Efficient Locomotion for Space Robots Inspired by the Flying Snake
Abstract
:1. Introduction
2. Highly Efficient Mobility Strategy
3. Dynamic Modeling of Robotic System
3.1. CM Kinematics
3.2. Dynamic Modeling of the System
3.3. Momentum Analysis
3.4. Constraint in Motion Planning
4. Motion Planning
4.1. Prepare Configuration
4.2. Joint Space Paths and Parameterization of Jumping
4.3. Free-Floating Nonholonomic Planning
4.3.1. Short Flight
4.3.2. Long Flight
4.4. Soft Landing
5. Algorithm Verification
5.1. Scenario 1: Short-Distance Movement
5.2. Scenario 2: Long-Distance Movement
5.3. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Moghaddam, B.M.; Chhabra, R. On the guidance, navigation and control of in-orbit space robotic missions: A survey and prospective vision. Acta Astronaut. 2021, 184, 70–100. [Google Scholar] [CrossRef]
- Sho, N.; Keiko, N.-M. GITAI USA: Providing safe and affordable means of labor in space. In Proceedings of the ASCEND 2023, Las Vegas, NV, USA, 23–25 October 2023. AIAA 2023-4744. [Google Scholar]
- Tucker, V.A. The energetic cost of moving about. Am. Sci. 1975, 63, 413–419. [Google Scholar] [PubMed]
- Graham, M.; Socha, J.J. Dynamic movements facilitate extreme gap crossing in flying snakes. J. Exp. Biol. 2022, 225, jeb242923. [Google Scholar] [CrossRef] [PubMed]
- Wensing, P.M.; Posa, M.; Hu, Y. Optimization-based control for dynamic legged robots. IEEE Trans. Robot. 2024, 40, 43–63. [Google Scholar] [CrossRef]
- Katayama, S.; Murooka, M.; Tazaki, Y. Model predictive control of legged and humanoid robots: Models and algorithms. Adv. Robot. 2023, 37, 298–315. [Google Scholar] [CrossRef]
- Vaquero, T.S.; Daddi, G.; Thakker, R. EELS: Autonomous snake-like robot with task and motion planning capabilities for ice world exploration. Sci. Robot. 2024, 9, eadh8332. [Google Scholar] [CrossRef]
- Bualat, M.; Barlow, J.; Fong, T. Astrobee: Developing a free-flying robot for the international space station. In Proceedings of the ASCEND 2015, Pasadena, CA, USA, 31 August–2 September 2015. AIAA 2015-4643. [Google Scholar]
- Li, D.L.; Zhong, L.; Zhu, W. A survey of space robotic technologies for on-orbit assembly. Space-Sci. Tech. 2022, 2022, 9849170. [Google Scholar] [CrossRef]
- Staritz, P.J.; Skaff, S.; Urmson, C. Skyworker: A robot for assembly, inspection and maintenance of large scale orbital facilities. In Proceedings of the IEEE International Conference on Robotics and Automation, Seoul, Republic of Korea, 21–26 May 2001; pp. 4180–4185. [Google Scholar]
- Yang, S.L.; Meng, D.S.; Jiang, P. Kinematic analysis and gait planning of a three-branch relative robot for on-orbit assembly. In Proceedings of the IEEE International Conference on Robotics and Automation, Sanya, China, 27–31 December 2021; pp. 1884–1889. [Google Scholar]
- Chen, Y.Q.; Qian, H.H.; Xu, Y.S. Optimization for Rail-type Climbing Robot in Space. In Proceedings of the IEEE International Conference on Mechatronics and Automation, Takamatsu, Japan, 4–7 August 2013; pp. 1540–1545. [Google Scholar]
- Hopkins, J.K.; Spranklin, B.W.; Gupta, S.K. A survey of snake-inspired robot designs. Bioinspir. Biomim. 2009, 4, 021001. [Google Scholar] [CrossRef]
- Owen, T. Biologically inspired robots: Snake-like locomotors and manipulators. Robotica 1994, 12, 282. [Google Scholar]
