Rectangular Natural Feature Recognition and Pose Measurement Method for Non-Cooperative Spacecraft
Abstract
:1. Introduction
2. Space On-Orbit Measurement Tasks and Vision Measurement Algorithm Framework
2.1. Space On-Orbit Measurement Tasks
2.2. Overview of the On-Orbit Pose Measurement Method
3. Planar Projection Properties of Rectangular Features
4. The Parallelogram Fitting Algorithm for Rectangular Features
4.1. Parallelogram Fitting Algorithm Framework
4.2. Line Fitting of Contour Points
4.3. Parallelogram Fitting
4.3.1. Solving of the Points Sets on Both Sides of the Center Line
4.3.2. Initial Fitting of a Set of Parallel Lines
4.3.3. Initially Fitting Another Set of Parallel Lines
4.3.4. Parallelogram Fitting
5. Pose Solution Method for a Non-Cooperative Target
6. Experimental Verification
6.1. Satellite Natural Feature Recognition Experiment
6.2. Measurement Accuracy Test of Satellite Poses
Method | Detection Success Rate (%) | Detection Time (s) | Position Error (mm) | Position Error/Observation Distance (%) | Attitude Error (°) |
---|---|---|---|---|---|
This paper’s method | 98.5 | 0.14 | 9.02 | 0.22 | 0.571 |
Outer rectangle fitting | 98.5 | 0.09 | 26.40 | 0.66 | 2.973 |
LIDAR | 98 | 0.35 | 29.67 | 0.74 | - |
Edge line detection | 67 | 0.29 | 15.06 | 0.38 | 1.088 |
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhi, X.; Yao, X.S.; Yu, F. Position and attitude joint determination for failed satellite in space close-distance approach. J. Nanjing Univ. Aeronaut. Astronaut. 2013, 45, 583–589. [Google Scholar]
- Flores-Abad, A.; Ma, O.; Pham, K. A review of space robotics technologies for on-orbit servicing. Prog. Aerosp. Sci. 2014, 68, 1–26. [Google Scholar] [CrossRef]
- Shan, M.; Guo, J.; Gill, E. Review and comparison of active space debris capturing and removal methods. Prog. Aerosp. Sci. 2016, 80, 18–32. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, F.; Huang, P. Impulsive super-twisting sliding mode control for space debris capturing via tethered space net robot. IEEE Trans. Ind. Electron. 2019, 67, 6874–6882. [Google Scholar] [CrossRef]
- Huang, P.; Zhang, F.; Cai, J.; Wang, D.; Meng, Z.; Guo, J. Dexterous tethered space robot: Design, measurement, control, and experiment. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 1452–1468. [Google Scholar] [CrossRef]
- Segal, S.; Carmi, A.; Gurfil, P. Stereovision-based estimation of relative dynamics between noncooperative satellites: Theory and experiments. IEEE Trans. Control Syst. Technol. 2013, 22, 568–584. [Google Scholar] [CrossRef]
- Rybus, T. Obstacle avoidance in space robotics: Review of major challenges and proposed solutions. Prog. Aerosp. Sci. 2018, 101, 31–48. [Google Scholar] [CrossRef]
- Li, Y.; Bo, Y.; Zhao, G. Survey of measurement of position and pose for space non-cooperative target. In Proceedings of the 2015 34th Chinese Control Conference, Hangzhou, China, 28–30 July 2015; pp. 528–536. [Google Scholar]
- Franzese, V.; Hein, A.M. Modelling Detection Distances to Small Bodies Using Spacecraft Cameras. Modelling 2023, 4, 600–610. [Google Scholar] [CrossRef]
- Attzs, M.N.J.; Mahendrakar, T.; Mahendrakar, T. Comparison of Tracking-By-Detection Algorithms for Real-Time Satellite Component Tracking. Comput. Electron. Agric. 2023. Available online: https://digitalcommons.usu.edu/smallsat/2023/all2023/225/ (accessed on 22 December 2023).
