Aerodatabase Development and Integration and Mission Analysis of a Mach 2 Supersonic Civil Aircraft
Abstract
:1. Introduction
2. State of the Art
3. Aerodatabase Building
3.1. Low-Fidelity Aerodatabase
3.2. High-Fidelity Aerodatabase
- ◦
- Tolerances, which represent the confidence level on the aerodynamic coefficients in nominal conditions, and are mainly related to the accuracy of numerical and physical modeling used for the computations (grid, turbulence modeling, etc.) and the quality and accuracy of the experimental data (balance, pressure sensors, repeatability, etc.).
- ◦
- Variations, which depend on the estimated possible differences between nominal and real flight conditions (both numerical and experimental), and are mainly based on the experience made in previous flights.
3.3. Stability and Trim Analysis
3.4. Mission Simulation
4. Aerodatabase Building for CS-1
4.1. Case Study
4.2. Aerodatabase Development
5. Trajectory Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- MDO and REgulations for Low-boom and Environmentally Sustainable Supersonic aviation. Available online: https://cordis.europa.eu/project/id/101006856 (accessed on 31 January 2022).
- Viola, N.; Fusaro, R.; Ferretto, D.; Gori, O.; Saracoglu, B.; Ispir, A.C.; Schram, C.; Grewe, V.; Plezer, J.F.; Martinez, J.; et al. H2020 STRATOFLY Project: From Europe to Australia in less than 3 hours. In Proceedings of the 32nd Congress of the International Council of the Aeronautical Sciences, Shanghai, China, 6–10 September 2021. [Google Scholar]
- Carioscia, S.A.; Locke, J.W.; Boyd, L.D.; Lewis, M.J.; Halion Sun, R.P.; Smith, H. Commercial Development of Civilian Supersonic Aircraft; IDA Coument D-10845; IDA Science and Technology Policy Institute: Washington, DC, USA, 2019. [Google Scholar]
- Fusaro, R.; Ferretto, D.; Viola, N. Model-Based Object-Oriented systems engineering methodology for the conceptual design of a hypersonic transportation system. In Proceedings of the 2016 IEEE International Symposium on Systems Engineering (ISSE), Edinburgh, UK, 3–5 October 2016. [Google Scholar] [CrossRef]
- Ferretto, D.; Fusaro, R.; Viola, N. A conceptual design tool to support high-speed vehicle design. In Proceedings of the AIAA Aviation 2020 Forum, Virtual, 15–19 June 2020. [Google Scholar] [CrossRef]
- Cakir, B.O.; Ispir, A.C.; Saracoglu, B.H. Reduced order design and investigation of intakes for high speed propulsion systems. Acta Astronaut. 2022, 199, 259–276. [Google Scholar] [CrossRef]
- Ispir, A.C.; Saracoglu, B.H.; Magin, T.; Coussement, A. A methodology for estimating hypersonic engine performance by coupling supersonic reactive flow simulations with machine learning techniques. Aerosp. Sci. Technol. 2023, 140, 108501. [Google Scholar] [CrossRef]
- Goncalves, P.M.; Ispir, A.C.; Saracoglu, B.H. Development and optimization of a hypersonic civil aircraft propulsion plant with regenerator system. In Proceeding of the AIAA Propulsion and Energy 2019 Forum, Indianapolis, IN, USA, 19–22 August 2019. [Google Scholar] [CrossRef]
- Steelant, J.; Varvill, R.; Walton, C.; Defoort, S.; Hannemann, K.; Marini, M. Achievements obtained for sustained hypersonic flight within the LAPCAT-II project. In Proceedings of the 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Glasgow, UK, 6–9 July 2015; p. 3677. [Google Scholar]
- Fureby, C.; Nilsson, T. Large Eddy Simulation of cavity stabilized ramjet combustion. Aerosp. Sci. Technol. 2023, 141, 108503. [Google Scholar] [CrossRef]