- Ostrowski, J.; Burdick, J. Gait kinematics for a serpentine robot. In Proceedings of the IEEE International Conference on Robotics and Automation 1996, Minneapolis, MN, USA, 22–28 April 1996; pp. 1294–1299. [Google Scholar]
- Chernousko, F.L. Snake-like locomotions of multilink mechanisms. J. Vib. Control 2003, 9, 235–256. [Google Scholar] [CrossRef]
- Bayraktaroglu, Z.Y. Snake-like locomotion: Experimentations with a biologically inspired wheel-less snake robo. Mech. Mach. Theory 2009, 44, 591–602. [Google Scholar] [CrossRef]
- Socha, J.J. Gliding flight in the paradise tree snake. Nature 2002, 418, 603–604. [Google Scholar] [CrossRef] [PubMed]
- Stirling, L.; Newman, D.; Willcox, K. Self-rotations in simulated microgravity: Performance effects of strategy training. Aviat. Space Environ. Med. 2009, 80, 5–14. [Google Scholar] [CrossRef]
- Stirling, L.A. Development of Astronaut Reorientation Methods: A Computational and Experimental Study; Massachusetts Institute of Technology: Cambridge, MA, USA, 2008. [Google Scholar]
- Yang, E.C.Y.; Chao, P.C.P.; Sung, C.K. Optimal control of an under-actuated system for landing with desired postures. IEEE Trans. Contr. Syst. Technol. 2011, 19, 248–255. [Google Scholar] [CrossRef]
- Bingham, J.T.; Lee, J.; Haksar, R.N. Orienting in mid-air through configuration changes to achieve a rolling landing for reducing impact after a fall. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 3610–3617. [Google Scholar]
- Kane, T.R.; Scher, M.P. A dynamical explanation of the falling cat phenomenon. Int. J. Solids Struct. 1969, 5, 663–670. [Google Scholar] [CrossRef]
- Garant, X.; Gosselin, C. Design and experimental validation of reorientation manoeuvres for a free falling robot inspired from the cat righting reflex. IEEE Trans. Robot. 2021, 37, 482–493. [Google Scholar] [CrossRef]
- Vafa, Z.; Dubowsky, S. The kinematics and dynamics of space manipulators: The virtual manipulator approach. Int. J. Robot. Res. 1990, 9, 3–21. [Google Scholar] [CrossRef]
- Saha, S.K. A unified approach to space robot kinematics. IEEE Trans. Robot. Autom. 1996, 12, 401–405. [Google Scholar] [CrossRef]
- Wittenburg, J. Multibody Systems: Dynamics of Systems of Rigid Bodies; Springer: London, UK, 2007. [Google Scholar]
- Rui, C.L.; Kolmanovsky, I.V.; McClamroch, N.H. Nonlinear attitude and shape control of spacecraft with articulated appendages and reaction wheels. IEEE Trans. Autom. Contr. 2000, 45, 1455–1469. [Google Scholar] [CrossRef]
- Yim, M.; Roufas, K.; Duff, D. Modular reconfigurable robots in space applications. Auton. Robot. 2003, 14, 225–237. [Google Scholar] [CrossRef]
- Trovarelli, F.; McRobb, M.; Hu, Z. Attitude control of an underactuated planar multibody system using momentum preserving internal torques. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020. AIAA 2020–1686. [Google Scholar]
- Nanos, K.; Papadopoulos, E. On the use of free-floating space robots in the presence of angular momentum. Intel. Serv. Robot. 2011, 4, 3–15. [Google Scholar] [CrossRef]
- Seweryn, K.; Basmadji, F.L.; Rybus, T. Space robot performance during tangent capture of an uncontrolled target satellite. J. Astronaut. Sci. 2022, 69, 1017–1047. [Google Scholar] [CrossRef]
