Identification of Traffic Flow Spatio-Temporal Patterns and Their Associated Weather Factors: A Case Study in the Terminal Airspace of Hong Kong
Abstract
:1. Introduction
2. Related Works
2.1. Modeling of Air Traffic Flow
2.2. Weather-Affected Air Traffic
3. Methodology
3.1. Trajectory Structure Characterization: From Abnormal Behavior to Typical Operations
3.2. Flow Pattern Recognition: From Per-Hour-Level Representation to Spatio-Temporal Identification
3.3. Association Rule Mining: From Frequent-Itemsets Searching to Association Rules Generation
4. Empirical Analysis of Hong Kong International Airport
4.1. Data Description
4.1.1. Flight Trajectory
4.1.2. Weather Factors
4.2. Implementation Details
4.3. Results of Trajectory Structure Characterization
4.4. Results of Flow Pattern Recognition
4.5. Analysis of Association Rules between Traffic Flows and Weather Factors
4.5.1. Case 1: Analysis of Traffic Flows with No Main Spatial Cluster
Rule ID | Association Rules | Measures | |||
---|---|---|---|---|---|
LHS | RHS | Support | Confidence | Lift | |
1-1-1 | Bh = False | F_p = 1 | 0.143 | 0.384 | 1.717 |
3-1-1 | CB = True | F_p = 3 | 0.015 | 0.349 | 2.905 |
3-1-2 | Ws > 15KT | 0.021 | 0.300 | 2.504 | |
3-1-3 | RA = True | 0.024 | 0.217 | 1.808 | |
3-1-4 | Ws = 12–15KT | 0.027 | 0.206 | 1.716 | |
3-1-5 | Bh = True | 0.121 | 0.193 | 1.603 |
Rule ID | Association Rules | Measures | ||||
---|---|---|---|---|---|---|
LHS | RHS | Support | Confidence | Lift | ||
Three-item rules | 1-2-1 | Bh = False & Wd = 90–180° | F_p = 1 | 0.033 | 0.438 | 1.959 |
1-2-2 | Bh = False & Wd = 0–90° | 0.029 | 0.429 | 1.919 | ||
1-2-3 | Bh = False & Ws = 3–6KT | 0.048 | 0.428 | 1.915 | ||
1-2-4 | Bh = False & We = False | 0.099 | 0.422 | 1.887 | ||
1-2-5 | Bh = False & Vis > 8 km | 0.132 | 0.412 | 1.842 | ||
1-2-6 | Bh = False & RA = False | 0.122 | 0.411 | 1.838 | ||
1-2-7 | Bh = False & Wdc = False | 0.066 | 0.408 | 1.825 | ||
1-2-8 | Bh = False & CB = False | 0.130 | 0.407 | 1.823 | ||
1-2-9 | Bh = False & Ceiling = 300–900 m | 0.018 | 0.406 | 1.819 | ||
1-2-10 | Bh = False & TS = False | 0.133 | 0.405 | 1.813 | ||
3-2-1 | Bh = True & CB = True | F_p = 3 | 0.015 | 0.500 | 4.159 | |
3-2-2 | RA = True & CB = True | 0.011 | 0.421 | 3.502 | ||
3-2-3 | Ceiling = 150–300 m & CB = True | 0.014 | 0.362 | 3.012 | ||
3-2-4 | Ws > 15KT & Cover = SCT | 0.015 | 0.349 | 2.905 | ||
3-2-5 | Cover = SCT & CB = True | 0.013 | 0.345 | 2.874 | ||
3-2-6 | Bh = True & Ws > 15KT | 0.021 | 0.333 | 2.773 | ||
3-2-7 | Ws > 15KT & Ceiling = 150–300 m | 0.020 | 0.330 | 2.741 | ||
