Mixed-Integer Linear Programming Model for Scheduling Missions and Communications of Multiple Satellites
Abstract
:1. Introduction
2. Mathematical Programming Model
2.1. Problem Definition
2.2. Time-Space Network (TSN)
2.3. Mixed-Integer Linear Programming (MILP) Model
3. Numerical Experiments and Results
3.1. Experiment #1
3.2. Experiment #2
4. Conclusions and Future Studies
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Commercial Satellite Imaging Market. Available online: https://www.futuremarketinsights.com/reports/commercial-satellite-imaging-market (accessed on 9 January 2024).
- Space: Investing in the Final Frontier. Available online: https://www.morganstanley.com/ideas/investing-in-space (accessed on 9 January 2024).
- Sun, J.; Xhafa, F. A Genetic Algorithm for Ground Station Scheduling. In Proceedings of the 2011 International Conference on Complex, Intelligent and Software Intensive Systems (CISIS), Seoul, Republic of Korea, 30 June–2 July 2011; pp. 138–145. [Google Scholar]
- Spangelo, S.; Cutler, J.; Gilson, K.; Cohn, A. Optimization-based scheduling for the single-satellite, multi-ground station communication problem. Comput. Oper. Res. 2015, 57, 1–16. [Google Scholar] [CrossRef]
- Vazquez, R.; Perea, F.; Vioque, J.G. Resolution of an Antenna–Satellite assignment problem by means of Integer Linear Programming. Aerosp. Sci. Technol. 2014, 39, 567–574. [Google Scholar] [CrossRef]
- Wang, J.; Demeulemeester, E.; Qiu, D. A pure proactive scheduling algorithm for multiple earth observation satellites under uncertainties of clouds. Comput. Oper. Res. 2016, 74, 1–13. [Google Scholar] [CrossRef]
- Corrao, G.; Falone, R.; Gambi, E.; Spinsante, S. Ground station activity planning through a multi-algorithm optimisation ap-proach. In Proceedings of the 2012 IEEE First AESS European Conference on Satellite Telecommunications (ESTEL), Rome, Italy, 2–5 October 2012; pp. 1–6. [Google Scholar]
- Xhafa, F.; Sun, J.; Barolli, A.; Biberaj, A.; Barolli, L. Genetic algorithms for satellite scheduling problems. Mob. Inf. Syst. 2012, 8, 351–377. [Google Scholar] [CrossRef]
- Lee, J.; Wang, S.; Chung, D.; Hyun, C.; Choi, S.; Ko, K.; Jung, O. Visibility conflict resolution for multiple antennae and multi-satellites via genetic algorithm. In Proceedings of the 2013 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2013; pp. 1–10. [Google Scholar]
- Lee, J.; Kim, H.; Chung, H.; Ko, K. Genetic algorithm-based scheduling for ground support of multiple satellites and antennae considering operation modes. Int. J. Aeronaut. Space Sci. 2016, 17, 89–100. [Google Scholar] [CrossRef]
- Luo, K.; Wang, H.; Li, Y.; Li, Q. High-performance technique for satellite range scheduling. Comput. Oper. Res. 2017, 85, 12–21. [Google Scholar] [CrossRef]
- Jeong, E.; Kim, H. A Mathematical Model for Optimal Communication Scheduling between Multiple Satellites and Multiple Ground Stations. J. Soc. Korea Ind. Syst. Eng. 2018, 41, 39–49. [Google Scholar] [CrossRef]
- Pachler, N.; Crawley, E.F.; Cameron, B.G. Beam-to-satellite scheduling for high throughput satellite constellations using par-ticle swarm optimization. In Proceedings of the 2022 IEEE Aerospace Conference (AERO), Big Sky, MT, USA, 5–12 March 2022; pp. 1–9. [Google Scholar]
