AI-Based Anomaly Detection Techniques for Structural Fault Diagnosis Using Low-Sampling-Rate Vibration Data
Abstract
:1. Introduction
2. Methodology
2.1. Converting Data Format from Vibration to Image
2.2. SR3 (Super-Resolution via Repeated Refinement)
2.3. LSTM-AE
2.4. Anomaly Detection Process for LR Data
3. Experimental Data Preparation for Anomaly Detection
3.1. Drone Arm Data
3.2. CWRU Bearing Vibration Data
4. Anomaly Detection Results
Model | Epochs | Learning Rate | Batch | Threshold Weight | Channels |
---|---|---|---|---|---|
SR3 | 500,000 | 0.0001 | 2 | 3 | CWRU: 8 |
Drone: 3 |
4.1. Effect of Sampling Rate for Anomaly Detection
4.2. SR3 Algorithm Validation
4.3. Anomaly Detection Using Upscaled Data
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carcel, C.R.; Starr, A.; Ottewill, J.R.; Jaramillo, V.H. Vibration-based Rotorcraft Gearbox Monitoring under Varying Operating Conditions. In Proceedings of the PHM Society European Conference, Milan, Italy, 3–5 July 2018. [Google Scholar]
- Qi, X.; Theilliol, D.; Qi, J.; Zhang, Y.; Han, J. A literature review on Fault Diagnosis methods for manned and unmanned helicopters. In Proceedings of the 2013 International Conference on Unmanned Aircraft Systems, Atlanta, GA, USA, 28–31 May 2013. [Google Scholar]
- Mauricio, A.; Zhou, L.; Mba, D.; Gryllias, K. Vibration-Based Condition Monitoring of Helicopter Gearboxes Based on Cyclostationary Analysis. ASME J. Eng. Gas Turbines Power 2020, 142, 031010. [Google Scholar] [CrossRef]
- Zhang, X.D.; Tang, L. Robust Fault Diagnosis of Aircraft Engines: A Nonlinear Adaptive Estimation-Based Approach. IEEE Trans. Control Syst. Technol. 2013, 21, 861–868. [Google Scholar] [CrossRef]
- Bartelmus, W.; Zimroz, R. Vibration condition monitoring of planetary gearbox under varying external load. Mech. Syst. Signal Process. 2009, 23, 246–257. [Google Scholar] [CrossRef]
- Zhan, Y.; Makis, V.; Jardine, A.K.S. Adaptive state detection of gearboxes under varying load conditions based on parametric modelling. Mech. Syst. Signal Process. 2006, 20, 188–221. [Google Scholar] [CrossRef]
- Altaf, M.; Akram, T.; Khan, M.A.; Iqbal, M.; Ch, M.M.I.; Hsu, C.-H. A New Statistical Features Based Approach for Bearing Fault Diagnosis Using Vibration Signals. Sensors 2022, 22, 2012. [Google Scholar] [CrossRef] [PubMed]
- Heng, R.B.W.; Nor, M.J.M. Statistical analysis of sound and vibration signals for monitoring rolling element bearing condition. Appl. Acoust. 2005, 53, 211–226. [Google Scholar] [CrossRef]
- Aswani, I.; Kumar Kar, N.; Ganguly, T.; Ramesh, G.P.; Tejaswini, N.P. A Fault Diagnosis of Sound and Vibration Signals Using Statistical Features and Machine Learning Algorithm. In Proceedings of the 2023 IEEE International Conference on Integrated Circuits and Communication Systems (ICICACS), Raichur, India, 24–25 February 2023. [Google Scholar]
- Ergen, T.; Kozat, S.S. Unsupervised anomaly detection with LSTM neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 3127–3141. [Google Scholar] [CrossRef]
- Malhotra, P.; Vig, L.; Shroff, G.M.; Agarwal, P. Long Short Term Memory Networks for Anomaly Detection in Time Series. In Proceedings of the European Symposium on Artificial Neural Networks, Bruges, Belgium, 22–24 April 2015. [Google Scholar]
- Bontemps, L.; Cao, V.L.; McDermott, J.; Le-Khac, N. Collective Anomaly Detection Based on Long Short-Term Memory Recurrent Neural Networks. In Proceedings of the International Conference on Future Data and Security Engineering, Can Tho City, Vietnam, 23–25 November 2016. [Google Scholar]
- Mohsin, M.; Shoaib, A.S.; Andreas, D.; Sheraz, A. DeepAnT: A deep learning approach for unsupervised anomaly detection in time series. IEEE Access 2018, 7, 1991–2005. [Google Scholar]
