AMU-LED Cranfield Flight Trials for Demonstrating the Advanced Air Mobility Concept
Abstract
:1. Introduction
2. Objectives of the Flight Trials
3. Methodology
3.1. Cranfield Demonstration Flow
3.2. Scenarios
4. Demonstration Results
4.1. KPI Analysis
4.2. Results of the Objectives
4.3. Social Acceptance
4.4. Industrial and Regulative Recommendations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AAM | Advanced Air Mobility |
AMU-LED | Air Mobility Urban-Large Experimental Demonstration |
ANSP | Air Navigation Service Provider |
ATC | Air Traffic Control |
ATM | Air Traffic Management |
BVLOS | Beyond Visual Line of Sight |
CAA | Civil Aviation Authority |
CISP | Common Information Service Provider |
DSS | Discovery and Synchronization Service |
HEMS | Helicopter Emergency Medical Service |
HPV | High-Performing Vehicle |
HPL | High-Performance Layer |
KPI | Key Performance Indicator |
NOTAM | Notice to Airmen |
PIC | Pilot in Command |
SDSP | Supplementary Data Service Provider |
SELZ | Safe and Emergency Landing Zone |
SESAR JU | The Single European Sky ATM Research Joint Undertaking |
SPV | Standard-Performing Vehicle |
SPL | Standard-Performance Layer |
UAM | Urban Air Mobility |
UAS | Unmanned Aircraft System |
UAV | Unmanned Aerial Vehicle |
UK | United Kingdom |
USSP | U-space Service Provider |
UTM | UAS Traffic Management |
VLD | Very Large Demonstration |
VLL | Very Low Level |
VR | Virtual Reality |
VTOL | Vertical Take-Off and Landing |
References
- Federal Aviation Administration NextGen. Urban Air Mobility (UAM) Concept of Operations v1.0; Technical Report; FAA: Washington, DC, USA, 2020.
- Federal Aviation Administration NextGen. Unmanned Aircraft System (UAS) Traffic Management (UTM) Concept of Operations v2.0; Technical Report; FAA: Washington, DC, USA, 2020.
- Price, G.; Helton, D.; Jenkins, K.; Kvicala, M.; Parker, S.; Wolfe, R.; Miranda, F.A.; Goodrich, K.H.; Xue, M.; Cate, K.T.; et al. Urban Air Mobility Operational Concept (OpsCon) Passenger-Carrying Operations; NASA: Hampton, VA, USA, 2020.
- Boeing; Wisk. Concept of Operations for Uncrewed Urban Air Mobility; Technical report; The Boeing Company: Arlington, VA, USA, 2022; Available online: https://www.boeing.com/resources/boeingdotcom/innovation/con-ops/docs/Concept-of-Operations-for-Uncrewed-Urban-Air-Mobility.pdf (accessed on 31 July 2023).
- Balakrishnan, K.; Polastre, J.; Mooberry, J.; Golding, R.; Sachs, P. Blueprint for the Sky: The Roadmap for the Safe Integration of Autonomous Aircraft; Airbus UTM: San Francisco, CA, USA, 2018. [Google Scholar]
- Airservices Australia and Embraer Business Innovation Center. Urban Air Traffic Management Concept of Operations v1.0; Technical Report; Airservices Australia and Embraer Business Innovation Center: Canberra, Australia, 2020. [Google Scholar]
- UK Research and Innovation. Future Flight Vision and Roadmap; Technical Report; UKRI: Swindon, UK, 2021.
- CORUS. U-Space Concept of Operations ed 03.00.02; Technical Report; SESAR JU: Brussels, Belgium, 2019. [Google Scholar]
- CORUS XUAM. U-Space Conops ed 03.10; Technical Report; SESAR JU: Brussels, Belgium, 2022. [Google Scholar]
- SESAR JU. U-Space Blueprint; Technical Report; SESAR JU: Brussels, Belgium, 2017. [Google Scholar]
- European Union Aviation Safety Agency. Study on the Societal Acceptance of Urban Air Mobility in Europe; Technical Report; EASA: Cologne, Germany, 2021.
