Numerical Investigation on the Thermal Characteristics of Lightweight Metal Mesh-Based Reflector Antenna with Various Knitting Conditions
Abstract
1. Introduction
2. Overview of Spaceborne Metal Mesh Fabric
3. Optical Properties Measurement
3.1. Description of the Mesh Specimen
3.2. Results of Measurement
4. On-Orbit Thermal Analysis
4.1. Description of the Thermal Model and On-Orbit Conditions
4.2. Results of On-Orbit Thermal Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Duan, B.; Zhang, Y.; Du, J. Large Deployable Satellite Antennas; Springer: Singapore, 2020. [Google Scholar]
- Akira, M.; Kyoji, S.; Motofumi, U.; Akio, T. In-Orbit Deployment Characteristics of Large Deployable Antenna Reflector Onboard Engineering Test Satellite VIII. Acta Astronaut. 2009, 65, 1306–1316. [Google Scholar]
- Scialino, L.; Ihle, A.; Migliorelli, M.; Gatti, N.; Datashvili, L.; van‘t Klooster, K.; Santiago Prowald, J. Large deployable reflectors for telecom and earth observation applications. CEAS Space J. 2013, 5, 125–146. [Google Scholar] [CrossRef]
- Im, C.; Seo, W.; Park, S.; Kim, K.; Park, S.; Choo, H. Design of a Deployable Broadband Mesh Reflector Antenna for a SIGINT Satellite System Considering Surface Shape Deformation. Sensors 2024, 24, 384. [Google Scholar] [CrossRef] [PubMed]
- Urata, K.N.; Sri Sumantyo, J.T.; Santosa, C.E.; Viscor, T. Development of an L-band SAR microsatellite antenna for earth observation. Aerospace 2018, 5, 128. [Google Scholar] [CrossRef]
- Li, P.; Liu, C.; Tian, Q.; Hu, H.; Song, Y. Dynamics of a deployable mesh reflector of satellite antenna: Parallel computation and deployment simulation. J. Comput. Nonlinear Dyn. 2016, 11, 061005. [Google Scholar] [CrossRef]
- Xu, H.; Chen, N.; Jiang, J. Research on the Knittability of Metallic Yarns in the Warp-knitted Mesh of a Deployable Antenna. Fibres Text. East. Eur. 2023, 31, 51–55. [Google Scholar]
- Chahat, N.; Hodges, R.E.; Sauder, J.; Thomson, M.; Rahmat-Samii, Y. The deep-space network telecommunication CubeSat antenna: Using the deployable Ka-band mesh reflector antenna. IEEE Antennas Propag. Mag. 2017, 59, 31–38. [Google Scholar] [CrossRef]
- Yang, G.; Tang, A.; Yuan, Z.; Yang, Z.; Li, S.; Li, Y. Surface shape stability design of mesh reflector antennas considering space thermal effects. IEEE Access 2020, 8, 89071–89083. [Google Scholar] [CrossRef]
- Nie, R.; He, B.; Yan, S.; Ma, X. Optimization design method for the cable network of mesh reflector antennas considering space thermal effects. Aerosp. Sci. Technol. 2019, 94, 105380. [Google Scholar] [CrossRef]
- Park, T.Y.; Kim, S.Y.; Yi, D.W.; Jung, H.Y.; Lee, J.E.; Yun, J.H.; Oh, H.U. Thermal design and analysis of unfurlable CFRP skin-based parabolic reflector for spaceborne SAR antenna. Int. J. Aeronaut. Space Sci. 2021, 22, 433–444. [Google Scholar] [CrossRef]
- Mironov, R.A.; Reznik, S.V.; Rukavishnikov, R.V.; Shishulina, V.A.; Zavaruev, V.A. Optical characterisation of metallic meshes for space antennas transformable reflectors. In IOP Conference Series: Materials Science and Engineering, Proceedings of the 4th International Conference on Advanced Composites and Materials Technologies for Arduous Applications (ACMTAA), Wrexham, UK, 5–6 November 2015; IOP Publishing: Bristol, UK, 2016; Volume 153, p. 012013. [Google Scholar]