- Huan, S.; Deepta, R.; Jayaraman, T.; Andreas, S. Attend and diagnose: Clinical time series analysis using attention models. AAAI Press 2018, 501, 4091–4098. [Google Scholar]
- Najafi, S.A.; Asemani, M.H.; Setoodeh, P. Attention and Autoencoder Hybrid Model for Unsupervised Online Anomaly Detection. arXiv 2024, arXiv:2401.03322. [Google Scholar]
- Khozeimeh, F.; Sharifrazi, D.; Izadi, N.H.; Joloudari, J.H.; Shoeibi, A.; Alizadehsani, R.; Górriz, J.M.; Hussain, S.; Sani, Z.A.; Moosaei, H.; et al. Combining a convolutional neural network with autoencoders to predict the survival chance of COVID-19 patients. Sci. Rep. 2021, 11, 15343. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Kim, J.; You, I. An Anomaly Detection Method Based on Multiple LSTM-Autoencoder Models for In-Vehicle Network. Electronics 2023, 12, 3543. [Google Scholar] [CrossRef]
- Darban, Z.Z.; Webb, G.I.; Pan, S.; Aggarwal, C.C.; Salehi, M. Deep Learning for Time Series Anomaly Detection: A Survey. arXiv 2022, arXiv:2211.05244. [Google Scholar]
- Hundman, K.; Constantinou, V.; Laporte, C.; Colwell, I.; Söderström, T. Detecting Spacecraft Anomalies Using LSTMs and Nonparametric Dynamic Thresholding. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018. [Google Scholar]
- Ahmad, S.; Styp-Rekowski, K.; Nedelkoski, S.; Kao, O. Autoencoder-based Condition Monitoring and Anomaly Detection Method for Rotating Machines. In Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA, 10–13 December 2020; pp. 4093–4102. [Google Scholar]
- Cheng, D.; Fan, Y.; Fang, S.; Wang, M.; Liu, H. ResNet-AE for Radar Signal Anomaly Detection. Sensors 2022, 22, 6249. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Clark, R.; Birke, R.; Schönborn, S.; Trigoni, N.; Roberts, S. Anomaly Detection for Time Series Using VAE-LSTM Hybrid Model. In Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 4322–4326. [Google Scholar]
- Xu, J.; Wu, H.; Wang, J.; Long, M. Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy. arXiv 2021, arXiv:2110.02642. [Google Scholar]
- Wong, P.K.; Wong, M.L.; Leung, K.S. Super-resolution for sequence series data using long-short term memory network. In Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, USA, 27–29 November 2017; pp. 1–8. [Google Scholar]
- Kuleshov, V.; Birnbaum, S.; Enam, Z.; Koh, P.W.; Ermon, S. Time Series Super Resolution withTemporal Adaptive Batch Normalization. Available online: https://www.semanticscholar.org/paper/Time-Series-Super-Resolution-withTemporal-Adaptive-Kuleshov-Birnbaum/4a483261f60f43248982bb62aa2ae18f8d8b7e17 (accessed on 20 October 2018).
- Saharia, C.; Ho, J.; Chan, W.; Salimans, T.; Fleet, D.J.; Norouzi, M. Image Super-Resolution via Iterative Refinement. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 45, 4713–4726. [Google Scholar] [CrossRef] [PubMed]
- Yub, J.; Eun Gyo, P.; Seon Ho, J.; Jeong Ho, K. A Study on AI-Based Structural Fault Diagnosis Techniques Using Vibration Data. In Proceedings of the APIC-IST2024, Takamatsu, Shikoku, Japan, 23–26 June 2024. [Google Scholar]
- Do, V.; Chong, U. Signal Model-Based Fault Detection and Diagnosis for Induction Motors Using Features of Vibration Signal in Two- Dimension Domain. J. Mech. Eng. 2018, 57, 655–666. [Google Scholar] [CrossRef]
- Yub, J.; Eun Gyo, P.; Jeong Ho, K. Detection of Abnormalities in Major Components of Unmanned Vehicles Using AI Algorithms Based on Autoencoder. Jeju, Republic of Korea. Available online: https://www-dbpia-co-kr-ssl.openlink.inha.ac.kr/journal/articleDetail?nodeId=NODE11660231 (accessed on 13 October 2023).