- Bonelli, F.; Cutrone, L.; Votta, R.; Viggiano, A.; Magi, V. Preliminary design of a hypersonic air-breathing vehicle. In Proceedings of the 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, AIAA 2011-2319, San Francisco, CA, USA, 11–14 April 2011. [Google Scholar] [CrossRef]
- Wood, R.M. Supersonic Aerodynamics of Delta Wings; NASA Technical Paper 2771; NASA: Houston, TX, USA, 1988. [Google Scholar]
- Elle, B.J. An Investigation at Low Speed of the Flow Near the Apex of Thin Delta Wing with Sharp Leading Edges; Reports and Memoranda 3176; Aeronautical Research Council: London, UK, 1958. [Google Scholar]
- Visbal, M.R. Onset of vortex breakdown above a pitching delta wing. AIAA J. 1994, 32, 1568–1575. [Google Scholar] [CrossRef]
- Ekaterinaris, J.A.; Schiff, L.B. Numerical simulation of incidence and sweeep effects on delta wing vortex breakdown. J. Aircr. 1994, 31, 1043–1049. [Google Scholar] [CrossRef]
- Gursul, I. Review of unsteady vortex flow over delta wings. J. Aircr. 2005, 42, 299–319. [Google Scholar] [CrossRef]
- Taylor, G.; Gursul, I. Buffeting flows over a low sweep delta wing. AIAA J. 2004, 42, 1731–1745. [Google Scholar] [CrossRef]
- Nelson, R.C.; Pelletier, A. The unsteady aerodynamics of slender wings and aircraft undergoing large amplitude maneuvers. Prog. Aerosp. Sci. 2003, 39, 185–248. [Google Scholar] [CrossRef]
- Piccirillo, G.; Viola, N.; Fusaro, R.; Federico, L. Guidelines for the LTO Noise Assessment of Future Civil Supersonic Aircraft in Conceptual Design. Aerospace 2022, 9, 27. [Google Scholar] [CrossRef]
- Graziani, S. Sonic boom CFD near-field analysis of a Mach 5 configuration. Mater. Res. Proc. 2023, 33, 83–90. [Google Scholar] [CrossRef]
- Pletzer, J.F.; Hauglustaine, D.; Cohen, Y.; Jöckel, P.; Grewe, V. The Climate Impact of Hypersonic Transport. EGUsphere 2022. [Google Scholar] [CrossRef]
- Pletzer, J.F.; Grewe, V. Sensitivities of atmospheric composition and climate to altitude and latitude of hypersonic aircraft emissions. EGUsphere 2023. [Google Scholar] [CrossRef]
- Viola, N.; Fusaro, R.; Gori, O.; Marini, M.; Roncioni, P.; Saccone, G.; Bodmer, D. STRATOFLY MR3–how to reduce the environmental impact of high-speed transportation. In Proceedings of the AIAA Scitech 2021 Forum, Virtual, 11–15 & 19–21 January 2021; p. 1877. [Google Scholar]
- Roncioni, P.; Vitagliano, P.L.; De Gregorio, F.; Pezzella, G.; Romano, L.; Paglia, F. Aerodynamic Appraisal of the VEGA-C Launcher. J. Spacecr. Rocket. 2023, 60, 5. [Google Scholar] [CrossRef]
- Sun, Y.; Smith, H.; Chen, H. Conceptual Design of Low-Boom Low-Drag Supersonic Transports; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2020. [Google Scholar]
- Aprovitola, A.; Di Nuzzo, P.E.; Pezzella, G.; Viviani, A. Aerodynamic Analysis of a Supersonic Transport Aircraft at Landing Speed Conditions. Energies 2021, 14, 6615. [Google Scholar] [CrossRef]
- Aprovitola, A.; Dyblenko, O.; Pezzella, G.; Viviani, A. Aerodynamic Analysis of a Supersonic Transport Aircraft at Low and High Speed Flow Conditions. Energies 2022, 9, 411. [Google Scholar] [CrossRef]
- Pamadi, B.N.; Brauckmann, G.J.; Ruth, M.J.; Fuhrmann, H.D. Aerodynamic Characteristics, Database Development and Flight Simulation of the X-34 Vehicle. In Proceedings of the 38th Aerospace Sciences Meeting & Exhibit, Reno, NV, USA, 10–13 January 2000. [Google Scholar] [CrossRef]