- Sarkheyli, A.; Bagheri, A.; Ghorbani-Vaghei, B.; Askari-Moghadam, R. Using an effective tabu search in interactive resources scheduling problem for LEO satellites missions. Aerosp. Sci. Technol. 2013, 29, 287–295. [Google Scholar] [CrossRef]
- Kim, H.; Chang, Y.K. Mission scheduling optimization of SAR satellite constellation for minimizing system response time. Aerosp. Sci. Technol. 2015, 40, 17–32. [Google Scholar] [CrossRef]
- Kim, H.; Chang, Y.-K. Optimal mission scheduling for hybrid synthetic aperture radar satellite constellation based on weighting factors. Aerosp. Sci. Technol. 2020, 107, 106287. [Google Scholar] [CrossRef]
- Chu, X.; Chen, Y.; Tan, Y. An anytime branch and bound algorithm for agile earth observation satellite onboard scheduling. Adv. Space Res. 2017, 60, 2077–2090. [Google Scholar] [CrossRef]
- Mok, S.-H.; Jo, S.; Bang, H.; Leeghim, H. Heuristic-based mission planning for an agile earth observation satellite. Int. J. Aeronaut. Space Sci. 2019, 20, 781–791. [Google Scholar] [CrossRef]
- He, L.; Liu, X.L.; Chen, Y.W.; Xing, L.N.; Liu, K. Hierarchical scheduling for real-time agile satellite task scheduling in a dy-namic environment. Adv. Space Res. 2019, 63, 897–912. [Google Scholar] [CrossRef]
- Mitrovic-Minic, S.; Thomson, D.; Berger, J.; Secker, J. Collection planning and scheduling for multiple heterogeneous satellite missions: Survey, optimization problem, and mathematical programming formulation. In Modeling and Optimization in Space Engineering: State of the Art and New Challenges; Springer: Berlin/Heidelberg, Germany, 2019; pp. 271–305. [Google Scholar]
- Chen, X.; Reinelt, G.; Dai, G.; Spitz, A. A mixed integer linear programming model for multi-satellite scheduling. Eur. J. Oper. Res. 2019, 275, 694–707. [Google Scholar] [CrossRef]
- Barkaoui, M.; Berger, J. A new hybrid genetic algorithm for the collection scheduling problem for a satellite constellation. J. Oper. Res. Soc. 2020, 71, 1390–1410. [Google Scholar] [CrossRef]
- Wang, X.; Gu, Y.; Wu, G.; Woodward, J.R. Robust scheduling for multiple agile Earth observation satellites under cloud cov-erage uncertainty. Comput. Ind. Eng. 2021, 156, 107292. [Google Scholar] [CrossRef]
- Zhibo, E.; Shi, R.; Gan, L.; Baoyin, H.; Li, J. Multi-satellites imaging scheduling using individual reconfiguration based integer coding genetic algorithm. Acta Astronaut. 2020, 178, 645–657. [Google Scholar] [CrossRef]
- Lu, Z.; Shen, X.; Li, D.; Chen, Y.; Li, D. A Mission Planning Modeling Method of Multipoint Target Imaging Within a Single Pass for Super-Agile Earth Observation Satellite. IEEE Syst. J. 2021, 16, 1921–1932. [Google Scholar] [CrossRef]
- Ou, J.; Xing, L.; Yao, F.; Li, M.; Lv, J.; He, Y.; Song, Y.; Wu, J.; Zhang, G. Deep reinforcement learning method for satellite range scheduling problem. Swarm Evol. Comput. 2023, 77, 101233. [Google Scholar] [CrossRef]
- Wang, J.; Song, G.; Liang, Z.; Demeulemeester, E.; Hu, X.; Liu, J. Unrelated parallel machine scheduling with multiple time windows: An application to earth observation satellite scheduling. Comput. Oper. Res. 2023, 149, 106010. [Google Scholar] [CrossRef]