- Piergentili, F.; Santoni, F.; Seitzer, P. Attitude determination of orbiting objects from light curve measurements. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 81–90. [Google Scholar] [CrossRef]
- Piattoni, J.; Ceruti, A.; Piergentili, F. Automated image analysis for space debris identification and astrometric measurements. Acta Astronaut. 2014, 103, 176–184. [Google Scholar] [CrossRef]
- English, C.; Okouneva, G.; Saint-Cyr, P. Real-time dynamic pose estimation systems in space lessons learned for system design and performance evaluation. Int. J. Intell. Control Syst. 2011, 16, 79–96. [Google Scholar]
- Liu, L.; Zhao, G.; Bo, Y. Point Cloud Based Relative Pose Estimation of a Satellite in Close Range. Sensors 2016, 16, 824–841. [Google Scholar] [CrossRef]
- Tzschichholz, T.; Boge, T.; Schilling, K. Relative Pose Estimation of Satellites Using PMD-/ccd-sensor Data Fusion. Acta Astronaut. 2015, 109, 25–33. [Google Scholar] [CrossRef]
- Klionovska, K.; Benninghoff, H. Initial Pose Estimation Using PMD Sensor During the Rendezvous Phase in On-orbit Servicing Missions. In Proceedings of the 27th AAS/AIAA Space Flight Mechanics Meeting, San Antonio, USA, 5–9 February 2017; pp. 263–279. [Google Scholar]
- Gao, X.; Xu, K.; Zhang, H. Position-pose measurement algorithm based on single camera and laser range-finder. J. Sci. Instrum. 2007, 28, 1479–1485. [Google Scholar]
- Duan, F.; Xie, H.; Bernelli Zazzera, F. Observer-Based Fault-Tolerant Integrated Orbit-Attitude Control of Solarsail. In Proceedings of the International Astronautical Congress: IAC Proceedings, Baku, Azerbaijan, 2–6 October 2023; pp. 1–7. [Google Scholar]
- Volpe, R.; Circi, C.; Sabatini, M. GNC architecture for an optimal rendezvous to an uncooperative tumbling target using passive monocular camera. Acta Astronaut. 2022, 196, 380–393. [Google Scholar] [CrossRef]
- Bechini, M.; Lavagna, M.; Lunghi, P. Dataset generation and validation for spacecraft pose estimation via monocular images processing. Acta Astronaut. 2023, 204, 358–369. [Google Scholar] [CrossRef]
- Kilduff, T.; Machuca, P.; Rosengren, A.J. Crater Detection for Cislunar Autonomous Navigation through Convolutional Neural Networks. In Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, Big Sky, MT, USA, 13–17 August 2023; pp. 1–12. [Google Scholar]
- Mei, Y.; Liao, Y.; Gong, K. SE (3)-based Finite-time Fault-tolerant Control of Spacecraft Integrated Attitude-orbit. J. Syst. Simul. 2023, 35, 277–285. [Google Scholar]
- Kobayashi, D.; Burton, A.; Frueh, C. AI-Assisted Near-Field Monocular Monostatic Pose Estimation of Spacecraft. In Proceedings of the The Advanced Maui Optical and Space Surveillance Technologies (AMOS) Conference, Wailea, HI, USA, 19–22 September 2023. [Google Scholar]
- Sharma, S.; Beierle, C.; D’Amico, S. Pose estimation for non-cooperative spacecraft rendezvous using convolutional neural networks. In Proceedings of the 2018 IEEE Aerospace Conference, Big Sky, MT, USA, 3–10 March 2018; pp. 1–12. [Google Scholar]
- Peng, J.; Xu, W.; Liang, B. Pose measurement and motion estimation of space non-cooperative targets based on laser radar and stereo-vision fusion. IEEE Sens. J. 2018, 19, 3008–3019. [Google Scholar] [CrossRef]
