Analysis and Testing of Variable Height Operating Characteristics of Super-Pressure Balloon Airbag Fan
Abstract
:1. Introduction
2. Physical Models and Numerical Methods
2.1. Physical Model and Analytical Model
2.2. Numerical Methods and Boundary Conditions
2.3. Meshing and Independence
3. Analysis of Fan Operating Characteristics
3.1. Rated Working Conditions
3.1.1. Influence of Speed Change
3.1.2. Influence of Pressure Change
3.1.3. Influence of Temperature Change
3.2. Analysis and Comparison of Variable-Height Operating Characteristics
3.2.1. Ground Performance Comparison
3.2.2. Comparison of High−Altitude Performance
- A.
- Fan performance curve cluster
- B.
- Comparative analysis of unit time inflation
- C.
- Comparative analysis of unit power inflating
4. Test and Analysis
4.1. Test Bench and Test Scope
4.2. Results and Discussion
5. Conclusions
- An average error of 3% between the performance curve of the MIX-140 fan on the ground working conditions was obtained through testing and numerical calculation, demonstrating that the CFD method and experimental approach used in this study can obtain the performance curve of the mixed-flow fan with high accuracy.
- Changes in the atmospheric temperature and air pressure affect a fan’s working characteristics. By adjusting the fan speed, the fan pressure and power consumption can be effectively controlled, and the optimal efficiency point can be adjusted to mitigate the impact of atmospheric temperature and air pressure changes.
- In the altitude environment of 16–20 km, compared with the existing constant-speed fan, the MIX-140 fan with adjustable speed can increase the unit time charging capacity by 295.8% on average and the unit power charging capacity by 14.6%, demonstrating the superiority of the MIX-140 fan design.
- A fan’s working characteristics in different environments can be effectively tested using a scaled balloon test bench. By adjusting the fan speed, different pressure difference values can be obtained, providing an effective reference for controlling the fan speed and controlling balloon pressure in actual super-pressure balloon flights.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jing, Y.; Wu, Y.; Tang, J.; Zhou, P.; Duan, D. Receding horizon trajectory generation of stratospheric airship in low-altitude return phase. Aerospace 2022, 9, 670. [Google Scholar] [CrossRef]
- Jiang, Y.; Lv, M.; Li, J. Station-keeping control design of double balloon system based on horizontal region constraints. Aerosp. Sci. Technol. 2020, 100, 105792. [Google Scholar] [CrossRef]
- Agrawal, R.; Buchanan, W.P.; Arora, A.; Girija, A.P.; De Jong, M.; Seager, S.; Petkowski, J.J.; Saikia, S.J.; Carr, C.E.; Grinspoon, D.H.; et al. Mission Architecture to Characterize Habitability of Venus Cloud Layers via an Aerial Platform. Aerospace 2022, 9, 359. [Google Scholar] [CrossRef]
- Deng, X.; Yang, X.; Zhu, B. Simulation research and key technologies analysis of intelligent stratospheric aerostat Loon. Acta Aeronaut. Astronaut. Sin. 2023, 44, 28–44. [Google Scholar]
- Sirks, E.L.; Massey, R.; Gill, A.S.; Anderson, J.; Benton, S.J.; Brown, A.M.; Clark, P.; English, J.; Everett, S.W.; Fraisse, A.A.; et al. Data Downloaded via Parachute from a NASA Super-Pressure Balloon. Aerospace 2023, 10, 960. [Google Scholar] [CrossRef]
- Koseki, K.; Matsuo, T.; Arikawa, S. Measurement of Super-Pressure Balloon Deformation with Simplified Digital Image Correlation. Appl. Sci. 2018, 8, 2009. [Google Scholar] [CrossRef]
- Du, H.; Lv, M.; Li, J.; Zhu, W.; Zhang, L.; Wu, Y. Station-keeping performance analysis for high altitude balloon with altitude control system. Aerosp. Sci. Technol. 2019, 92, 644–652. [Google Scholar] [CrossRef]