- Wang, P.; Reinelt, G.; Gao, P.; Tan, Y.J. A Model, a heuristic and a decision support system to solve the Earth observing satellites fleet scheduling problem. In Proceedings of the 2009 International Conference on Computers & Industrial Engineering, Troyes, France, 6–9 July 2009; pp. 256–261. [Google Scholar]
- Lee, J.; Kim, H.; Chung, H.; Kim, H.; Choi, S.; Jung, O.; Chung, D.; Ko, K. Schedule optimization of imaging missions for multiple satellites and ground stations using genetic algorithm. Int. J. Aeronaut. Space Sci. 2018, 19, 139–152. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, J.; He, R.; Ou, J. An Efficient Local Search Heuristic for Earth Observation Satellite Integrated Scheduling. Appl. Sci. 2020, 10, 5616. [Google Scholar] [CrossRef]
- Chang, Z.; Zhou, Z.; Xing, L.; Yao, F. Integrated scheduling problem for earth observation satellites based on three modeling frameworks: An adaptive bi-objective memetic algorithm. Memetic Comput. 2021, 13, 203–226. [Google Scholar] [CrossRef]
- Hu, X.; Zhu, W.; An, B.; Jin, P.; Xia, W. A branch and price algorithm for EOS constellation imaging and downloading inte-grated scheduling problem. Comput. Oper Res. 2019, 104, 74–89. [Google Scholar] [CrossRef]
- Kliewer, N.; Mellouli, T.; Suhl, L. A time–space network based exact optimization model for multi-depot bus scheduling. Eur. J. Oper. Res. 2006, 175, 1616–1627. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Rim, S.-C. The Train Conflict Resolution Model Using Time-space Network. J. Korean Soc. Railw. 2015, 18, 619–629. [Google Scholar] [CrossRef]
- Liao, Z.; Li, H.; Miao, J.; Corman, F. Railway capacity estimation considering vehicle circulation: Integrated timetable and vehicles scheduling on hybrid time-space networks. Transp. Res. Part C Emerg. Technol. 2021, 124, 102961. [Google Scholar] [CrossRef]
Classification | Communication | Mission | Consolidated Scheduling |
---|---|---|---|
SS-SG | - | Sarkheyli et al. [14], Kim and Chang [15,16], Chu et al. [17], Mok et al. [18], He et al. [19], Mitrovic-Minic et al. [20], Chen et al. [21], Barkaoui and Berger [22], Wang et al. [23], Zhibo et al. [24], Lu et al. [25], Ou et al. [26], Wang et al. [27] | - |
SS-MG | Sun and Xhafa [3], Spangelo et al. [4] | - | |
MS-SG | - | - | |
MS-MG | Vazquez et al. [5], Wang et al. [6], Corrao et al. [7], Xhafa et al. [8], Lee et al. [9], Lee et al. [10], Luo et al. [11], Jeong and Kim [12], Parchler et al. [13] | Wang et al. [28], Lee et al. [29], Chen et al. [30], Chang et al. [31], Hu et al. [32] |
VRPPD | This Study |
---|---|
Depot | Virtual nodes |
Vehicles | Satellites |
Nodes | VTWs |
Pickup | Acquire and save images |
Delivery | Downlink and delete images |
Load capacity | Capacity of an onboard memory |
<Parameters> | |
---|---|
Virtual node for specifying the start and end of a schedule path | |
Set of satellites | |
Set of missions | |
Set of G/S for downlink | |
Set of G/S for uplink | |
Set of all nodes; | |
Set of VTWs | |
VTW for mission or G/S | |
, | AOS and LOS of for satellite , respectively |
, | Amount of CMD and mission data for mission , respectively |
Data acquisition/transmission speed (Mbps) of satellite | |
Memory capacity of satellite | |
Initial data storage capacity of satellite |
<Decision Variables> | ||
