational Power Envelopes
Sizing Example: Requirement-Driven vs. Constraint-Driven for a Separated PlanarSat
- (1)
- Requirement-driven sizing (power first).
- (2)
- Constraint-driven sizing (fixed outline first).
4.2. Applicability and Limitations at the Atto Scale
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADCS | attitude determination and control system |
AIAA | American Institute of Aeronautics and Astronautics |
Bid | bidding |
BoL | beginning of life |
BOM | bill of materials |
CBE | current best estimate |
CDR | critical design review |
CoDR | conceptual design review |
COTS | commercial off-the-shelf |
DOD | Department of Defence |
ESA | European Space Agency |
ESD | Elements of Spacecraft Design |
EPS | electrical power system |
FRR | flight readiness review |
IC | integrated circuit |
ISS | International Space Station |
JAXA | Japan Aerospace Exploration Agency |
MCU | microcontroller |
MEV | maximum expected value |
MPV | maximum possible value |
NASA | National Aeronautics and Space Administration |
OPE | operational power envelope |
PCB | printed circuit board |
PDR | preliminary design review |
PRR | production readiness review |
PSR | post–shipment review |
SMAD | Space Mission Analysis and Design |
Appendix A. Extended Power Contingencies
Proposal Stage | Design Development Stage | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bid | CoDR | PDR | CDR | PRR/FRR | |||||||||
Class | Class | Class | Class | Class | |||||||||
Description/Categories | I | II | III | I | II | III | I | II | III | I | II | III | I-II-III |
0–1.2 W | 120 (121.95) | 65 (66.95) | 13 | 105 (106.95) | 50 (51.95) | 12 | 70 (71.95) | 45 (46.95) | 9 | 45 (46.95) | 40 (41.95) | 7 | 5 |
1.2–5 W | 115 (116.11) | 60 (61.11) | 13 | 100 (101.11) | 45 (46.11) | 12 | 65 (66.11) | 40 (41.11) | 9 | 40 (41.11) | 35 (36.11) | 7 | 5 |
5–20 W | 110 (112.15) | 55 (57.15) | 13 | 95 (97.15) | 40 (42.15) | 12 | 60 (62.15) | 35 (37.15) | 9 | 35 (37.15) | 30 (32.15) | 7 | 5 |
20–50 W | 105 (106.99) | 50 (48.49) | 13 | 90 (91.99) | 35 (33.49) | 12 | 55 (53.79) | 30 (28.49) | 9 | 30 (28.49) | 25 (23.49) | 7 | 5 |
50–100 W | 100 (98.50) | 45 (44.25) | 13 | 85 (83.50) | 30 (27.55) | 12 | 50 (49.25) | 25 (24.25) | 9 | 25 (24.25) | 20 (19.25) | 7 | 5 |
100–500 W | 90 | 40 | 13 | 75 | 25 | 12 | 45 | 20 | 9 | 20 | 15 | 7 | 5 |
500–1500 W | 80 | 35 | 13 | 65 | 22 | 12 | 40 | 15 | 9 | 15 | 10 | 7 | 5 |
1500–5000 W | 70 | 30 | 13 | 60 | 20 | 12 | 30 | 15 | 9 | 15 | 10 | 7 | 5 |
≥5000 W | 40 | 25 | 13 | 35 | 20 | 11 | 20 | 15 | 9 | 10 | 7 | 7 | 5 |
References
- Johnstone, A. CubeSat Design Specification. 2022. Available online: https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/62193b7fc9e72e0053f00910/1645820809779/CDS+REV14_1+2022-02-09.pdf (accessed on 6 June 2025).
- Radu, S.; Uludag, M.; Speretta, S.; Bouwmeester, J.; Dunn, A.; Walkinshaw, T.; Cas, P.K.D.; Cappelletti, C. The PocketQube Standard. 2018. Available online: https://static1.squarespace.com/static/53d7dcdce4b07a1cdbbc08a4/t/5b34c395352f5303fcec6f45/1530184648111/PocketQube+Standard+issue+1+-+Published.pdf (accessed on 6 June 2025).