- Fusaro, R.; Gori, O.; Ferretto, D.; Viola, N.; Roncioni, P.; Marini, M. Integration of an increasing fidelity aerodynamic modelling approach in the conceptual design of hypersonic cruiser. In Proceedings of the 32nd Congress of the International Council of the Aeronautical Sciences, Shanghai, China, 6–10 September 2021. [Google Scholar]
- Viola, N.; Roncioni, P.; Gori, O.; Fusaro, R. Aerodynamic Characterization of Hypersonic Transportation Systems and Its Impact on Mission Analysis. Energies 2021, 14, 3590. [Google Scholar] [CrossRef]
- Anderson, J.D. Hypersonic and High Temperature Gas Dynamics; McGraw-Hill: New York, NY, USA, 1989. [Google Scholar]
- Anderson, J.D. Fundamentals of Aerodynamics, 5th ed.; McGraw-Hill: New York, NY, USA, 2011. [Google Scholar]
- Raymer, D.P. Aircraft Design: A Conceptual Approach, 6th ed.; Schetz, J.A., Ed.; AIAA Education Series; AIAA: Reston, VA, USA, 2018. [Google Scholar] [CrossRef]
- Schlichting, H. Boundary Layer Theory; McGraw-Hill: New York, NY, USA, 1979. [Google Scholar]
- Roncioni, P.; Vitagliano, P.L.; De Gregorio, F.; Paglia, F.; Milana, C. Aerodatabase of Vega C Launcher Development and Integration. In Proceedings of the 8th European Conference for Aeronautics and Space Sciences (EUCASS), Madrid, Spain, 1–4 July 2019. [Google Scholar]
- Langener, T.; Erb, S.; Steelant, J. Trajectory Simulation and Optimization of the LAPCAT MR2 Hypersonic Cruiser Concept. In Proceedings of the 29th Congress of the International Council of the Aeronautical Sciences, St. Petersburg, Russia, 7–12 September 2014. ICAS 2014 428. [Google Scholar]
- Fusaro, R.; Ferretto, D.; Viola, N. MBSE approach to support and formalize mission alternatives generation and selection processes for hypersonic and suborbital transportation systems. In Proceedings of the 2017 IEEE International Systems Engineering Symposium (ISSE), Vienna, Austria, 11–13 October 2017. [Google Scholar] [CrossRef]
Mach [-] | Clean α [deg] | Flap (α = 0°) δ [deg] |
---|---|---|
0.30 | −5° -> 30°, step 5° | −25° -> 25°, step 10° |
0.60 | −5° -> 30°, step 5° | −25° -> 25°, step 10° |
0.80 | −5° -> 30°, step 5° | −25° -> 25°, step 10° |
0.95 | −5° -> 30°, step 5° | −25° -> 25°, step 10° |
1.05 | −5° -> 30°, step 5° | −25° -> 25°, step 10° |
1.20 | −5° -> 30°, step 5° | −25° -> 25°, step 10° |
1.60 | −5° -> 30°, step 5° | −25° -> 25°, step 10° |
2.00 | −5° -> 30°, step 5° | −25° -> 25°, step 10° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roncioni, P.; Marini, M.; Gori, O.; Fusaro, R.; Viola, N. Aerodatabase Development and Integration and Mission Analysis of a Mach 2 Supersonic Civil Aircraft. Aerospace 2024, 11, 111. https://doi.org/10.3390/aerospace11020111
Roncioni P, Marini M, Gori O, Fusaro R, Viola N. Aerodatabase Development and Integration and Mission Analysis of a Mach 2 Supersonic Civil Aircraft. Aerospace. 2024; 11(2):111. https://doi.org/10.3390/aerospace11020111
Chicago/Turabian StyleRoncioni, Pietro, Marco Marini, Oscar Gori, Roberta Fusaro, and Nicole Viola. 2024. "Aerodatabase Development and Integration and Mission Analysis of a Mach 2 Supersonic Civil Aircraft" Aerospace 11, no. 2: 111. https://doi.org/10.3390/aerospace11020111
APA StyleRoncioni, P., Marini, M., Gori, O., Fusaro, R., & Viola, N. (2024). Aerodatabase Development and Integration and Mission Analysis of a Mach 2 Supersonic Civil Aircraft. Aerospace, 11(2), 111. https://doi.org/10.3390/aerospace11020111