Numerical Investigation on the Thermal Characteristics of Lightweight Metal Mesh-Based Reflector Antenna with Various Knitting Conditions
Abstract
:1. Introduction
2. Overview of Spaceborne Metal Mesh Fabric
3. Optical Properties Measurement
3.1. Description of the Mesh Specimen
3.2. Results of Measurement
4. On-Orbit Thermal Analysis
4.1. Description of the Thermal Model and On-Orbit Conditions
4.2. Results of On-Orbit Thermal Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duan, B.; Zhang, Y.; Du, J. Large Deployable Satellite Antennas; Springer: Singapore, 2020. [Google Scholar]
- Akira, M.; Kyoji, S.; Motofumi, U.; Akio, T. In-Orbit Deployment Characteristics of Large Deployable Antenna Reflector Onboard Engineering Test Satellite VIII. Acta Astronaut. 2009, 65, 1306–1316. [Google Scholar]
- Scialino, L.; Ihle, A.; Migliorelli, M.; Gatti, N.; Datashvili, L.; van‘t Klooster, K.; Santiago Prowald, J. Large deployable reflectors for telecom and earth observation applications. CEAS Space J. 2013, 5, 125–146. [Google Scholar] [CrossRef]
- Im, C.; Seo, W.; Park, S.; Kim, K.; Park, S.; Choo, H. Design of a Deployable Broadband Mesh Reflector Antenna for a SIGINT Satellite System Considering Surface Shape Deformation. Sensors 2024, 24, 384. [Google Scholar] [CrossRef] [PubMed]
- Urata, K.N.; Sri Sumantyo, J.T.; Santosa, C.E.; Viscor, T. Development of an L-band SAR microsatellite antenna for earth observation. Aerospace 2018, 5, 128. [Google Scholar] [CrossRef]
- Li, P.; Liu, C.; Tian, Q.; Hu, H.; Song, Y. Dynamics of a deployable mesh reflector of satellite antenna: Parallel computation and deployment simulation. J. Comput. Nonlinear Dyn. 2016, 11, 061005. [Google Scholar] [CrossRef]
- Xu, H.; Chen, N.; Jiang, J. Research on the Knittability of Metallic Yarns in the Warp-knitted Mesh of a Deployable Antenna. Fibres Text. East. Eur. 2023, 31, 51–55. [Google Scholar]
- Chahat, N.; Hodges, R.E.; Sauder, J.; Thomson, M.; Rahmat-Samii, Y. The deep-space network telecommunication CubeSat antenna: Using the deployable Ka-band mesh reflector antenna. IEEE Antennas Propag. Mag. 2017, 59, 31–38. [Google Scholar] [CrossRef]
- Yang, G.; Tang, A.; Yuan, Z.; Yang, Z.; Li, S.; Li, Y. Surface shape stability design of mesh reflector antennas considering space thermal effects. IEEE Access 2020, 8, 89071–89083. [Google Scholar] [CrossRef]
- Nie, R.; He, B.; Yan, S.; Ma, X. Optimization design method for the cable network of mesh reflector antennas considering space thermal effects. Aerosp. Sci. Technol. 2019, 94, 105380. [Google Scholar] [CrossRef]
- Park, T.Y.; Kim, S.Y.; Yi, D.W.; Jung, H.Y.; Lee, J.E.; Yun, J.H.; Oh, H.U. Thermal design and analysis of unfurlable CFRP skin-based parabolic reflector for spaceborne SAR antenna. Int. J. Aeronaut. Space Sci. 2021, 22, 433–444. [Google Scholar] [CrossRef]
- Mironov, R.A.; Reznik, S.V.; Rukavishnikov, R.V.; Shishulina, V.A.; Zavaruev, V.A. Optical characterisation of metallic meshes for space antennas transformable reflectors. In IOP Conference Series: Materials Science and Engineering, Proceedings of the 4th International Conference on Advanced Composites and Materials Technologies for Arduous Applications (ACMTAA), Wrexham, UK, 5–6 November 2015; IOP Publishing: Bristol, UK, 2016; Volume 153, p. 012013. [Google Scholar]