- Uludağ, M.Ş.; Aslan, A.R. Highly-miniaturized spacecraft “PlanarSat”: Evaluating prospects and challenges through a survey of femto & atto satellite missions. Acta Astronaut. 2025, 236, 343–358. [Google Scholar] [CrossRef]
- Kanavouras, K.; Hein, A.M.; Sachidanand, M. Agile Systems Engineering for sub-CubeSat scale spacecraft. arXiv 2022, arXiv:2210.10653. [Google Scholar] [CrossRef]
- Kanavouras, K.; Hein, A.M. Agile Development of sub-CubeSat Spacecraft. IEEE Eng. Manag. Rev. 2024, 52, 1–17. [Google Scholar] [CrossRef]
- Ekpo, S.; George, D. A deterministic multifunctional architecture for highly adaptive small satellites. Int. J. Satell. Commun. Policy Manag. 2012, 1, 174. [Google Scholar] [CrossRef]
- Ekpo, S.C.; George, D. A System Engineering Analysis of Highly Adaptive Small Satellites. IEEE Syst. J. 2013, 7, 642–648. [Google Scholar] [CrossRef]
- Helvajian, H.; Janson, S. Small Satellites: Past, Present, and Future; American Institute of Aeronautics and Astronautics, Inc.: Reston, VA, USA, 2009. [Google Scholar] [CrossRef]
- Brown, C.D. Elements of Spacecraft Design; American Institute of Aeronautics and Astronautics, Inc.: Reston, VA, USA, 2002. [Google Scholar] [CrossRef]
- Swartwout, M. The First One Hundred CubeSats: A Statistical Look. J. Small Satell. 2013, 2, 213–233. [Google Scholar]
- Jacklin, S.A. Small-Satellite Mission Failure Rates; Technical Report; NASA: Washington, DC, USA, 2019.
- Acero, I.F.; Diaz, J.; Hurtado-Velasco, R.; Bautista, S.R.G.; Rincón, S.; Hernández, F.L.; Rodriguez-Ferreira, J.; Gonzalez-Llorente, J. A Method for Validating CubeSat Satellite EPS Through Power Budget Analysis Aligned With Mission Requirements. IEEE Access 2023, 11, 43316–43332. [Google Scholar] [CrossRef]
- Poghosyan, A.; Golkar, A. CubeSat evolution: Analyzing CubeSat capabilities for conducting science missions. Prog. Aerosp. Sci. 2017, 88, 59–83. [Google Scholar] [CrossRef]
- Bouwmeester, J.; Guo, J. Survey of worldwide pico- and nanosatellite missions, distributions and subsystem technology. Acta Astronaut. 2010, 67, 854–862. [Google Scholar] [CrossRef]
- Kerrouche, R.; Gherbi, A.; Abid, A. CubeSat project: Experience gained and design methodology adopted for a low-cost Electrical Power System. Automatika 2022, 63, 198–210. [Google Scholar] [CrossRef]
- Tadanki, A.; Lightsey, E.G. Closing the Power Budget Architecture for a 1U CubeSat Framework. In Proceedings of the AIAA Scitech 2019 Forum, San Diego, CA, USA, 7–11 January 2019; pp. 1–11. [Google Scholar]
- EnduroSat. EnduroSat-Small Satellite Platforms and Solutions. Available online: https://www.endurosat.com/ (accessed on 25 May 2025).
- GOMspace. GOMspace-Small Satellite Components and Platforms. Available online: https://gomspace.com/ (accessed on 25 May 2025).
- ISISpace. ISISpace-Small Satellite Systems and Solutions. Available online: https://www.isispace.nl/ (accessed on 25 May 2025).
- AAC Clyde Space. AAC Clyde Space-Small Satellite Solutions. Available online: https://www.aac-clyde.space/ (accessed on 25 May 2025).
- NanoAvionics. NanoAvionics-Small Satellite Manufacturer. Available online: https://nanoavionics.com/ (accessed on 25 May 2025).