- Hoffmann, L.; Hertzog, A.; Rössler, T.; Stein, O.; Wu, X. Intercomparison of meteorological analyses and trajectories in the Antarctic lower stratosphere with Concordiasi super-pressure balloon observations. Atmos. Chem. Phys. 2017, 17, 8045–8061. [Google Scholar] [CrossRef]
- Yin, Y.; Zheng, W.; Lin, J.; Niu, S.; Li, Z. Maneuverability Analysis of Active Phase Change Adjustment Airbag to Stationary Altitude and Differential Pressure of Super-pressure Balloon. In Proceedings of the 2022 China Automation Congress (CAC), Xiamen, China, 25–27 November 2022; pp. 230–235. [Google Scholar]
- Lin, K.; Zheng, Z.; Wu, Z.; Wang, Q. Path following of a stratospheric satellite by the aid of wind currents. Proceedings of the Institution of Mechanical Engineers, J. Aerosp. Eng. 2018, 233, 3983–4003. [Google Scholar] [CrossRef]
- Saito, Y.; Akita, D.; Fuke, H.; Izutsu, N. Properties of tandem balloon connected by extendable suspension wires. Adv. Space Res. 2010, 45, 482–489. [Google Scholar] [CrossRef]
- Bellemare, M.G.; Candido, S.; Castro, P.S.; Gong, J.; Machado, M.C.; Moitra, S.; Ponda, S.S.; Wang, Z. Autonomous navigation of stratospheric balloon using reinforcement learning. Nature 2020, 588, 77–82. [Google Scholar] [CrossRef]
- Schoeberl, M.R.; Jensen, E.H.; Podglajen, A.; Coy, L.; Lodha, C.; Candido, S.; Carver, R.L. Gravity wave spectra in the lower stratosphere diagnosed from Project Loon balloon trajectories. J. Geophys. Res. Atmos. 2017, 122, 8517–8524. [Google Scholar] [CrossRef]
- Friedrich, L.S.; McDonald, A.J.; Bodeker, G.E.; Cooper, K.E.; Lewis, J.; Paterson, A.J. A comparison of Loon balloon observations and stratospheric reanalysis products. Atmos. Chem. Phys. 2016, 17, 855–866. [Google Scholar] [CrossRef]
- Zhu, R.; Wang, S.; Yang, Y.; Liu, Q. Analysis of day-night thermal properties of super-pressure balloon during cruising flight. Comput. Simul. 2020, 37, 54–59. [Google Scholar]
- Gao, Y.; Xu, G.; Wang, S.; Li, Z.; Cai, R. Modeling and small signal stability analysis of stratospheric airship energy system. Acta Energiae Solaris Sin. 2022, 43, 50–57. [Google Scholar]
- Qu, W.; Gong, W.; Chen, C.; Zhang, T.; He, Z. Optimization Design and Experimental Verification for the Mixed-Flow Fan of a Stratospheric Airship. Aerospace 2023, 10, 107. [Google Scholar] [CrossRef]
- Sun, P.; Wang, X.; Xie, W. Centrifugal blower of stratospheric airship. IEEE Access 2018, 6, 10520–10529. [Google Scholar] [CrossRef]
- Wei, K.; Wu, Q.; Zhang, Y.; Li, X. Aerodynamic performance calculation of centrifugal compressors for pressurized balloon based on similarity theory. J. Xi’an Aeronaut. Univ. 2019, 3, 28–32. [Google Scholar]
- Zhao, D.; Hua, Z.; Dou, M.; Huang, F. Control oriented modeling and analysis of centrifugal compressor working characteristic at variable altitude. Aerosp. Sci. Technol. 2018, 72, 174–182. [Google Scholar] [CrossRef]
- Yang, X.; Liu, Z.; Zhang, S.; Song, C. Aerodynamic design of key components of the large-discharge axial fan at high altitude. In Proceedings of the 31st Congress of the International Council of the Aeronautical Sciences, Belo Horizonte, Brazil, 14 September 2018. [Google Scholar]
- Zhang, Q.; Miao, J.; Li, J.; Zhao, C.; Li, R. Characteristics Research of Fans in Series and Parallel on Super-Pressure Balloon; Aerospace Information Research Institute, CAS: Beijing, China, 2022. [Google Scholar]
- Aerospace Information Research Institute. Patent Search and Analysis. Available online: https://pss-system.cponline.cnipa.gov.cn/documents/detail?prevPageTit=changgui (accessed on 28 November 2023).