3-2-8 | Bh = True & RA = True | 0.024 | 0.321 | 2.671 | ||
3-2-9 | Wd = 180–270° & Ws > 15KT | 0.012 | 0.305 | 2.538 | ||
3-2-10 | Wd = 180–270° & RA = True | 0.014 | 0.299 | 2.483 | ||
Four-item rules | 1-3-1 | Bh = False & Wd = 0–90° & Ws = 3–6KT | F_p = 1 | 0.013 | 0.543 | 2.430 |
1-3-2 | Bh = False & Wd = 0–90° & Cover = FEW | 0.018 | 0.491 | 2.198 | ||
1-3-3 | Bh = False & We = False & Wd = 90–180° | 0.027 | 0.471 | 2.107 | ||
1-3-4 | Bh = False & Ws = 3–6KT & Wdc = False | 0.022 | 0.464 | 2.076 | ||
1-3-5 | Bh = False & Wd = 0–90° & RA = False | 0.027 | 0.459 | 2.054 | ||
1-3-6 | Bh = False & We = False & Ceiling = 300–900 m | 0.014 | 0.455 | 2.035 | ||
1-3-7 | Bh = False & Wd = 0–90° & Wdc = False | 0.023 | 0.453 | 2.030 | ||
1-3-8 | Bh = False & Wd = 90–180° & Ws = 3–6KT | 0.015 | 0.449 | 2.010 | ||
1-3-9 | Bh = False & We = False & Cover = FEW | 0.055 | 0.444 | 1.990 | ||
1-3-10 | Bh = False & Wd = 0–90° & Vis > 8 km | 0.029 | 0.442 | 1.979 | ||
3-3-1 | Bh = True & CB = True & RA = True | F_p = 3 | 0.011 | 0.593 | 4.930 | |
3-3-2 | Bh = True & CB = True & Ceiling = 150–300 m | 0.014 | 0.525 | 4.367 | ||
3-3-3 | Bh = True & CB = True & Cover = SCT | 0.013 | 0.514 | 4.272 | ||
3-3-4 | Ws > 15KT & Ceiling = 150–300 m & Pre < 1005 hPa | 0.017 | 0.455 | 3.781 | ||
3-3-5 | Bh = True & Wd = 180–270° & RA = True | 0.014 | 0.455 | 3.781 | ||
3-3-6 | Bh = True & Wd = 180–270° & Ws > 15KT | 0.012 | 0.448 | 3.722 | ||
3-3-7 | Bh = True & Ws > 15KT & Pre < 1005 hPa | 0.018 | 0.433 | 3.605 | ||
3-3-8 | Ceiling = 150–300 m & CB = True & Pre < 1005 hPa | 0.010 | 0.429 | 3.565 | ||
3-3-9 | Bh = True & Wd = 180–270° & Ws = 12–15KT | 0.018 | 0.415 | 3.448 | ||
3-3-10 | Ceiling = 150–300 m & CB = True & RA = True | 0.010 | 0.405 | 3.372 |
4.5.2. Case 2: Analysis of Traffic Flows with One Main Spatial Cluster
Rule ID | Association Rules | Measures | |||
---|---|---|---|---|---|
LHS | RHS | Support | Confidence | Lift | |
4-1-1 | Wd = 90–180° | F_p = 4 | 0.065 | 0.300 | 2.437 |
4-1-2 | Wd = 0–90° | 0.044 | 0.256 | 2.081 | |
9-1-1 | Wd = 180–270° | F_p = 9 | 0.102 | 0.212 | 1.538 |
Rule ID | Association Rules | Measures | ||||
---|---|---|---|---|---|---|
LHS | RHS | Support | Confidence | Lift | ||
Three-item rules | 4-2-1 | Wd = 90–180° & Ws = 9–12KT | F_p = 4 | 0.023 | 0.379 | 3.085 |
4-2-2 | Wd = 90–180° & Bh = True | 0.048 | 0.341 | 2.777 | ||
4-2-3 | Wd = 90–180° & Ceiling < 150 m | 0.012 | 0.333 | 2.711 | ||
4-2-4 | Wd = 0–90° & Ws = 6–9KT | 0.016 | 0.324 | 2.635 | ||
4-2-5 | Wd = 90–180° & Vis > 8 km | 0.065 | 0.309 | 2.517 | ||
4-2-6 | Wd = 90–180° & Cover = SCT | 0.029 | 0.309 | 2.512 | ||