- Aslan, A.R.; Yagci, H.B.; Bas, M.E.; Şevket Uludağ, M.; Yagci, B.; Umit, E.; Özen, O.E.; Süer, M.; Sofyalı, A.; Yarim, A.C. Lessons Learned Developing a 3U Communication CubeSat. In Proceedings of the 64th International Astronautical Congress, Beijing, China, 23–27 September 2013. [Google Scholar] [CrossRef]
- Manchester, Z.; Peck, M.; Filo, A. KickSat: A Crowd-Funded Mission To Demonstrate The World’s Smallest Spacecraft, SSC13-IX-5. In Proceedings of the 27th Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 10–15 August 2013. [Google Scholar]
- Uludag, M.S.; Pallichadath, V.; Speretta, S.; Radu, S.; Foteinakis, N.C.; Melaika, A.; Cervone, A.; Gill, E. Design of a Micro-Propulsion Subsystem for a PocketQube. In Proceedings of the International Symposium on Space Technology and Science, Fukui, Japan, 15–21 June 2019. [Google Scholar]
- Uludag, M.S.; Speretta, S.; Menicucci, A.; Gill, E.K.A. Journey of a PocketQube: Concept to Orbit. In Proceedings of the 34th International Symposium on Space Technology and Science, Kurume, Japan, 3–9 June 2023; Volume 6. [Google Scholar]
- Karpati, G.; Hyde, T.; Peabody, H.; Garrison, M. Resource Management and Contingencies in Aerospace Concurrent Engineering; Technical Report; NASA: Washington, DC, USA, 2012.
- NASA. NASA Systems Engineering Handbook, no. hq-e-daa-tn38707 ed.; 12th Media Services: Suwanee, GA, USA, 2016; Rev. 2. [Google Scholar]
- ESA. Margin Philosophy for Science Assessment Studies. 2018. Available online: https://sci.esa.int/documents/34375/36249/1567260131067-Margin_philosophy_for_science_assessment_studies_1.3.pdf (accessed on 20 May 2025).
- AIAA. Standard: Electrical Power Systems for Unmanned Spacecraft (AIAA S-122-2007); American Institute of Aeronautics and Astronautics, Inc.: Reston, VA, USA, 2007. [Google Scholar] [CrossRef]
- American Institute of Aeronautics and Astronautics. Guide for Estimating and Budgeting Weight and Power Contingencies for Spacecraft Systems; ANSI/AIAA G-020-1992; American Institute of Aeronautics and Astronautics, Inc.: Reston, VA, USA, 1992. [Google Scholar]
- Wertz, J.R.; Everett, D.F.; Puschell, J.J. (Eds.) Space Mission Engineering: The New SMAD; Microcosm Press: Portland, OR, USA, 2011. [Google Scholar]
- Castro, A. Mission Definition and Design (Course on Nanosatellites, Barcelona Techno Week 2019). 2019. Available online: https://indico.icc.ub.edu/event/15/contributions/251/attachments/46/103/Mission_Definition_and_Design.pdf (accessed on 8 April 2025).
- European Space Agency. Project Phases—ESA Project (Training Module). Available online: https://pmtp.hb.se/space-data/space-project-phasing-data-levels-and-data-use/project-phases-esa-project/ (accessed on 8 April 2025).
- ESA Science & Technology. Mission Phases and Project Lifecycle. 2019. Available online: https://sci.esa.int/web/future-missions-department/-/59733-mission-phases-and-project-lifecycle (accessed on 8 April 2025).
- Hawaii Pressbooks Development. How? (The General Design Process)—A Guide to CubeSat Mission and Bus Design. Available online: https://pressbooks-dev.oer.hawaii.edu/epet302/chapter/1-5-how-the-general-design-process/ (accessed on 8 April 2025).
- NASA. SEH 3.0: NASA Program/Project Life Cycle. Available online: https://www.nasa.gov/reference/3-0-nasa-program-project-life-cycle/ (accessed on 8 April 2025).
- NASA; Arizona State University. Exploration Systems Engineering: Project Life Cycle Module, Version 1.0. Training Presentation. 2010. Available online: https://www.ecco-group.org/docs/ss_Project_LC_Module_V.10_PAS.pdf (accessed on 8 April 2025).
- The Planetary Society. NASA’s Project Life-Cycle. 2019. Available online: https://www.planetary.org/space-images/nasas-project-life-cycle (accessed on 8 April 2025).