- Wang, P.; Wang, H.; Hart, P.; Guo, X.; Mahapatra, K. Application of Chebyshev’s Inequality in Online Anomaly Detection Driven by Streaming PMU Data. In Proceedings of the 2020 IEEE Power & Energy Society General Meeting (PESGM), Montreal, QC, Canada, 2–6 August 2020. [Google Scholar]
- Case Western Reserve University Bearing Data Center. Available online: https://engineering.case.edu/bearingdatacenter (accessed on 22 December 2023).
Data Name | Data Definition |
---|---|
HR_normal_data | Normal HR_data for LSTM-AE training |
HR_tr_data | 60% of the HR_data used for SR3 training |
LR_tr_data | HR_tr_data modified to low-sampling-rate data |
C_tr_data | LR_tr_data cubic-interpolated to the same size as HR_tr_data |
HR_val_data | 10% of the HR_data used for SR3 validation |
LR_val_data | HR_val_data modified to low-sampling-rate data |
C_val_data | LR_val_data cubic-interpolated to the same size as HR_val_data |
Up_val_data | Upscaled C_val_data using the SR3 model |
HR_test_data | 30% of the HR_data used for SR3 testing |
LR_test_data | HR_test_data modified to low-sampling-rate data |
C_test_data | LR_test_data cubic-interpolated to the same size as HR_test_data |
Up_test_data | Upscaled C_test_data using the SR3 model |
Model | Epochs | Learning Rate | Batch | Threshold Weight | Channels |
---|---|---|---|---|---|
SR3 | 500,000 | 0.0001 | 2 | 3 | CWRU: 8 |
Drone: 3 |
Model | Layer | LSTM Cell Num | Epochs | Learning Rate | Batch | Threshold Weight |
---|---|---|---|---|---|---|
LSTM-AE | Encoder (4 layers) | (128/64/32/4) | 100 | 0.001 | 100 | 3 |
Decoder (4 layers) | (4/32/64/128) |
Case | DE_0HP | DE_1HP | DE_2HP | DE_3HP | FE_0HP | FE_1HP | FE_2HP | FE_3HP |
---|---|---|---|---|---|---|---|---|
HR_tr_data | 28.7 | 24.4 | 20.9 | 25.9 | 31.1 | 27.1 | 25.4 | 24.0 |
HR_val_data | 7.1 | 6.7 | 6.1 | 8.3 | 8.3 | 7.4 | 7.0 | 6.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, Y.; Park, E.-G.; Jeong, S.-H.; Kim, J.-H. AI-Based Anomaly Detection Techniques for Structural Fault Diagnosis Using Low-Sampling-Rate Vibration Data. Aerospace 2024, 11, 509. https://doi.org/10.3390/aerospace11070509
Jung Y, Park E-G, Jeong S-H, Kim J-H. AI-Based Anomaly Detection Techniques for Structural Fault Diagnosis Using Low-Sampling-Rate Vibration Data. Aerospace. 2024; 11(7):509. https://doi.org/10.3390/aerospace11070509
Chicago/Turabian StyleJung, Yub, Eun-Gyo Park, Seon-Ho Jeong, and Jeong-Ho Kim. 2024. "AI-Based Anomaly Detection Techniques for Structural Fault Diagnosis Using Low-Sampling-Rate Vibration Data" Aerospace 11, no. 7: 509. https://doi.org/10.3390/aerospace11070509
APA StyleJung, Y., Park, E. -G., Jeong, S. -H., & Kim, J. -H. (2024). AI-Based Anomaly Detection Techniques for Structural Fault Diagnosis Using Low-Sampling-Rate Vibration Data. Aerospace, 11(7), 509. https://doi.org/10.3390/aerospace11070509