4-2-7 | Wd = 90–180° & CB = False | 0.064 | 0.304 | 2.472 | ||
4-2-8 | Wd = 90–180° & RA = False | 0.058 | 0.302 | 2.460 | ||
4-2-9 | Wd = 90–180° & TS = False | 0.064 | 0.301 | 2.448 | ||
4-2-10 | Wd = 90–180° & WS = False | 0.065 | 0.301 | 2.445 | ||
9-2-1 | Wd = 180–270° & Ceiling = 300–900 m | F_p = 9 | 0.015 | 0.296 | 2.405 | |
9-2-2 | We = True & Ws = 12–15KT | 0.046 | 0.296 | 2.405 | ||
9-2-3 | Wd = 180–270° & Ws = 12–15KT | 0.038 | 0.288 | 2.342 | ||
9-2-4 | Wd = 180–270° & Bh = True | 0.017 | 0.287 | 2.337 | ||
9-2-5 | Wd = 180–270° & Cover = FEW | 0.023 | 0.276 | 2.248 | ||
9-2-6 | Wd = 180–270° & RA = False | 0.011 | 0.262 | 1.901 | ||
Four-item rules | 4-3-1 | Wd = 90–180° & Ws = 9–12KT & T < 30 °C | F_p = 4 | 0.013 | 0.559 | 4.545 |
4-3-2 | Wd = 90–180° & Bh = True & T < 30 °C | 0.019 | 0.424 | 3.451 | ||
4-3-3 | Wd = 90–180° & Cover = SCT & Pre < 1005 hPa | 0.013 | 0.413 | 3.359 | ||
4-3-4 | Wd = 0–90° & Ws = 6–9KT & Ceiling = 150–300 m | 0.014 | 0.400 | 3.253 | ||
4-3-5 | We = True & Dp < 24 °C & RA = False | 0.013 | 0.396 | 3.219 | ||
4-3-6 | We = True & Bh = True & Dp < 24 °C | 0.011 | 0.390 | 3.174 | ||
4-3-7 | Wd = 90–180° & Ws = 9–12KT & CB = False | 0.023 | 0.389 | 3.162 | ||
4-3-8 | Wd = 90–180° & Ws = 9–12KT & Vis > 8 km | 0.023 | 0.388 | 3.158 | ||
4-3-9 | Wd = 90–180° & Ws = 9–12KT & TS = False | 0.023 | 0.388 | 3.158 | ||
4-3-10 | Wd = 90–180° & Ws = 9–12KT & RA = False | 0.021 | 0.387 | 3.151 | ||
9-3-1 | Wd = 180–270° & Ws = 12–15KT & We = True | F_p = 9 | 0.011 | 0.333 | 2.416 | |
9-3-2 | Ws = 12–15KT & We = True & Dp ≥ 24 °C | 0.012 | 0.327 | 2.369 | ||
9-3-3 | Ws = 12–15KT & We = True & T ≥ 30 °C | 0.012 | 0.304 | 2.200 | ||
9-3-4 | Wd = 180–270° & Ceiling = 300–900 m &RA = False | 0.011 | 0.286 | 2.071 | ||
9-3-5 | Wd = 180–270° & Vis > 8 km & Ceiling = 300–900 m | 0.011 | 0.271 | 1.965 | ||
9-3-6 | Ws = 12–15KT & We = True & CB = False | 0.012 | 0.269 | 1.947 | ||
9-3-7 | Wd = 180–270° & Ceiling = 300–900 m &CB = False | 0.011 | 0.267 | 1.933 | ||
9-3-8 | Wd = 180–270° & Ceiling = 300–900 m &TS = False | 0.011 | 0.267 | 1.933 | ||
9-3-9 | Wd = 180–270° & Ws = 12–15KT & Cover = SCT | 0.012 | 0.266 | 1.925 | ||
9-3-10 | Ws = 12–15KT & We = True & Vis > 8 km | 0.012 | 0.265 | 1.918 |
4.5.3. Case 3: Analysis of Traffic Flows with Multiple Main Spatial Clusters
Rule ID | Association Rules | Measures | ||||
---|---|---|---|---|---|---|
LHS | RHS | Support | Confidence | Lift | ||
Three-item rules | 0-2-1 | Bh = True & Ceiling < 150 m | F_p = 0 | 0.020 | 0.182 | 2.136 |
0-2-2 | We = True & Ceiling < 150 m | 0.011 | 0.172 | 2.015 | ||