- Denisova, L.V.; Kalinin, D.Y.; Reznik, S.V. Theoretical and experimental studies of heat-transfer modes of space antenna mesh reflectors. Her. Bauman Mosc. State Tech. Univ. Ser. Mech. Eng. 2011, 1, 92–105. [Google Scholar]
- Terekhov, V.Y.; Zolotarenko, I.D.; Teminovskiy, I.V. Development of experimental prototypes of large deployable spacecraft reflector antenna structures applying new radio-technical metal mesh materials. Int. J. Appl. Eng. Res. 2017, 12, 2422–2429. [Google Scholar]
- Li, T.; Jiang, J.; Shen, T.; Wang, Z. Analysis of mechanical properties of wire mesh for mesh reflectors by fractal mechanics. Int. J. Mech. Sci. 2015, 92, 90–97. [Google Scholar] [CrossRef]
- Yang, J.; Cui, W.; Hu, T.; Ma, X.; Cui, Z. A complex wire used for mesh reflector antenna. In Proceedings of the 2015 IEEE 4th Asia-Pacific Conference on Antennas and Propagation (APCAP), Bali, Indonesia, 30 June–3 July 2015; IEEE: Piscataway, NJ, USA, 2016; pp. 439–440. [Google Scholar]
- Bettermann, I.; Löcken, H.; Greb, C.; Gries, T.; Oses, A.; Pauw, J.; Datashvili, L. Review and evaluation of warp-knitted patterns for metal-based large deployable reflector surfaces. CEAS Space J. 2023, 15, 477–493. [Google Scholar] [CrossRef]
- Kozlova, N.S.; Kozlova, A.P.; Goreeva, Z.A. Spectrophotometric methods and their capabilities to study material optical parameters. In Proceedings of the 2017 2nd International Ural Conference on Measurements (UralCon), Chelyabinsk, Russia, 16–19 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 281–288. [Google Scholar]
- Agilent-Technologies. Agilent Diffuse Reflectance Accessories (DRAs) for the Cary 4000/5000/6000i UV-VIS-NIR Spectrometers. Available online: https://www.agilent.com/cs/library/brochures/5990-7786EN_Cary-4000-5000-6000i-UV-Vis-NIR_Brochure.pdf (accessed on 15 July 2022).
- Thermal Desktop User’s Guide, Ver. 6.1; Network Analysis Associates: Tempe, AZ, USA, 2006.
- SINDA/FLUINT User’s Guide, Ver. 6.1; Network Analysis Associates: Tempe, AZ, USA, 2006.
- Guo, W.; Li, Y.; Li, Y.Z.; Tian, S.; Wang, S. Thermal–structural analysis of large deployable space antenna under extreme heat loads. J. Therm. Stress. 2016, 39, 887–905. [Google Scholar] [CrossRef]
- Gottero, M.; Sacchi, E.; Scialino, G.L.; Reznik, S.V.; Kalinin, D.Y. The large deployable antenna (LDA) a review of thermal aspects. In Proceedings of the 35th International Conference on Environmental Systems, Rome, Italy, 11–14 July 2005. [Google Scholar]
No. | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Wire diameter | |||||
Knitted type | Atlas | TUCH | Double-Atlas | Atlas | Atlas-Atlas |
Number of twists | 1 EA | 1 EA | 1 EA | 1 EA | 3 EA |
OPI | 36 | 36 | 18 | 10 | 12 |
Configuration |
No. | 5 | 5-1 | 5-2 | 5-3 |
---|---|---|---|---|
Stretch direction | Standard state | Wale stretch | Course stretch | Wale and Course stretch |
Configuration |
No. | Description | α * | ρ * | τ * | ||
---|---|---|---|---|---|---|
Knitted Type | OPI | Stretch Direction | ||||
1 | Atlas | 36 | Standard state | 0.03 | 0.08 | 0.89 |
2 | TUCH | 36 | 0.05 | 0.11 | 0.84 | |
3 | Double-Atlas | 18 | 0.04 | 0.11 | 0.85 | |
4 | Atlas | 10 | 0.05 | 0.02 | 0.93 | |