- Peng, J.; Xu, W.; Yan, L.; Pan, E.; Liang, B.; Wu, A.G. A Pose Measurement Method of a Space Non-cooperative Target Based on Maximum Outer Contour Recognition. IEEE Trans. Aerosp. Electron. Syst. 2019, 56, 512–526. [Google Scholar] [CrossRef]
- Peng, J.; Xu, W.; Liang, B. Virtual Stereo-vision Pose Measurement of Non-cooperative Space Targets for a Dual-arm Space Robot. IEEE Trans. Instrum. Meas. 2019, 32, 1–13. [Google Scholar]
- Yu, F.; He, Z.; Qiao, B. Stereo-vision-based relative pose estimation for the rendezvous and docking of noncooperative satellites. Math. Probl. Eng. 2014, 21, 1–12. [Google Scholar] [CrossRef]
- Xu, W.; Yan, P.; Wang, F. Vision-based simultaneous measurement of manipulator configuration and target pose for an intelligent cable-driven robot. Mech. Syst. Signal Process. 2022, 165, 108347. [Google Scholar] [CrossRef]
- Chaudhuri, D.; Samal, A.; Yu, F. A simple method for fitting of bounding rectangle to closed regions. Pattern Recognit. 2007, 40, 1981–1989. [Google Scholar] [CrossRef]
- Chaudhuri, D.; Kushwaha, N.K.; Sharif, I. Finding best-fitted rectangle for regions using a bisection method. Mach. Vis. Appl. 2011, 23, 1263–1271. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, Z. Rectangle fitting via quadratic programming. In Proceedings of the 2015 IEEE 17th International Workshop on Multimedia Signal Processing (MMSP), Xiamen, China, 19–21 October 2015. [Google Scholar]
- Ayache, N. Rectification of images for binocular and trinocular stereovision. In Proceedings of the International Conference on Pattern Recognition, Rome, Italy, 14–17 November 1988; pp. 348–379. [Google Scholar]
Distance | Orientation: 0°, 0°, 0° | Orientation: 0°, 10°, 0° | Orientation: 0°, −10°, 0° | |||
---|---|---|---|---|---|---|
Position Error (mm) | Attitude Error (°) | Position Error (mm) | Attitude Error (°) | Position Error (mm) | Attitude Error (°) | |
2.5 m | 7.513 | 0.497 | 7.732 | 0.449 | 7.162 | 0.503 |
4 m | 8.174 | 0.421 | 9.852 | 0.575 | 8.813 | 0.518 |
6 m | 9.363 | 0.716 | 11.591 | 0.763 | 10.972 | 0.694 |
Pose Errors | X | Y | Z | Root Mean Square |
---|---|---|---|---|
Position errors (mm) | 2.326 | 3.899 | 7.793 | 9.019 |
Attitude errors (°) | 0.170 | 0.469 | 0.278 | 0.571 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Xu, W.; Yan, L.; Xie, C.; Pu, W. Rectangular Natural Feature Recognition and Pose Measurement Method for Non-Cooperative Spacecraft. Aerospace 2024, 11, 125. https://doi.org/10.3390/aerospace11020125
Wang F, Xu W, Yan L, Xie C, Pu W. Rectangular Natural Feature Recognition and Pose Measurement Method for Non-Cooperative Spacecraft. Aerospace. 2024; 11(2):125. https://doi.org/10.3390/aerospace11020125
Chicago/Turabian StyleWang, Fengxu, Wenfu Xu, Lei Yan, Chengqing Xie, and Weihua Pu. 2024. "Rectangular Natural Feature Recognition and Pose Measurement Method for Non-Cooperative Spacecraft" Aerospace 11, no. 2: 125. https://doi.org/10.3390/aerospace11020125
APA StyleWang, F., Xu, W., Yan, L., Xie, C., & Pu, W. (2024). Rectangular Natural Feature Recognition and Pose Measurement Method for Non-Cooperative Spacecraft. Aerospace, 11(2), 125. https://doi.org/10.3390/aerospace11020125