- NASA. NPR 7123.1C: NASA Systems Engineering Processes and Requirements; Technical Report; NASA: Washington, DC, USA, 2020. Available online: https://explorers.larc.nasa.gov/2023APPROBE/pdf_files/NASA02.%20NPR%207123.1C%20NASA%20Systems%20Engineering%20Processes%20and%20Requirements.pdf (accessed on 8 April 2025).
- NASA L’SPACE Program. Preliminary Design Review. 2024. Available online: https://www.lspace.asu.edu/mca-deliverables-summer-2024-1/preliminary-design-review (accessed on 8 April 2025).
- Japan Aerospace Exploration Agency (JAXA). JAXA Technical Document on Margin Policy (JERG-2-143); Technical Report; JAXA: Tokyo, Japan, 2020; Available online: https://sma.jaxa.jp/TechDoc/Docs/E_JAXA-JERG-2-143.pdf (accessed on 8 April 2025).
- AIAA. Method for Determining Margins in Spacecraft Design. AIAA J. 2012, 50, 345–356. [Google Scholar] [CrossRef]
- Azur Space. 3G30A Triple-Junction Solar Cell Assembly Datasheet; AZUR SPACE Solar Power GmbH: Heilbronn, Germany, 2025. [Google Scholar]
- NASA. Power Contingency Guidelines. 2016. Available online: https://ntrs.nasa.gov/api/citations/20160014034/downloads/20160014034.pdf#page=5.00 (accessed on 25 May 2025).
- Wang, X.; Zhang, Q.; Wang, W. Design and Application Prospect of China’s Tiangong Space Station. Space Sci. Technol. 2023, 3, 35. [Google Scholar] [CrossRef]
- Uddin, M.; Mahmud, M.; Rahman, M. An Approach to Generalized Extrapolation Formula Based on Rate of Changes. Am. Int. J. Res. Sci. Technol. Eng. Math. (AIJRSTEM) 2013, 3, 169–175. [Google Scholar]
- NASA. NASA Cost Estimating Handbook Version 4.0. 2015. Appendix C. Available online: https://www3.nasa.gov/sites/default/files/files/CEH_AppC.pdf (accessed on 25 May 2025).
- NASA. NASA Standards for Spacecraft Design. 2017. Available online: https://www.nasa.gov/wp-content/uploads/2017/03/std8070.1.pdf (accessed on 25 May 2025).
- NASA. Power Budget Analysis for Space Missions. 2012. Available online: https://ntrs.nasa.gov/api/citations/20120013284/downloads/20120013284.pdf (accessed on 25 May 2025).
- Abate, T. Inexpensive Chip-Size Satellites Orbit Earth; Stanford News: Stanford, CA, USA, 2019; Available online: https://news.stanford.edu/stories/2019/06/chip-size-satellites-orbit-earth/ (accessed on 25 May 2025).
- Barnhart, D.J.; Vladimirova, T.; Baker, A.M.; Sweeting, M.N. A low-cost femtosatellite to enable distributed space missions. Acta Astronaut. 2009, 64, 1123–1143. [Google Scholar] [CrossRef]
- Barnhart, D.J.; Vladimirova, T.; Sweeting, M.N. Very-small-satellite design for distributed space missions. J. Spacecr. Rocket. 2007, 44, 1294–1306. [Google Scholar] [CrossRef]
- Borgue, O.; Kanavouras, K.; Laur, J.; Thoemel, J.; Rana, L.; Hein, A. Developing a distributed and fractionated system of 10 g satellites for planetary observation. In Proceedings of the 73rd International Astronautical Congress (IAC), Paris, France, 18–22 September 2022. [Google Scholar]
- Franzese, V.; Kanavouras, K.; Rosete, C.B.; Gouvalas, S.; Sajjad, N.; Alandihallaj, M.; Herasimenka, A.; Hein, A.M. Technologies of the POQUITO pico-satellite mission: The first PocketQube of the University of Luxembourg. In Proceedings of the 75th International Astronautical Congress (IAC), Milan, Italy, 14–18 October 2024. [Google Scholar]
- ALBA. Alba Orbital Prepares for 8th Launch Campaign with SpaceX. 2025. Available online: https://www.albaorbital.com/spacex-flight-8 (accessed on 27 May 2025).