0-2-3 | Wd = 180–270° & Ceiling < 150 m | 0.015 | 0.162 | 1.895 | ||
0-2-4 | Wd = 180–270° & Cover = FEW | 0.043 | 0.154 | 1.808 | ||
0-2-5 | Ws = 9–12KT & Cover = FEW | 0.018 | 0.153 | 1.797 | ||
0-2-6 | Wd = 180–270° & Ws = 9–12KT | 0.025 | 0.153 | 1.791 | ||
7-2-1 | Wd = 180–270° & Bh = True | F_p = 7 | 0.066 | 0.188 | 1.753 | |
7-2-2 | Bh = True & TS = True | 0.014 | 0.185 | 1.725 | ||
7-2-3 | Bh = True & Ceiling < 150 m | 0.019 | 0.176 | 1.642 | ||
7-2-4 | Bh = True & Ws = 9–12KT | 0.028 | 0.164 | 1.529 | ||
7-2-5 | Bh = True & Cover = FEW | 0.058 | 0.164 | 1.527 | ||
7-2-6 | Wd = 180–270° & Ws = 12–15KT | 0.014 | 0.162 | 1.512 | ||
Four-item rules | 0-3-1 | We = True & Bh = True & Ceiling < 150 m | F_p = 0 | 0.010 | 0.234 | 2.745 |
0-3-2 | Wd = 180–270° & Ws = 9–12KT & Cover = FEW | 0.018 | 0.215 | 2.517 | ||
0-3-3 | Bh = True & Ceiling = 150–300 m & Pre ≥ 1005 hPa | 0.015 | 0.208 | 2.431 | ||
0-3-4 | Wd = 180–270° & Bh = True & Ceiling < 150 m | 0.014 | 0.206 | 2.415 | ||
0-3-5 | Ceiling < 150 m & T ≥ 30 °C & Pre ≥ 1005 hPa | 0.011 | 0.200 | 2.342 | ||
0-3-6 | Wd = 180–270° & Ws = 9–12KT & Bh = True | 0.023 | 0.194 | 2.274 | ||
0-3-7 | Wd = 180–270° & Bh = True & Cover = FEW | 0.038 | 0.193 | 2.262 | ||
0-3-8 | Bh = True & Ceiling < 150 m & T ≥ 30 °C | 0.015 | 0.190 | 2.221 | ||
0-3-9 | Wd = 180–270° & Ceiling < 150 m & T ≥ 30 °C | 0.013 | 0.188 | 2.203 | ||
0-3-10 | Bh = True & Ceiling < 150 m & RA = False | 0.020 | 0.187 | 2.191 | ||
7-3-1 | Bh = True & Ceiling < 150 m & T ≥ 30 °C | F_p = 7 | 0.016 | 0.207 | 1.929 | |
7-3-2 | Bh = True & Ws = 9–12KT & Wdc = False | 0.018 | 0.206 | 1.924 | ||
7-3-3 | Bh = True & Wd = 180–270° & T ≥ 30 °C | 0.064 | 0.206 | 1.922 | ||
7-3-4 | Bh = True & Wd = 180–270° & Ceiling = 150–300 m | 0.052 | 0.201 | 1.870 | ||
7-3-5 | Bh = True & Wd = 180–270° & Cover = FEW | 0.040 | 0.200 | 1.865 | ||
7-3-6 | Bh = True & Wd = 180–270° & Wdc = False | 0.042 | 0.198 | 1.847 | ||
7-3-7 | Ws = 9–12KT & Wdc = False & T ≥ 30 °C | 0.017 | 0.195 | 1.821 | ||
7-3-8 | Bh = True & Wd = 180–270° & Dp ≥ 24 °C | 0.066 | 0.193 | 1.801 | ||
7-3-9 | Bh = True & Wd = 180–270° & TS = True | 0.010 | 0.192 | 1.791 | ||
7-3-10 | Bh = True & Wd = 180–270° & WS = True | 0.010 | 0.190 | 1.772 |
4.5.4. Identification of Important Factor Combinations for Dominant Arrival Flow Patterns
5. Conclusions
- (1)
- Establishing a prediction model of air traffic flow patterns with time series characteristics based on each meteorological factor and its combinations, aiming to enrich this weather-related decision support tool for ATM.