- Denisova, L.V.; Kalinin, D.Y.; Reznik, S.V. Theoretical and experimental studies of heat-transfer modes of space antenna mesh reflectors. Her. Bauman Mosc. State Tech. Univ. Ser. Mech. Eng. 2011, 1, 92–105. [Google Scholar]
- Terekhov, V.Y.; Zolotarenko, I.D.; Teminovskiy, I.V. Development of experimental prototypes of large deployable spacecraft reflector antenna structures applying new radio-technical metal mesh materials. Int. J. Appl. Eng. Res. 2017, 12, 2422–2429. [Google Scholar]
- Li, T.; Jiang, J.; Shen, T.; Wang, Z. Analysis of mechanical properties of wire mesh for mesh reflectors by fractal mechanics. Int. J. Mech. Sci. 2015, 92, 90–97. [Google Scholar] [CrossRef]
- Yang, J.; Cui, W.; Hu, T.; Ma, X.; Cui, Z. A complex wire used for mesh reflector antenna. In Proceedings of the 2015 IEEE 4th Asia-Pacific Conference on Antennas and Propagation (APCAP), Bali, Indonesia, 30 June–3 July 2015; IEEE: Piscataway, NJ, USA, 2016; pp. 439–440. [Google Scholar]
- Bettermann, I.; Löcken, H.; Greb, C.; Gries, T.; Oses, A.; Pauw, J.; Datashvili, L. Review and evaluation of warp-knitted patterns for metal-based large deployable reflector surfaces. CEAS Space J. 2023, 15, 477–493. [Google Scholar] [CrossRef]
- Kozlova, N.S.; Kozlova, A.P.; Goreeva, Z.A. Spectrophotometric methods and their capabilities to study material optical parameters. In Proceedings of the 2017 2nd International Ural Conference on Measurements (UralCon), Chelyabinsk, Russia, 16–19 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 281–288. [Google Scholar]
- Agilent-Technologies. Agilent Diffuse Reflectance Accessories (DRAs) for the Cary 4000/5000/6000i UV-VIS-NIR Spectrometers. Available online: https://www.agilent.com/cs/library/brochures/5990-7786EN_Cary-4000-5000-6000i-UV-Vis-NIR_Brochure.pdf (accessed on 15 July 2022).
- Thermal Desktop User’s Guide, Ver. 6.1; Network Analysis Associates: Tempe, AZ, USA, 2006.
- SINDA/FLUINT User’s Guide, Ver. 6.1; Network Analysis Associates: Tempe, AZ, USA, 2006.
- Guo, W.; Li, Y.; Li, Y.Z.; Tian, S.; Wang, S. Thermal–structural analysis of large deployable space antenna under extreme heat loads. J. Therm. Stress. 2016, 39, 887–905. [Google Scholar] [CrossRef]
- Gottero, M.; Sacchi, E.; Scialino, G.L.; Reznik, S.V.; Kalinin, D.Y. The large deployable antenna (LDA) a review of thermal aspects. In Proceedings of the 35th International Conference on Environmental Systems, Rome, Italy, 11–14 July 2005. [Google Scholar]
No. | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Wire diameter | |||||
Knitted type | Atlas | TUCH | Double-Atlas | Atlas | Atlas-Atlas |
Number of twists | 1 EA | 1 EA | 1 EA | 1 EA | 3 EA |
OPI | 36 | 36 | 18 | 10 | 12 |
Configuration |
No. | 5 | 5-1 | 5-2 | 5-3 |
---|---|---|---|---|
Stretch direction | Standard state | Wale stretch | Course stretch | Wale and Course stretch |
Configuration |
No. | Description | α * | ρ * | τ * | ||
---|---|---|---|---|---|---|
Knitted Type | OPI | Stretch Direction | ||||
1 | Atlas | 36 | Standard state | 0.03 | 0.08 | 0.89 |
2 | TUCH | 36 | 0.05 | 0.11 | 0.84 | |
3 | Double-Atlas | 18 | 0.04 | 0.11 | 0.85 | |
4 | Atlas | 10 | 0.05 | 0.02 | 0.93 | |
5 | Atlas-Atlas | 12 | Standard state | 0.07 | 0.13 | 0.81 |