- Papadopoulos, E.; Dubowsky, S. On the Nature of Control Algorithms for Free-Floating Space Manipulators. IEEE Trans. Robot. Autom. 1991, 7, 750–758. [Google Scholar] [CrossRef]
- Papadopoulos, E.; Fragkos, L.; Tortopidis, L. On robot gymnastics planning with non-zero angular momentum. In Proceedings of the IEEE International Conference on Robotics and Automation, Rome, Italy, 10–14 April 2007; pp. 1443–1448. [Google Scholar]
- Tortopidis, I.; Papadopoulos, E. Point-to-point planning: Methodologies for underactuated space robots. In Proceedings of the IEEE International Conference on Robotics and Automation, Orlando, FL, USA, 15–19 May 2006; pp. 3861–3866. [Google Scholar]
- Vukobratovic, M.; Borovac, B.; Potkonjak, V. ZMP: A review of some basic misunderstandings. Int. J. Hum. Robot. 2006, 3, 153–175. [Google Scholar] [CrossRef]
- Rybus, T. Obstacle avoidance in space robotics: Review of major challenges and proposed solutions. Prog. Aeosp. Sci. 2018, 101, 31–48. [Google Scholar] [CrossRef]
- Flores-Abad, A.; Ma, O.; Pham, K.; Ulrich, S. A review of space robotics technologies for on-orbit servicing. Prog. Aeosp. Sci. 2014, 68, 1–26. [Google Scholar] [CrossRef]
- Tortopidis, I.; Papadopoulos, E. On point-to-point motion planning for underactuated space manipulator systems. Robot. Auton. Syst. 2007, 55, 122–131. [Google Scholar] [CrossRef]
- Ding, X.L.; Wang, Y.C.; Wang, Y.B. A review of structures, verification, and calibration technologies of space robotic systems for on-orbit servicing. Sci. China Technol. Sci. 2021, 64, 462–480. [Google Scholar] [CrossRef]
- Hochbaum, D.S. Complexity and algorithms for nonlinear optimization problems. Ann. Oper. Res. 2007, 153, 257–296. [Google Scholar] [CrossRef]
Parameter | Link 0 | Link 1 | Link 2 |
---|---|---|---|
(m) | 0.4 | 0.8 | 0.6 |
(kg) | 3 | 6 | 5 |
(kg·m2) | 0.04 | 0.32 | 0.15 |
Computational Term | Scenario 1 | Scenario 2 |
---|---|---|
Distance (m) | 3.2 | 12 |
Relative angle (°) | 180 | 90 |
Parameter | Initial Condition () | Final Condition () | ||
---|---|---|---|---|
Joint 1 | Joint 2 | Joint 1 | Joint 2 | |
(°) | 9.49 | −54.2 | 9.49 | −54.2 |
(rad/s) | −0.42 | 2.92 | 0.42 | −2.92 |
(rad/s2) | 1.93 | 7.37 | 1.93 | 7.37 |
Parameter | Initial Condition () | Final Condition () | ||
---|---|---|---|---|
Joint 1 | Joint 2 | Joint 1 | Joint 2 | |
(°) | −63.65 | −78.43 | 88.39 | −78.43 |
(rad/s) | 0.08 | 2.63 | 0.55 | −2.63 |
(rad/s2) | −1.75 | 3.28 | −1.09 | 3.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Zhao, S.; Zhou, N.; Qi, J.; Zhao, N.; Fan, J.; Zhao, J.; Zhu, Y. Efficient Locomotion for Space Robots Inspired by the Flying Snake. Aerospace 2024, 11, 1025. https://doi.org/10.3390/aerospace11121025
Yang Z, Zhao S, Zhou N, Qi J, Zhao N, Fan J, Zhao J, Zhu Y. Efficient Locomotion for Space Robots Inspired by the Flying Snake. Aerospace. 2024; 11(12):1025. https://doi.org/10.3390/aerospace11121025
Chicago/Turabian StyleYang, Zhiyuan, Sikai Zhao, Nanlin Zhou, Jian Qi, Ning Zhao, Jizhuang Fan, Jie Zhao, and Yanhe Zhu. 2024. "Efficient Locomotion for Space Robots Inspired by the Flying Snake" Aerospace 11, no. 12: 1025. https://doi.org/10.3390/aerospace11121025
APA StyleYang, Z., Zhao, S., Zhou, N., Qi, J., Zhao, N., Fan, J., Zhao, J., & Zhu, Y. (2024). Efficient Locomotion for Space Robots Inspired by the Flying Snake. Aerospace, 11(12), 1025. https://doi.org/10.3390/aerospace11121025