- (2)
- Analyzing the association between the forecasted weather obtained from Terminal Aerodrome Forecasts (TAF) and traffic flow patterns, and then comparing the differences in association rules between the two types of weather (i.e., METAR vs. TAF).
- (3)
- Determining how to deal with the potential noise brought by other non-meteorological factors to the analysis process is also an interesting topic. Taking various factors into account or estimating the impact of such noise is a research perspective worthy of further attempts.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Du, J.; Hu, M.; Zhang, W.; Yin, J. Finding Similar Historical Scenarios for Better Understanding Aircraft Taxi Time: A Deep Metric Learning Approach. IEEE Intell. Transp. Syst. Mag. 2022, 15, 101–116. [Google Scholar] [CrossRef]
- Lui, G.N.; Hon, K.K.; Liem, R.P. Weather impact quantification on airport arrival on-time performance through a Bayesian statistics modeling approach. Transp. Res. Part C Emerg. Technol. 2022, 143, 103811. [Google Scholar] [CrossRef]
- Arneson, H.; Bombelli, A.; Segarra-Torné, A.; Tse, E. Analysis of convective-weather impact on pre-departure routing decisions for flights traveling between Fort Worth Center and New York Air Center. In Proceedings of the 17th AIAA Aviation Technology, Integration, and Operations Conference, Denver, CO, USA, 5–9 June 2017. [Google Scholar] [CrossRef]
- Lui, G.N.; Liem, R.P.; Hon, K. Towards understanding the impact of convective weather on aircraft arrival traffic at the Hong Kong International Airport. In Proceedings of the 2020 The Third International Workshop on Environment and Geoscience, Chengdu, China, 18–20 July 2020; IOP Publishing: Bristol, UK, 2020; Volume 569. [Google Scholar] [CrossRef]
- Olive, X.; Grignard, J.; Dubot, T.; Saint-Lot, J. Detecting Controllers’ Actions in Past Mode S Data by Autoencoder-Based Anomaly Detection. In Proceedings of the 8th SESAR Innovation Days, Salzburg, Austria, 3–7 December 2018. [Google Scholar]
- Murca, M.C.R.; DeLaura, R.; Hansman, R.J.; Jordan, R.; Reynolds, T.; Balakrishnan, H. Trajectory clustering and classification for characterization of air traffic flows. In Proceedings of the 16th AIAA Aviation Technology, Integration, and Operations Conference, Washington, DC, USA, 13–17 June 2016. [Google Scholar] [CrossRef]
- Lemetti, A.; Polishchuk, T.; Polishchuk, V.; Sáez García, R.; Prats Menéndez, X. Identification of significant impact factors on Arrival Flight Efficiency within TMA. In Proceedings of the ICRAT 2020, Virtual Event, 15 September 2020; pp. 1–8. [Google Scholar]
- Liu, Y.L.; Hansen, M.; Lovell, D.J.; Chuang, C.; Ball, M.O.; Gulding, J.M. Causal analysis of en route flight inefficiency-the US experience. In Proceedings of the Twelfth USA/Europe Air Traffic Management Research and Development Seminar, Seattle, WA, USA, 26–30 June 2017; Volume 570. [Google Scholar]
- Rodríguez-Sanz, Á.; Cano, J.; Rubio Fernandez, B. Impact of Weather Conditions on Airport Arrival Delay and Throughput. Aircr. Eng. Aerosp. Technol. 2022, 94, 60–78. [Google Scholar] [CrossRef]
- Olive, X.; Basora, L. Detection and identification of significant events in historical aircraft trajectory data. Transp. Res. Part C Emerg. Technol. 2020, 119, 102737. [Google Scholar] [CrossRef]
- Gariel, M.; Srivastava, A.N.; Feron, E. Trajectory clustering and an application to airspace monitoring. IEEE Trans. Intell. Transp. Syst. 2011, 12, 1511–1524. [Google Scholar] [CrossRef]