- Doole, M.; Ellerbroek, J.; Knoop, V.L.; Hoekstra, J.M. Constrained urban airspace design for large-scale drone-based delivery traffic. Aerospace 2021, 8, 38. [Google Scholar] [CrossRef]
- AIRPASS. On-Board System Concept Evaluation and Feasibility Analysis d4.1; Technical Report; SESAR JU: Brussels, Belgium, 2020. [Google Scholar]
- AIRPASS. Final Project Results Report d4.2; Technical Report; SESAR JU: Brussels, Belgium, 2020. [Google Scholar]
- PercEvite. Final Activity Report d5.2; Technical Report; SESAR JU: Brussels, Belgium, 2020. [Google Scholar]
- USIS. Study Report d2.2; Technical Report; SESAR JU: Brussels, Belgium, 2020. [Google Scholar]
- SECOPS. Final Project Results Report d5.5; Technical Report; SESAR JU: Brussels, Belgium, 2019. [Google Scholar]
- DroC2om. Overall System Architecture d2.2; Technical Report; SESAR JU: Brussels, Belgium, 2018. [Google Scholar]
- CLASS. Definition of the Cooperative and Uncooperative Surveillance Systems d2.1; Technical Report; SESAR JU: Brussels, Belgium, 2018. [Google Scholar]
- TERRA. Final Project Results Report d7.1; Technical Report; SESAR JU: Brussels, Belgium, 2020. [Google Scholar]
- IMPETUS. Final Project Results Report d6.3; Technical Report; SESAR JU: Brussels, Belgium, 2020. [Google Scholar]
- DREAMS. Final Project Results Report d2.2; Technical Report; SESAR JU: Brussels, Belgium, 2019. [Google Scholar]
- BUBBLES. Final Project Results Report d1.5; Technical Report; SESAR JU: Brussels, Belgium, 2022. [Google Scholar]
- DACUS. Drone dcb Concept and Process d1.1; Technical Report; SESAR JU: Brussels, Belgium, 2021. [Google Scholar]
- ICARUS. Simulation Trials Data Analysis Results d6.3; Technical Report; SESAR JU: Brussels, Belgium, 2022. [Google Scholar]
- USEPE. Final Project Results Report d2.3; Technical Report; SESAR JU: Brussels, Belgium, 2022. [Google Scholar]
- Metropolis 2. Concept Design Report d4.1; Technical Report; SESAR JU: Brussels, Belgium, 2021. [Google Scholar]
- TINDAIR. SESAR JU, 2022. Available online: https://www.sesarju.eu/projects/TINDAIR (accessed on 12 March 2023).
- AURA. Solution 2 Initial Concept Description d3.1; Technical Report; SESAR JU: Brussels, Belgium, 2021. [Google Scholar]
- GOF USPACE. Summary Flight Information Management System (FIMS) Design and Architecture; Technical Report; SESAR JU: Brussels, Belgium, 2020. [Google Scholar]
- GOF2.0 USPACE. Critical Design Document (CDD) and Architecture Blueprint d2.1; Technical Report; SESAR JU: Brussels, Belgium, 2022. [Google Scholar]
- DOMUS. Final Study Report d5.2; Technical Report; SESAR JU: Brussels, Belgium, 2020. [Google Scholar]
- GEOSAFE. Study Report d7.1; Technical Report; SESAR JU: Brussels, Belgium, 2019. [Google Scholar]
- PODIUM. Demonstration Report d1.2; Technical Report; SESAR JU: Brussels, Belgium, 2019. [Google Scholar]
- SAFIR-Med. Demo Plan d2.1; Technical Report; SESAR JU: Brussels, Belgium, 2022. [Google Scholar]
- Lappas, V.; Zoumponos, G.; Kostopoulos, V.; Lee, H.I.; Shin, H.S.; Tsourdos, A.; Tantardini, M.; Shomko, D.; Munoz, J.; Amoratis, E.; et al. EuroDRONE, a European unmanned traffic management testbed for U-space. Drones 2022, 6, 53. [Google Scholar] [CrossRef]
- DIODE. SESAR JU, 2020. Available online: https://www.sesarju.eu/node/3200 (accessed on 12 March 2023).