5 | Atlas-Atlas | 12 | Standard state | 0.07 | 0.13 | 0.81 |
5-1 | Wale stretch | 0.07 | 0.12 | 0.81 | ||
5-2 | Course stretch | 0.05 | 0.11 | 0.84 | ||
5-3 | Wale and Course stretch | 0.05 | 0.10 | 0.86 |
Physical Properties | ||||
---|---|---|---|---|
Material | Conductivity (W/m/K) | Density (kg/m3) | Specific Heat (J/kg/K) | Remarks |
Al-6061 | 167.9 | 2700 | 961.2 | S/C, solar panel |
Molybdenum [22] | 178.38 (@ −103 °C) 146.4 (@ 97 °C) 129.21 (@ 297 °C) 127.17 (@ 497 °C) 106.29 (@ 697 °C) 50.76 (@ 1197 °C) | 10,220 | 185.12 (@ −200 °C) 238.93 (@ 0 °C) 277.27 (@ 200 °C) 315.62 (@ 400 °C) 338.49 (@ 600 °C) 353.63 (@ 800 °C) | Primary mesh reflector |
Thermo-Optical properties | ||||
Material | Solar Absorptivity (α) | IR Emissivity (ε) | α/ε | Remarks |
Gold-plated Mesh [23] | 0.09 | 0.6 | 0.15 | Primary mesh reflector (w/o transmissivity) |
MLI | 0.014 | 0.005 | 2.8 | S/C |
GaAs | 0.438 | 0.687 | 0.638 | Solar panel (Front side) |
White paint | 0.2/0.7 | 0.9 | 0.222/0.778 | Solar panel (Real side) |
Case | Absorptivity (α) | Reflectivity (ρ) | Transmissivity (τ) |
---|---|---|---|
1 | 0.03 | 0.08 | 0.89 |
2 | 0.05 | 0.11 | 0.84 |
3 | 0.04 | 0.11 | 0.85 |
4 | 0.05 | 0.02 | 0.93 |
5 | 0.07 | 0.13 | 0.81 |
5-1 | 0.07 | 0.12 | 0.81 |
5-2 | 0.05 | 0.11 | 0.84 |
5-3 | 0.05 | 0.10 | 0.86 |
Parameter | Worst Cold Case | Worst Hot Case |
---|---|---|
Altitude (km) | 550 | 550 |
Inclination (°) | 45 | 45 |
Solar flux (W/m2) | 1287 | 1420 |
Albedo | 0.30 | 0.35 |
Planetary IR flux (W/m2) | 227 | 249 |
Beta angle (°) | −21.2 | −68.1 |
RAAN (°) | 7.8 | 190 |
Date (MM/DD) | 06/21 | 12/22 |
H/W | w/o Solar Panels | With Solar Panels | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
3 EA 5.5 m Area per Panel) | 4 EA 5.5 m Area per Panel) | 6 EA 3.5 m Area per Panel) | ||||||||||
Tmax | Tmin | T | Tmax | Tmin | T | Tmax | Tmin | T | Tmax | Tmin | T | |
Imaging period | 68.2 | 33.9 | 34.3 | 65.0 | 29.9 | 35.1 | 62.5 | 28.6 | 33.9 | 63.1 | 29.5 | 32.6 |
Sun pointing | 70.4 | 65.1 | 5.3 | 63.3 | 50.0 | 13.3 | 61.1 | 44.2 | 16.9 | 61.6 | 41.1 | 20.5 |
Nadir pointing | 44.1 | 40.0 | 4.1 | 37.2 | 33.2 | 4.0 | 35.1 | 30.7 | 4.4 | 35.8 | 30.8 | 5.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, M.-Y.; Chae, B.-G.; Sung, H.-M.; Oh, H.-U. Numerical Investigation on the Thermal Characteristics of Lightweight Metal Mesh-Based Reflector Antenna with Various Knitting Conditions. Aerospace 2024, 11, 780. https://doi.org/10.3390/aerospace11090780
Son M-Y, Chae B-G, Sung H-M, Oh H-U. Numerical Investigation on the Thermal Characteristics of Lightweight Metal Mesh-Based Reflector Antenna with Various Knitting Conditions. Aerospace. 2024; 11(9):780. https://doi.org/10.3390/aerospace11090780
Chicago/Turabian StyleSon, Min-Young, Bong-Geon Chae, Hyun-Mo Sung, and Hyun-Ung Oh. 2024. "Numerical Investigation on the Thermal Characteristics of Lightweight Metal Mesh-Based Reflector Antenna with Various Knitting Conditions" Aerospace 11, no. 9: 780. https://doi.org/10.3390/aerospace11090780
APA StyleSon, M.-Y., Chae, B.-G., Sung, H.-M., & Oh, H.-U. (2024). Numerical Investigation on the Thermal Characteristics of Lightweight Metal Mesh-Based Reflector Antenna with Various Knitting Conditions. Aerospace, 11(9), 780. https://doi.org/10.3390/aerospace11090780