- Rehm, F. Clustering of flight tracks. In Proceedings of the AIAA Infotech@Aerospace 2010, Atlanta, GA, USA, 20–22 April 2010. [Google Scholar] [CrossRef]
- Corrado, S.; Puranik, T.; Pinon, O.; Mavris, D. Trajectory clustering within the terminal airspace utilizing a weighted distance function. Proceedings 2020, 59, 7. [Google Scholar] [CrossRef]
- Olive, X.; Basora, L.; Viry, B.; Alliger, R. Deep trajectory clustering with autoencoders. In Proceedings of the International Conference on Research in Air Transportation 2020, ICRAT, Online, 15 September 2020; pp. 1–8. [Google Scholar]
- Enriquez, M. Identifying Temporally Persistent Flows in the Terminal Airspace via Spectral Clustering; Air Traffic Management R&D Seminar: Chicago, IL, USA, 2013; pp. 1–8. [Google Scholar]
- Murca, M.C.R.; Hansman, R.J. Identification, characterization, and prediction of traffic flow patterns in multi-airport systems. IEEE Trans. Intell. Transp. Syst. 2018, 20, 1683–1696. [Google Scholar] [CrossRef]
- Basora, L.; Olive, X.; Dubot, T. Recent advances in anomaly detection methods applied to aviation. Aerospace 2019, 6, 117. [Google Scholar] [CrossRef]
- Corrado, S.J.; Puranik, T.G.; Fischer, O.P.; Mavris, D.N. A clustering-based quantitative analysis of the interdependent relationship between spatial and energy anomalies in ADS-B trajectory data. Transp. Res. Part C Emerg. Technol. 2021, 131, 103331. [Google Scholar] [CrossRef]
- Corrado, S.J.; Puranik, T.G.; Fischer, O.P.; Mavris, D.N.; Rose, R.L.; Williams, J.; Heidary, R. Deep Autoencoder for Anomaly Detection in Terminal Airspace Operations. In Proceedings of the AIAA AVIATION 2021 FORUM, Virtual Event, 2–6 August 2021; p. 2405. [Google Scholar]
- Zhang, W.; Hu, M.; Du, J. An end-to-end framework for flight trajectory data analysis based on deep autoencoder network. Aerosp. Sci. Technol. 2022, 127, 107726. [Google Scholar] [CrossRef]
- Murça, M.C.R.; Hansman, R.J.; Li, L.S.; Ren, P. Flight trajectory data analytics for characterization of air traffic flows: A comparative analysis of terminal area operations between New York, Hong Kong and Sao Paulo. Transp. Res. Part C Emerg. Technol. 2018, 97, 324–347. [Google Scholar] [CrossRef]
- Lui, G.N.; Klein, T.; Liem, R.P. Data-Driven Approach for Aircraft Arrival Flow Investigation at Terminal Maneuvering Area. In Proceedings of the AIAA AVIATION 2020 FORUM, Virtual Event, 15–19 June 2020. [Google Scholar] [CrossRef]
- Lemetti, A.; Polishchuk, T.; Sáez, R.; Prats, X. Analysis of weather impact on flight efficiency for Stockholm Arlanda Airport arrivals. In ENRI International Workshop on ATM/CNS; Springer: Singapore, 2019; pp. 77–92. [Google Scholar]
- Olive, X.; Basora, L. Identifying anomalies in past en-route trajectories with clustering and anomaly detection methods. In Proceedings of the ATM Seminar 2019, Vienne, Austria, 17–21 June 2019. [Google Scholar]
- Murça, M.C.R.; Guterres, M.X.; de Oliveira, M.W.; Szenczuk, J.B.T.; Souza, W.S.S.A. Characterizing the Brazilian airspace structure and air traffic performance via trajectory data analytics. J. Air Transp. Manag. 2020, 85, 101798. [Google Scholar] [CrossRef]
- Zhou, C.; Paffenroth, R.C. Anomaly detection with robust deep autoencoders. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August 2017; pp. 665–674. [Google Scholar]
- Zhang, W.; Tan, X. Combining outlier detection and reconstruction error minimization for label noise reduction. In Proceedings of the 2019 IEEE International Conference on Big Data and Smart Computing (BigComp), Kyoto, Japan, 27 February–2 March 2019; IEEE: Piscataway, NJ, USA; pp. 1–4. [Google Scholar]