- Uspace4UAM. SESAR JU, 2022. Available online: https://www.sesarju.eu/projects/Uspace4UAM (accessed on 12 March 2023).
- VUTURA. SESAR JU, 2020. Available online: https://www.sesarju.eu/projects/vutura (accessed on 12 March 2023).
- Thipphavong, D.P.; Apaza, R.; Barmore, B.; Battiste, V.; Burian, B.; Dao, Q.; Feary, M.; Go, S.; Goodrich, K.H.; Homola, J.; et al. Urban air mobility airspace integration concepts and considerations. In Proceedings of the 2018 Aviation Technology, Integration, and Operations Conference, Atlanta, GA, USA, 25–29 June 2018; p. 3676. [Google Scholar]
- Northeast UAS Airspace Integration Research Alliance. Advanced Air Mobility (AAM) Vertiport Automation Trade Study; Northeast UAS Airspace Integration Research Alliance: Syracuse, NY, USA, 2020. [Google Scholar]
- Northeast UAS Airspace Integration Research Alliance. High-Density Automated Vertiport Concept of Operations; Northeast UAS Airspace Integration Research Alliance: Syracuse, NY, USA, 2021. [Google Scholar]
- Stouffer, V.L.; Cotton, W.B.; DeAngelis, R.A.; Devasirvatham, D.M.; Irvine, T.B.; Jennings, R.E.; Lehmer, R.D.; Nguyen, T.C.; Shaver, M.A.; Bakula, C.J. Reliable, Secure, and Scalable Communications, Navigation, and Surveillance (CNS) Options for Urban Air Mobility (UAM); Science Applications International Corporation: Reston, VA, USA, 2020. [Google Scholar]
- Goodrich, K. Automated Flight and Contingency Management, NASA Advanced Air Mobility (AAM) Project. In Proceedings of the AAM Ecosystem Aircraft Work Group, Virtual, 3 August 2020. [Google Scholar]
- Darmstadt, P.R.; Catanese, R.; Beiderman, A.; Dones, F.; Chen, E.; Mistry, M.P.; Babie, B.; Beckman, M.; Preator, R. Hazards Analysis and Failure Modes and Effects Criticality Analysis (FMECA) of Four Concept Vehicle Propulsion Systems; Technical Report; NASA: Hampton, VA, USA, 2019. [Google Scholar]
- Rimjha, M.; Li, M.; Hinze, N.; Tarafdar, S.; Hotle, S.; Swingle, H.; Trani, A.; Smith, J.C. Demand Forecast Model Development and Scenarios Generation for Urban Air Mobility Concepts; Virginia Tech Air Transportation Systems Laboratory: Blacksburg, VA, USA, 2020. [Google Scholar]
- Pascioni, K.A.; Watts, M.E.; Houston, M.; Lind, A.; Stephenson, J.H.; Bain, J. Acoustic flight test of the joby aviation advanced air mobility prototype vehicle. In Proceedings of the 28th AIAA/CEAS Aeroacoustics 2022 Conference, Southampton, UK, 14–17 June 2022; p. 3036. [Google Scholar]
- Federal Aviation Administration. UAS Test Site Program. 2023. Available online: https://www.faa.gov/uas/programs_partnerships/test_sites (accessed on 2 August 2023).
- Vantis. North Dakota UAS Network. Available online: https://www.vantisuas.com/ (accessed on 2 August 2023).