---|---|---|
1, When satellite moves from to | ||
0, Otherwise | ||
1, When satellite performs mission at | ||
0, Otherwise | ||
1, Satellite downlinks mission from | ||
0, Otherwise | ||
Amount of mission ’s data at of satellite | ||
Total amount of data from of satellite | ||
Start time of the mission/communication for satellite of | ||
End time of the mission/communication for satellite of |
Class. | Satellite #1 | Satellite #2 | Satellite #3 |
---|---|---|---|
Initial capacity | 0 Mb | 0 Mb | 0 Mb |
Maximum capacity | 70 Mb | 80 Mb | 220 Mb |
Transmission speed | 5 Mbps | 5 Mbps | 5 Mbps |
Mission | CMD Data | Image Data |
---|---|---|
Mission #1 | 10 Mb | 50 Mb |
Mission #2 | 10 Mb | 50 Mb |
Mission #3 | 10 Mb | 50 Mb |
Mission #4 | 20 Mb | 50 Mb |
Mission #5 | 20 Mb | 50 Mb |
G/S or Mission Area | VTWs [AOS, LOS] | |||||
---|---|---|---|---|---|---|
Satellite #1 | Satellite #2 | Satellite #3 | ||||
#1 | #2 | #1 | #2 | #1 | #2 | |
G/S #1 (uplink) | [500, 550] | [550, 600] | [500, 550] | [550, 600] | [450, 520] | [505, 550] |
G/S #2 (uplink) | [502, 550] | [552, 600] | [500, 550] | [550, 600] | [450, 520] | [500, 550] |
Mission #1 | [560, 620] | [610, 670] | [525, 620] | [575, 670] | [490, 540] | [540, 570] |
Mission #2 | [570, 630] | [620, 680] | [525, 630] | [575, 680] | [530, 590] | [580, 620] |
Mission #3 | [670, 710] | [700, 750] | [540, 670] | [590, 720] | [510, 570] | [560, 600] |
Mission #4 | [555, 580] | [605, 630] | [560, 620] | [610, 670] | [485, 560] | [535, 590] |
Mission #5 | [600, 720] | [650, 770] | [565, 650] | [615, 700] | [480, 550] | [530, 590] |
G/S #1 (downlink) | [710, 780] | [760, 810] | [590, 660] | [640, 710] | [630, 700] | [680, 730] |
G/S #2 (downlink) | [690, 750] | [740, 820] | [580, 720] | [630, 760] | [580, 650] | [630, 680] |
G/S #3 (downlink) | [730, 830] | [780, 830] | [620, 760] | [670, 810] | [570, 680] | [620, 710] |
Satellite | Start | Arrival | Time Window [Start, End] |
---|---|---|---|
#1 | Virtual | G/S #2 (uplink) | [552, 554] |
G/S #2 (uplink) | Mission #1 | [560, 570] | |
Mission #1 | G/S #2 (downlink) | [690, 702] | |
G/S #2 (downlink) | Virtual | - | |
#2 | Virtual | G/S #2 (uplink) | [550, 552], [554, 562] |
G/S #2 (uplink) | Mission #5 | [565, 575] | |
Mission #5 | Mission #3 | [600, 610] | |
Mission #3 | Mission #4 | [650, 660] | |
Mission #4 | G/S #1 (downlink) | [696, 710] | |
G/S #1 (downlink) | G/S #3 (downlink) | [719, 731] | |
G/S #3 (downlink) | G/S #2 (downlink) | [731, 745] | |
G/S #2 (downlink) | Virtual | - | |
#3 | Virtual | G/S #1 (uplink) | [505, 507] |
G/S #1 (uplink) | Mission #2 | [580, 590] | |
Mission #2 | G/S #3 (downlink) | [698, 710] | |
G/S #3 (downlink) | Virtual | - |
Class. | KOMPSAT-2 | KOMPSAT-3 | KOMPSAT-3A |
---|---|---|---|
Nationality | S. Korea | S. Korea | S. Korea |
Semi-major axis | 668.66 km | 689.93 km | 531.60 km |
Inclination | 97.92° | 98.15° | 97.55° |
RAAN | 175.17° | 238.97° | 241.28° |
True anomaly | 332.19° | 332.08° | 314.97° |
Maximum capacity | 250 Mb | 150 Mb | 150 Mb |
Transmission speed | 5 Mbps | 5 Mbps | 5 Mbps |
Class. | Name | Nationality | Latitude | Longitude |
---|---|---|---|---|
Ground stations | Weno | S. Korea | 7.4409° | 151.858° |
Jeju | S. Korea | 33.541° | 126.811° | |