- Manchester, Z. Centimeter-Scale Spacecraft: Design, Fabrication, and Deployment. Ph.D. Thesis, Cornell University, Ithaca, NY, USA, 2015. [Google Scholar]
- Kacapyr, S. Cracker-Sized Satellites Demonstrate New Space Tech | Cornell Chronicle; Cornell Chronicle: Ithaca, NY, USA, 2019; Available online: https://news.cornell.edu/stories/2019/06/cracker-sized-satellites-demonstrate-new-space-tech (accessed on 27 May 2025).
- KickSat Re-Enters Atmosphere Without Deploying “Sprite” Satellites; ARRL (The National Association for Amateur Radio): Newington, CT, USA, 2014; Available online: https://www.arrl.org/news/kicksat-re-enters-atmosphere-without-deploying-sprite-satellites (accessed on 27 May 2025).
- Adams, V.H. GitHub—vha3 (V. Hunter Adams). Available online: https://github.com/vha3 (accessed on 1 September 2025).
- STMicroelectronics. STM32L496RG–Ultra-Low-Power with FPU Arm Cortex-M4 MCU 80 MHz with 1 Mbyte Flash, USB OTG, LCD, DFSDM. 2024. Available online: https://www.st.com/en/microcontrollers-microprocessors/stm32l496rg.html (accessed on 24 May 2025).
- Semtech Corporation. SX1278–137MHz to 525MHz Low Power Long Range Transceiver. 2024. Available online: https://www.semtech.com/products/wireless-rf/lora-connect/sx1278 (accessed on 24 May 2025).
Feature | Contingency | Margin |
---|---|---|
Applied to | CBE (estimated demand/cost) | Capability above MEV (demand + contingency) |
Covers | Known unknowns, estimating error, expected growth | Unknown unknowns, robustness, worst-case bounds |
Management | Subsystem/team level | Project/program level |
Trend | Burns down with maturity | Remains positive as design buffer |
Term | What It Means | How to Calculate | Typical Use |
---|---|---|---|
CBE | Best estimate (today’s design) | Engineer’s calculated value | Baseline, preliminary analysis |
MEV | Maximum expected value (with contingency) | CBE × (1 + contingency %) | Power system sizing |
MPV | Maximum possible value (with margin) | MEV × (1 + margin %) | Stress/bounding, risk assessment |
Number of Cells on Surfaces | Maximum Power at 45 Degrees | |||
---|---|---|---|---|
X | Y | Z | Total [W] | |
16U | 20 | 20 | 8 | 40.73 |
12U | 14 | 14 | 8 | 30.55 |
8U | 20 | 10 | 4 | 28.85 |
6U | 14 | 7 | 4 | 21.21 |
4U | 10 | 10 | 2 | 18.67 |
3U | 7 | 7 | 2 | 13.58 |
2U | 4 | 4 | 2 | 8.49 |
1U | 2 | 2 | 2 | 5.09 |
3P | 2 | 2 | 0.5 | 3.82 |
2P | 1.5 | 1.5 | 0.5 | 2.97 |
1.5P | 1 | 1 | 0.5 | 2.12 |
1P | 0.5 | 0.5 | 0.5 | 1.27 |
0.5P | 0.25 | 0.25 | 0.5 | 0.85 |
Proposal Stage | Design Development Stage | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bid | CoDR | PDR | CDR | PRR/FRR | |||||||||
Class | Class | Class | Class | Class | |||||||||
Description/Categories | I | II | III | I | II | III | I | II | III | I | II | III | I-II-III |
0–1.2 W | 120 | 65 | 13 | 105 | 50 | 12 | 70 | 45 | 9 | 45 | 40 | 7 | 5 |
1.2–5 W | 115 | 60 | 13 | 100 | 45 | 12 | 65 | 40 | 9 | 40 | 35 | 7 | 5 |