5-1 | Wale stretch | 0.07 | 0.12 | 0.81 | ||
5-2 | Course stretch | 0.05 | 0.11 | 0.84 | ||
5-3 | Wale and Course stretch | 0.05 | 0.10 | 0.86 |
Physical Properties | ||||
---|---|---|---|---|
Material | Conductivity (W/m/K) | Density (kg/m3) | Specific Heat (J/kg/K) | Remarks |
Al-6061 | 167.9 | 2700 | 961.2 | S/C, solar panel |
Molybdenum [22] | 178.38 (@ −103 °C) 146.4 (@ 97 °C) 129.21 (@ 297 °C) 127.17 (@ 497 °C) 106.29 (@ 697 °C) 50.76 (@ 1197 °C) | 10,220 | 185.12 (@ −200 °C) 238.93 (@ 0 °C) 277.27 (@ 200 °C) 315.62 (@ 400 °C) 338.49 (@ 600 °C) 353.63 (@ 800 °C) | Primary mesh reflector |
Thermo-Optical properties | ||||
Material | Solar Absorptivity (α) | IR Emissivity (ε) | α/ε | Remarks |
Gold-plated Mesh [23] | 0.09 | 0.6 | 0.15 | Primary mesh reflector (w/o transmissivity) |
MLI | 0.014 | 0.005 | 2.8 | S/C |
GaAs | 0.438 | 0.687 | 0.638 | Solar panel (Front side) |
White paint | 0.2/0.7 | 0.9 | 0.222/0.778 | Solar panel (Real side) |
Case | Absorptivity (α) | Reflectivity (ρ) | Transmissivity (τ) |
---|---|---|---|
1 | 0.03 | 0.08 | 0.89 |
2 | 0.05 | 0.11 | 0.84 |
3 | 0.04 | 0.11 | 0.85 |
4 | 0.05 | 0.02 | 0.93 |
5 | 0.07 | 0.13 | 0.81 |
5-1 | 0.07 | 0.12 | 0.81 |
5-2 | 0.05 | 0.11 | 0.84 |
5-3 | 0.05 | 0.10 | 0.86 |
Parameter | Worst Cold Case | Worst Hot Case |
---|---|---|
Altitude (km) | 550 | 550 |
Inclination (°) | 45 | 45 |
Solar flux (W/m2) | 1287 | 1420 |
Albedo | 0.30 | 0.35 |
Planetary IR flux (W/m2) | 227 | 249 |
Beta angle (°) | −21.2 | −68.1 |
RAAN (°) | 7.8 | 190 |
Date (MM/DD) | 06/21 | 12/22 |
H/W | w/o Solar Panels | With Solar Panels | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
3 EA 5.5 m Area per Panel) | 4 EA 5.5 m Area per Panel) | 6 EA 3.5 m Area per Panel) | ||||||||||
Tmax | Tmin | T | Tmax | Tmin | T | Tmax | Tmin | T | Tmax | Tmin | T | |
Imaging period | 68.2 | 33.9 | 34.3 | 65.0 | 29.9 | 35.1 | 62.5 | 28.6 | 33.9 | 63.1 | 29.5 | 32.6 |
Sun pointing | 70.4 | 65.1 | 5.3 | 63.3 | 50.0 | 13.3 | 61.1 | 44.2 | 16.9 | 61.6 | 41.1 | 20.5 |
Nadir pointing | 44.1 | 40.0 | 4.1 | 37.2 | 33.2 | 4.0 | 35.1 | 30.7 | 4.4 | 35.8 | 30.8 | 5.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, M.-Y.; Chae, B.-G.; Sung, H.-M.; Oh, H.-U. Numerical Investigation on the Thermal Characteristics of Lightweight Metal Mesh-Based Reflector Antenna with Various Knitting Conditions. Aerospace 2024, 11, 780. https://doi.org/10.3390/aerospace11090780
Son M-Y, Chae B-G, Sung H-M, Oh H-U. Numerical Investigation on the Thermal Characteristics of Lightweight Metal Mesh-Based Reflector Antenna with Various Knitting Conditions. Aerospace. 2024; 11(9):780. https://doi.org/10.3390/aerospace11090780
Chicago/Turabian StyleSon, Min-Young, Bong-Geon Chae, Hyun-Mo Sung, and Hyun-Ung Oh. 2024. "Numerical Investigation on the Thermal Characteristics of Lightweight Metal Mesh-Based Reflector Antenna with Various Knitting Conditions" Aerospace 11, no. 9: 780. https://doi.org/10.3390/aerospace11090780
APA StyleSon, M. -Y., Chae, B. -G., Sung, H. -M., & Oh, H. -U. (2024). Numerical Investigation on the Thermal Characteristics of Lightweight Metal Mesh-Based Reflector Antenna with Various Knitting Conditions. Aerospace, 11(9), 780. https://doi.org/10.3390/aerospace11090780