Daejeon | S. Korea | 36.379° | 127.356° | |
Mission areas | Tokyo | Japan | 35.811° | 139.851° |
Rio | Brazil | –22.748° | –43.189° | |
Pyeongyang | N. Korea | 39.032° | 125.75° | |
Tehran | Iran | 35.709° | 51.381° |
Class. | Mission Area | CMD Data | Image Data |
---|---|---|---|
Mission #1 | Tokyo | 20 Mb | 80 Mb |
Mission #2 | Rio | 20 Mb | 80 Mb |
Mission #3 | Pyeongyang | 20 Mb | 80 Mb |
Mission #4 | Tehran | 20 Mb | 80 Mb |
Mission #5 | Tehran | 20 Mb | 80 Mb |
Satellite | G/S (G) or Mission (M) | VTWs [AOS, LOS] | |||
---|---|---|---|---|---|
#1 | #2 | #3 | #4 | ||
KOMPSAT-2 | Daejeon (G) | [0, 10] | [552, 563] | [629, 642] | [1270, 1288] |
Jeju (G) | [10, 19] | [620, 637] | - | - | |
Weno (G) | [404, 457] | [1160, 1177] | - | - | |
Tokyo (M) | [1260, 1270] | - | - | - | |
Rio (M) | [600, 614] | - | - | - | |
Pyeongyang (M) | [358, 369] | [1204, 1217] | - | - | |
Tehran (M) | [40, 56] | [684, 700] | - | - | |
KOMPSAT-3 | Daejeon (G) | [183, 197] | [314, 321] | [950, 965] | [1173, 1192] |
Jeju (G) | [193, 199] | [325, 341] | [945, 956] | [1162, 1179] | |
Weno (G) | [60, 83] | [840, 861] | - | - | |
Tokyo (M) | [226, 238] | - | - | - | |
Rio (M) | [979, 995] | - | - | - | |
Pyeongyang (M) | - | - | - | - | |
Tehran (M) | [980, 990] | - | - | - | |
KOMPSAT-3A | Daejeon (G) | [155, 168] | [240, 253] | [1050, 1067] | - |
Jeju (G) | [165, 179] | [251, 264] | [1034, 1050] | - | |
Weno (G) | [66, 75] | [740, 774] | - | - | |
Tokyo (M) | [182, 194] | - | - | - | |
Rio (M) | [1000, 1012] | - | - | - | |
Pyeongyang (M) | [370, 383] | - | - | - | |
Tehran (M) | [710, 723] | - | - | - |
Satellite | Start | Arrival | Time Window [Start, End] |
---|---|---|---|
KOMPSAT-2 | Virtual | Daejeon (G) | [0, 4], [4, 8] |
Daejeon (G) | Pyeongyang | [40, 44] | |
Pyeongyang (M) | Tehran (M) | [365, 369] | |
Tehran (M) | Weno (G) | [404, 424], [424, 444] | |
Weno | Virtual | - | |
KOMPSAT-3 | Virtual | Daejeon (G) | [183, 187] |
Weno (G) | Tokyo (M) | [234, 238] | |
Tokyo (M) | Weno (G) | [841, 861] | |
Weno (G) | Virtual | - | |
KOMPSAT-3A | Virtual | Weno (G) | [71, 75] |
Weno (G) | Tehran (M) | [370, 374] | |
Tehran (M) | Weno (G) | [740, 760] | |
Weno (G) | Virtual |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, M.; Yu, S.; Kwon, K.; Lee, M.; Lee, J.; Kim, H. Mixed-Integer Linear Programming Model for Scheduling Missions and Communications of Multiple Satellites. Aerospace 2024, 11, 83. https://doi.org/10.3390/aerospace11010083
Lee M, Yu S, Kwon K, Lee M, Lee J, Kim H. Mixed-Integer Linear Programming Model for Scheduling Missions and Communications of Multiple Satellites. Aerospace. 2024; 11(1):83. https://doi.org/10.3390/aerospace11010083
Chicago/Turabian StyleLee, Minkeon, Seunghyeon Yu, Kybeom Kwon, Myungshin Lee, Junghyun Lee, and Heungseob Kim. 2024. "Mixed-Integer Linear Programming Model for Scheduling Missions and Communications of Multiple Satellites" Aerospace 11, no. 1: 83. https://doi.org/10.3390/aerospace11010083
APA StyleLee, M., Yu, S., Kwon, K., Lee, M., Lee, J., & Kim, H. (2024). Mixed-Integer Linear Programming Model for Scheduling Missions and Communications of Multiple Satellites. Aerospace, 11(1), 83. https://doi.org/10.3390/aerospace11010083