5–20 W | 110 | 55 | 13 | 95 | 40 | 12 | 60 | 35 | 9 | 35 | 30 | 7 | 5 |
20–50 W | 105 | 50 | 13 | 90 | 35 | 12 | 55 | 30 | 9 | 30 | 25 | 7 | 5 |
50–100 W | 100 | 45 | 13 | 85 | 30 | 12 | 50 | 25 | 9 | 25 | 20 | 7 | 5 |
100–500 W | 90 | 40 | 13 | 75 | 25 | 12 | 45 | 20 | 9 | 20 | 15 | 7 | 5 |
500–1500 W | 80 | 35 | 13 | 65 | 22 | 12 | 40 | 15 | 9 | 15 | 10 | 7 | 5 |
1500–5000 W | 70 | 30 | 13 | 60 | 20 | 12 | 30 | 15 | 9 | 15 | 10 | 7 | 5 |
5000 W + | 40 | 25 | 13 | 35 | 20 | 11 | 20 | 15 | 9 | 10 | 7 | 7 | 5 |
Power Bin (W) | Baseline: Per Step | Baseline: End of Cascade | High-Gradient: Per Step | High-Gradient: End of Cascade |
---|---|---|---|---|
50–100 | 24.25 (25) | 24.25 (25) | 42.75 (45) | 42.75 (45) |
20–50 | 28.49 (30) | 27.22 (25) | 55.48 (55) | 51.67 (50) |
5–20 | 37.15 (35) | 31.47 (30) | 69.31 (70) | 64.42 (65) |
1.2–5 | 41.11 (40) | 36.67 (35) | 88.33 (90) | 80.01 (80) |
0–1.2 | 46.95 (45) | 43.89 (45) | 117.81 (120) | 101.68 (100) |
As-Built | Req. Solar | PCB | Notes | |||||
---|---|---|---|---|---|---|---|---|
Satellite | Class | Phase | Contingency | MEV | Solar Area | Area (MEV) | Area Inc. | |
(%) | (mW) | (cm2) | (cm2) | (%) | ||||
SpaceChip | I | Bid | 120 | 2.51 | 2.28 | 3.06 | 19.5 | Concept, 1% cell |
PCBSat | I | CoDR | 105 | 1529.3 | 56.00 | 96.30 | 47.13 | Concept/Prototype |
LuxAtto A&B | I | PDR | 70 | 119.0 | 3.68 | 8.32 | 54.72 | New form factor |
LuxAtto P | II | PDR | 45 | 669.9 | 7.36 | 46.85 | 316.00 | Predecessor: Sprite |
Sprite V1 | I | CDR | 45 | 182.7 | 4.55 | 6.77 | 18.12 | First of kind |
Sprite V2 | II | CDR | 40 | 159.6 | 2.60 | 6.10 | 28.57 | Heritage from V1 |
Component | Area [cm2] | Reference |
---|---|---|
STM32L496RGT6 MCU | 1.96 | [60] |
SX1278IMLTRT Transceiver | 0.49 | [61] |
Example payload (illustrative) | 2.00 |
Approach | Surface Area () | Side Length (cm) | Power Target or Max (mW) |
---|---|---|---|
Constraint-driven (fixed cm) | 6.25 | 2.50 | 248.5 (max) |
Requirement-driven (MEV) | 6.96 | 2.64 | 276.54 |
Requirement-driven (MPV) | 8.35 | 2.89 | 331.85 |
Constraint-driven (fixed cm) | 25.00 | 5.00 | 994 (max) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uludağ, M.Ş.; Aslan, A.R. Power Contingency/Margin Methodology and Operational Envelope Analysis for PlanarSats. Aerospace 2025, 12, 858. https://doi.org/10.3390/aerospace12100858
Uludağ MŞ, Aslan AR. Power Contingency/Margin Methodology and Operational Envelope Analysis for PlanarSats. Aerospace. 2025; 12(10):858. https://doi.org/10.3390/aerospace12100858
Chicago/Turabian StyleUludağ, Mehmet Şevket, and Alim Rüstem Aslan. 2025. "Power Contingency/Margin Methodology and Operational Envelope Analysis for PlanarSats" Aerospace 12, no. 10: 858. https://doi.org/10.3390/aerospace12100858
APA StyleUludağ, M. Ş., & Aslan, A. R. (2025). Power Contingency/Margin Methodology and Operational Envelope Analysis for PlanarSats. Aerospace, 12(10), 858. https://doi.org/10.3390/aerospace12100858