- Boyd, S.P.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Xie, J.; Girshick, R.; Farhadi, A. Unsupervised deep embedding for clustering analysis. In Proceedings of the 33rd International Conference on Machine Learning, New York City, NY, USA, 19–24 June 2016; pp. 478–487. [Google Scholar]
- Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. kdd 1996, 96, 226–231. [Google Scholar]
- Agrawal, R.; Imieliński, T.; Swami, A. Mining association rules between sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, Washington, DC, USA, 25–28 May 1993; pp. 207–216. [Google Scholar]
- Xu, R.; Luo, F. Risk prediction and early warning for air traffic controllers’ unsafe acts using association rule mining and random forest. Saf. Sci. 2021, 135, 105125. [Google Scholar] [CrossRef]
- Abesamis, P.P.R.; de Dios Bulos, R.; Ching, M. Improving Aviation Incidents using Association Rule Mining Algorithm and Time Series Analysis. In Proceedings of the 2020 4th International Conference on Information Processing and Control Engineering University of California, Berkeley, CA, USA, 27–29 June 2020; IOP Conference Series: Materials Science and Engineering. IOP Publishing: Bristol, UK, 2020; Volume 946. [Google Scholar] [CrossRef]
- Agrawal, R.; Srikant, R. Fast algorithms for mining association rules. In Proceedings of the 20th International Conference on Very Large Data Bases, VLDB, Santiago, Chile, 2–15 September 1994; pp. 487–499. [Google Scholar]
- Schäfer, M.; Strohmeier, M.; Lenders, V.; Martinovic, I.; Wilhelm, M. Bringing up OpenSky: A large-scale ADS-B sensor network for research. In Proceedings of the 13th International Symposium on Information Processing in Sensor Networks, IPSN-14, Berlin, Germany, 15–17 April 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 83–94. [Google Scholar]
- Federal Aviation Administration. Aviation Weather Services; Report No.: AC 00-45E; Federal Aviation Administration: Washington, DC, USA, 2016.
- Olive, X. Traffic, a toolbox for processing and analysing air traffic data. J. Open Source Softw. 2019, 4, 1518. [Google Scholar] [CrossRef]
- Hahsler, M.; Grün, B.; Hornik, K. arules—A computational environment for mining association rules and frequent item sets. J. Stat. Softw. 2005, 14, 1–25. [Google Scholar] [CrossRef]
- Hahsler, M.; Chelluboina, S. Visualizing association rules: Introduction to the R-extension package arulesViz. R Project Module 2011, 6, 223–238. [Google Scholar]
- Du, J.; Chen, H.; Zhang, W. A deep learning method for data recovery in sensor networks using effective spatio-temporal correlation data. Sens. Rev. 2019, 39, 208–217. [Google Scholar] [CrossRef]
- Levina, E.; Bickel, P. Maximum likelihood estimation of intrinsic dimension. Adv. Neural Inf. Process. Syst. 2004, 17, 777–784. [Google Scholar]
- Ashari, I.F.; Nugroho, E.D.; Baraku, R.; Yanda, I.N.; Liwardana, R. Analysis of Elbow, Silhouette, Davies-Bouldin, Calinski-Harabasz, and Rand-Index Evaluation on K-Means Algorithm for Classifying Flood-Affected Areas in Jakarta. J. Appl. Inform. Comput. 2023, 7, 95–103. [Google Scholar] [CrossRef]
- Hahsler, M.; Karpienko, R. Visualizing association rules in hierarchical groups. J. Bus. Econ. 2017, 87, 317–335. [Google Scholar] [CrossRef]
Parameters | Examples |
---|---|
Timestamp | 2019-06-17 00:08:56 |
Callsign | 5J240 |
Icao24 | 7583e7 |