- Fremond, R.; Tang, Y.; Bhundoo, P.; Su, Y.; Altun, A.T.; Xu, Y.; Inalhan, G. Demonstrating advanced u-space services for urban air mobility in a co-simulation environment. In Proceedings of the SIDs2022: 12th SESAR Innovation Days, Budapest, Hungary, 5–8 December 2022. [Google Scholar]
- AMU-LED. Disruption Management Framework for Non-Nominal Operations Affecting the Operator d3.4; Technical Report; SESAR JU: Brussels, Belgium, 2022. [Google Scholar]
- Altun, A.T.; Xu, Y.; Inalhan, G.; Vidal-Franco, I.; Hardt, M. Contingency management concept generation for u-space system. In Proceedings of the 2022 Integrated Communication, Navigation and Surveillance Conference (ICNS), Dulles, VA, USA, 5–7 April 2022; IEEE: New York, NY, USA; pp. 1–12. [Google Scholar]
- AMU-LED. High Level Conops d2.2; Technical Report; SESAR JU: Brussels, Belgium, 2022. [Google Scholar]
- AMU-LED. Results of the Flight Demonstration Report (Demor) d6.2; Technical Report; SESAR JU: Brussels, Belgium, 2022. [Google Scholar]
- Tojal, M.; Hesselink, H.; Fransoy, A.; Ventas, E.; Gordo, V.; Xu, Y. Analysis of the definition of Urban Air Mobility—How its attributes impact on the development of the concept. Transp. Res. Procedia 2021, 59, 3–13. [Google Scholar] [CrossRef]
- AMU-LED. UAM Services, Safety and Social Acceptance Analysis; Technical Report; SESAR JU: Brussels, Belgium, 2023. [Google Scholar]
- Shaheen, S.; Cohen, A.; Farrar, E. The Potential Societal Barriers of Urban Air Mobility (UAM); NASA: Washington, DC, USA, 2018; pp. 1–115.
- Eißfeldt, H.; Biella, M. The public acceptance of drones—Challenges for advanced aerial mobility (AAM). Transp. Res. Procedia 2022, 66, 80–88. [Google Scholar] [CrossRef]
- Kim, Y.W.; Lim, C.; Ji, Y.G. Exploring the User Acceptance of Urban Air Mobility: Extending the Technology Acceptance Model with Trust and Service Quality Factors. Int. J. Hum.–Comput. Interact. 2023, 39, 2893–2904. [Google Scholar] [CrossRef]
- Aydin, B. Public acceptance of drones: Knowledge, attitudes, and practice. Technol. Soc. 2019, 59, 101180. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altun, A.T.; Hasanzade, M.; Saldiran, E.; Guner, G.; Uzun, M.; Fremond, R.; Tang, Y.; Bhundoo, P.; Su, Y.; Xu, Y.; et al. AMU-LED Cranfield Flight Trials for Demonstrating the Advanced Air Mobility Concept. Aerospace 2023, 10, 775. https://doi.org/10.3390/aerospace10090775
Altun AT, Hasanzade M, Saldiran E, Guner G, Uzun M, Fremond R, Tang Y, Bhundoo P, Su Y, Xu Y, et al. AMU-LED Cranfield Flight Trials for Demonstrating the Advanced Air Mobility Concept. Aerospace. 2023; 10(9):775. https://doi.org/10.3390/aerospace10090775
Chicago/Turabian StyleAltun, Arinc Tutku, Mehmet Hasanzade, Emre Saldiran, Guney Guner, Mevlut Uzun, Rodolphe Fremond, Yiwen Tang, Prithiviraj Bhundoo, Yu Su, Yan Xu, and et al. 2023. "AMU-LED Cranfield Flight Trials for Demonstrating the Advanced Air Mobility Concept" Aerospace 10, no. 9: 775. https://doi.org/10.3390/aerospace10090775
APA StyleAltun, A. T., Hasanzade, M., Saldiran, E., Guner, G., Uzun, M., Fremond, R., Tang, Y., Bhundoo, P., Su, Y., Xu, Y., Inalhan, G., Hardt, M. W., Fransoy, A., Modha, A., Tena, J. A., Nieto, C., Vilaplana, M., Tojal, M., Gordo, V., ... Gonzalez, A. (2023). AMU-LED Cranfield Flight Trials for Demonstrating the Advanced Air Mobility Concept. Aerospace, 10(9), 775. https://doi.org/10.3390/aerospace10090775