- Wang, S. Design of Helium Centrifugal Compressor and Optimization of High-Pressure Ratio. Master’s Thesis, Harbin Engineering University, Harbin, China, 2021. [Google Scholar]
- Niu, Z. Effects and Mechanisms of Low Reynolds Number on Compressors’ Flow Stability. Master’s Thesis, Tsinghua University, Beijing, China, 2021. [Google Scholar]
- Wang, S.; Liu, B.; Yue, G.; Jiang, Y. Research on high pressor ratio design of helium centrifugal compressor. J. Eng. Therm. Energy Power 2021, 36, 147–154. [Google Scholar]
- Zhang, J.; Yang, X.; Deng, X.; Guo, Z.; Zhai, J. Altitude control of stratospheric aerostat based on deep reinforcement learning. J. Beijing Univ. Aeronaut. Astronaut. 2021, 49, 2062–2070. [Google Scholar] [CrossRef]
- Xie, H.; Zhang, S.; Yang, B. Research on the application of similarity principle on the centrifugal compressor. J. Eng. Thermophys. 2021, 36, 147–154. [Google Scholar]
- Wang, L.; Gu, B.; Wang, T. Fast calculation model of fan performance based on similarity theory. Fluid Mach. 2012, 7, 24–28. [Google Scholar]
- Zhu, R.; Wang, S.; Yang, Y. Simulation and analysis of thermal and dynamic properties of super-pressure balloon during ascent. J. Natl. Univ. Def. Technol. 2020, 42, 151–158. [Google Scholar]
Description | Parameter | Value |
---|---|---|
Design flow rate | Qt | 1200 m3/h |
Design pressure difference | Pt | 1200 Pa |
Revolution | n | ≯28,000 RPM |
Power output | W | ≯500 W |
Blade number of impeller | Z | 20 |
Tip clearance | C | 1.2 mm |
Blade thickness | t | 1 mm |
Diameter of impeller in | D2 | 84 mm |
Diameter of impeller out | B2 | 140 mm |
Valve stroke | h | 35 mm |
Valve diameter | D1 | 142 mm |
Diffuser tilt angle | ϕ | 60° |
Voltage | V | 16–32 V |
Total weight (including valve) | / | ≯3 kg |
Item | Mesh1 | Mesh2 | Mesh3 | Mesh4 | Mesh5 | Mesh6 |
---|---|---|---|---|---|---|
Inlet pipe | 7598 | 15,077 | 15,077 | 19,656 | 26,946 | 26,946 |
Impeller | 117,460 | 235,215 | 299,828 | 358,271 | 404,260 | 556,986 |
Diffuser | 1540 | 3306 | 12,760 | 23,100 | 56,064 | 23,100 |
Total mesh | 126,598 | 253,598 | 327,665 | 401,027 | 487,270 | 607,032 |
PRi/PR1 | 1 | 1.056 | 1.060 | 1.066 | 1.069 | 1.069 |
ηi/η1 | 1 | 1.028 | 1.029 | 1.040 | 1.043 | 1.043 |
Boundary | Setting | Value |
---|---|---|
S1 inlet | Total pressure | 5500 Pa |
S1 inlet | Total temperature | 216 K |
S2 outlet | Mass flow rate | 1000 m3/h |
R1 speed | / | 25,000 RPM |
TR (%) | 0 Pa | 50 Pa | 100 Pa | 150 Pa | 200 Pa | 250 Pa | 300 Pa | 350 Pa | 400 Pa | AVG |
---|---|---|---|---|---|---|---|---|---|---|
16 km | 143 | 136 | 131 | 130 | 132 | 138 | 148 | 165 | 190 | 145 |
17 km | 157 | 150 | 146 | 147 | 153 | 165 | 185 | 217 | 272 | 176 |
18 km | 170 | 163 | 162 | 166 | 177 | 200 | 240 | 312 | 460 | 227 |
19 km | 185 | 179 | 180 | 190 | 212 | 256 | 343 | 549 | 1459 | 394 |
20 km | 200 | 195 | 200 | 219 | 261 | 354 | 600 | 2272 | - | 537 |
WR (%) | 0 Pa | 50 Pa | 100 Pa | 150 Pa | 200 Pa | 250 Pa | 300 Pa | 350 Pa | 400 Pa | AVG |
---|---|---|---|---|---|---|---|---|---|---|
16 km | −23 | −21 | −20 | −20 | −19 | −18 | −16 | −12 | −6 | −17 |
17 km | −23 | −21 | −19 | −18 | −17 | −14 | −10 | −3 | 11 | −12 |
18 km | −21 | −19 | −17 | −15 | −13 | −8 | 0 | 18 | 57 | −2 |
19 km | −20 | −16 | −14 | −12 | −8 | 1 | 20 | 72 | 310 | 36 |
20 km | −18 | −13 | −11 | −9 | −3 | 16 | 75 | 510 | 68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, W.; Zhang, Q.; Qin, Y.; Miao, J.; He, Z.; Yang, Y. Analysis and Testing of Variable Height Operating Characteristics of Super-Pressure Balloon Airbag Fan. Aerospace 2024, 11, 38. https://doi.org/10.3390/aerospace11010038
Qu W, Zhang Q, Qin Y, Miao J, He Z, Yang Y. Analysis and Testing of Variable Height Operating Characteristics of Super-Pressure Balloon Airbag Fan. Aerospace. 2024; 11(1):38. https://doi.org/10.3390/aerospace11010038
Chicago/Turabian StyleQu, Wei, Qianghui Zhang, Yumei Qin, Jinggang Miao, Zeqing He, and Yanchu Yang. 2024. "Analysis and Testing of Variable Height Operating Characteristics of Super-Pressure Balloon Airbag Fan" Aerospace 11, no. 1: 38. https://doi.org/10.3390/aerospace11010038
APA StyleQu, W., Zhang, Q., Qin, Y., Miao, J., He, Z., & Yang, Y. (2024). Analysis and Testing of Variable Height Operating Characteristics of Super-Pressure Balloon Airbag Fan. Aerospace, 11(1), 38. https://doi.org/10.3390/aerospace11010038