Latitude | 21.34° |
Longitude | 114.72° |
Altitude | 18,650 feet |
Groundspeed | 459.0 knots |
Vertical rate | −2432.0 ft/min |
Track angle | 306.67° |
Parameters | Examples |
Timestamp | 2019-06-17 00:08:56 |
Parameters | Examples |
---|---|
Wind direction | 230° |
Wind speed | 10 miles/h |
Visibility | 5000 m |
Precipitation | RA |
Vision obstruction | FG |
Cloud cover | SCT |
Cloud ceiling | 3000 m |
Temperature | 30 °C |
Dew point | 24 °C |
Pressure | 999 hPa |
Factor | Abbr | Category | Definitions | |
---|---|---|---|---|
Time factors | Weekend | We | T/F | Saturday, Sunday/Monday to Friday |
Busy hour | Bh | T/F | 07:00–22:00/22:00–07:00 | |
Weather factors | Wind direction | Wd | WD1~WD5 | 0–90°/90–180°/180–270°/270–360°/VRB |
Wind speed | Ws | WP1~WP6 | <3KT/3–6KT/6–9KT/9–12KT/12–15KT/>15KT | |
Wind direction change | Wdc | T/F | True/False | |
Visibility | Vis | VIS1~VIS4 | <1.5 km (Low IFR)/1.5–5 km (IFR)/5–8 km (Marginal VFR)/>8 km (VFR) | |
Cloud cover | Cover | COV1~COV4 | SKC(0)/FEW(1–2)/SCT(3–4)/BKN(5–7) | |
Cloud ceiling | Ceiling | CEI1~CEI4 | <150 m (Low IFR)/150–300 m (IFR)/300–900 m (Marginal VFR)/>900 m (VFR) | |
Temperature | T | T1~T2 | <30 °C/≥30 °C | |
Dew point | Dp | DP1~DP2 | <24 °C/≥24 °C | |
Pressure | Pre | PRE1~PRE2 | <1005 hPa/≥1005 hPa | |
Rain | RA | T/F | True/False | |
Thunderstorm | TS | T/F | True/False | |
Wind shear | WS | T/F | True/False | |
Cumulonimbus | CB | T/F | True/False | |
Traffic flow | Flow pattern | Fp | FP0~FP9 | Pattern 0 to 9 (from Section 4.4) |
Flow Patterns | Description | |
---|---|---|
No main cluster | 1 | (1) Mixed clusters. (2) Runway configurations are 25C and 07C. (3) A small number of spatial anomalies. (4) Very few flights. |
3 | (1) Mixed clusters. (2) Runway configurations are 25C and 07C. (3) A large number of spatial anomalies. | |
One main cluster | 9 | (1) East cluster. (2) Runway configuration is 25C. (3) A small number of spatial anomalies. |
4 | (1) East cluster. (2) Runway configuration is 07C. (3) A small number of spatial anomalies. | |
Multiple main clusters | 0 | (1) Southwest and east clusters. (2) Runway configuration is 25C. (3) A small number of spatial anomalies. |
7 | (1) Southwest, northwest, and east clusters. (2) Runway configuration is 25C. (3) A medium number of spatial anomalies. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Pan, W.; Zhu, X.; Yang, C.; Du, J.; Yin, J. Identification of Traffic Flow Spatio-Temporal Patterns and Their Associated Weather Factors: A Case Study in the Terminal Airspace of Hong Kong. Aerospace 2024, 11, 531. https://doi.org/10.3390/aerospace11070531
Zhang W, Pan W, Zhu X, Yang C, Du J, Yin J. Identification of Traffic Flow Spatio-Temporal Patterns and Their Associated Weather Factors: A Case Study in the Terminal Airspace of Hong Kong. Aerospace. 2024; 11(7):531. https://doi.org/10.3390/aerospace11070531
Chicago/Turabian StyleZhang, Weining, Weijun Pan, Xinping Zhu, Changqi Yang, Jinghan Du, and Jianan Yin. 2024. "Identification of Traffic Flow Spatio-Temporal Patterns and Their Associated Weather Factors: A Case Study in the Terminal Airspace of Hong Kong" Aerospace 11, no. 7: 531. https://doi.org/10.3390/aerospace11070531
APA StyleZhang, W., Pan, W., Zhu, X., Yang, C., Du, J., & Yin, J. (2024). Identification of Traffic Flow Spatio-Temporal Patterns and Their Associated Weather Factors: A Case Study in the Terminal Airspace of Hong Kong. Aerospace, 11(7), 531. https://doi.org/10.3390/aerospace11070531