Thermal Behaviour of the Cooling Jacket Belonging to a Liquid Oxygen/Liquid Methane Rocket Engine Demonstrator in the Operation Box
Abstract
:1. Introduction
- Primary and secondary propulsion for launchers and upper stage engines (e.g., VEGA-E family)
- Primary stages for RLVs
- Primary propulsion for re-entry vehicles (and auxiliary engines in landing phases) and ascent/descent systems
- Service modules/orbital transfer vehicle
- Exploration missions (for example, to Mars)
- Pressure-fed RCS
2. DEMO Description
- the height of channels (h/L), ranging from 0.0018 to 0.0061
- the width of channels (b/L) ranging from 0.0019 to 0.0107
- the width of ribs (w/L) equal to 0.0032
- the thickness of the liner (h1/L) equal to 0.0020
- the height of the copper layer (hcu/L) equal to 0.0023
- the height of the nickel close-out layer (hni/L) equal to 0.0034
3. Numerical Procedures
- -
- inlet section: uniform velocity (at a fixed mass flow) and temperature profiles
- -
- outlet section: static pressure outlet value
- -
- channel surfaces: velocity components equal to zero
- -
- liner surface: input heat flux profiles, as depicted by Figure 7;
- -
- top and side surfaces: adiabatic
4. Numerical Procedure Validation
- inlet mass flow rate ranging from 0.015 to 0.025 kg/s
- outlet pressure ranging from 8.0 to 15.0 MPa
- inlet fluid temperature ranging from 120 to 140 K
- electrical power = 0 (cold flow), 12 kW.
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
A | Area [m2] |
AM | Additive Manufacturing |
b | Width of the cooling channel [m] |
BB | BreadBoard |
CFD | Computational Fluid-Dynamic |
ELV | Expendable Launch Vehicle |
cp | Specific heat [J/ kg K] |
d | Diameter [m] |
DEMO | Demonstrator |
f | Friction factor [-] |
FT | Firing Test |
h | Height of the cooling channel [m] |
hc | Convective heat transfer coefficient [W/ m2 K] |
HYPROB | Hydrocarbon PROpulsion test Bench |
I | Impulse [s] |
j | Colburn number [-] |
k | Turbulence kinetic energy [m2 /s2] |
l or L | Length of test articles [m] |
LCH4 | Liquid methane |
LNG | Liquid Natural Gas |
LOx | Liquid oxygen |
LRE | Liquid rocket engine |
m | Mass flow rate [kg/ s] |
m* | Mass flow rate referred to nominal operating conditions [-] |
MTP | Methane Thermal Properties |
NIST | National Institute of Standard and Technology |
O/F | Mixture ratio (Oxidizer mass/Fuel mass) [-] |
P | Pressure [Pa] |
Pin* | Inlet pressure referred to nominal operating conditions [-] |
Pr | Prandtl number [-] |
q | Heat flux [W/m−2] |
RLV | Reusable Launch Vehicle |
RCS | Reaction Control System |
sst | shear stress transport |
t | Time [s] |
T | Temperature [K] |
T* | Dimensionless temperature [-] |
Tin,f* | Fluid inlet temperature referred to nominal operating conditions [-] |
w | Width of the rib [m] |
x, y, z | Spatial coordinates [m] |
Greek symbols | |
λ | Thermal conductivity [W/m K] |
μ | Viscosity [Pa s] |
ρ | Density [kg/m3] |
ω | Specific dissipation rate of turbulence kinetic energy [s−1] |
Subscripts | |
av | average |
aw | adiabatic wall |
b | bulk |
cc | combustion chamber |
ch | channel |
cr | critical |
cu | copper |
f | fluid |
h | hydraulic |
hg | hot gas side |
in | inlet |
l | liner |
max | maximum |
ni | nickel |
nom | nominal |
out | outlet |
pc | pseudo-critical |
s | static |
sp | specific |
t | throat |
w | wall |
References
- Battista, F.; Ricci, D.; Natale, P.; Cardillo, D.; Fragiacomo, M.; Franchitti, S.; Ferraiuolo, M.; Salvatore, V. Recent Achievements regarding the Research Activities on HYPROB LOX/CH4 Demonstrators Line. In Proceedings of the 8th Space Propulsion Conference, Estoril, Portugal, 9–13 May 2022. [Google Scholar]
- Musk, E. Raptor V3 just Achieved 350 bar Chamber Pressure (269 tons of Thrust). Congrats to @SpaceX Propulsion Team! Starship Super Heavy Booster has 33 Raptors, so Total Thrust of 8877 tons or 19.5 million Pounds. (Tweet)—Via Twitter. Available online: https://twitter.com/elonmusk/status/1657249739925258240 (accessed on 12 May 2023).
- Battista, F.; Ricci, D.; Natale, P.; Cardillo, D.; Fragiacomo, M.; Ferraiuolo, M. HYPROB-New: Recent Developments of the LOX/LCH4 Research Line. In Proceedings of the 7th Space Propulsion Conference, Web Conference, 17–19 March 2022. [Google Scholar]
- Hurlbert, E.A.; Ueno, H.; Alexander, L.; Klem, M.D.; Daversa, E.; Rualt, J.-M.; Manfletti, C.; Caruana, J.-N.; Asakawa, H.; Whitley, R.J. International Space Exploration Coordination Group Assessment of Technology Gaps for LOx/Methane Propulsion Systems for the Global Exploration Roadmap. In Proceedings of the AIAA SPACE 2016, Long Beach, CA, USA, 13–16 September 2016. [Google Scholar] [CrossRef] [Green Version]
- Komar, D.R.; Moses, R. Hercules Single-Stage Reusable Vehicle supporting a Safe, Affordable, and Sustainable Human Lunar & Mars Campaign. In Proceedings of the AIAA SPACE and Astronautics Forum and Exposition, Orlando, FL, USA, 12–14 September 2017. [Google Scholar]
- Schuffet, R.; Maier, M.; Sindiy, O.; Ulrich, C.; Fugger, S. Integrated Modeling and Analysis for a LOx/Methane Expander Cycle Engine: Focusing on Regenerative Cooling Jacket Design. In Proceedings of the 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Sacramento, CA, USA, 9–12 July 2006. [Google Scholar] [CrossRef]
- Brown, C.D. Conceptual Investigations for a Methane-Fueled Expander Rocket Engine. In Proceedings of the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Fort Lauderdale, FL, USA, 11–14 July 2004. [Google Scholar]
- Haeseler, D.; Bombelli, V.; Vuillermoz, P.; Lo, R.; Marèe, T.; Caramelli, F. Green Propellant Propulsion Concepts for Space Transportation and Technology Development Needs. In Proceedings of the 2nd International Conference on Green Propellants for Space Propulsion, Cagliari, Italy, 7–8 June 2004. [Google Scholar]
- Ierardo, N.; Cuoco, F.; Accettura, A.; Congiunti, C.; Bruno, C. LOX-Methane Systems for High Thrust LRE. In Proceedings of the 4th International Conference on Launcher Technology, Liege, Belgium, 3–6 December 2002. [Google Scholar]
- Li, S.; Zhang, Y.D.; Li, Y.; Liao, R.Q. Equilibrium Calculation and Technological Parameters Optimization of Natural Gas Liquefaction Process with Mixed Refrigerant. Int. J. Heat Technol. 2015, 33, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Trejo, A.G. An Experimental Investigation of Liquid Methane Convection and Boiling in Rocket Engine Cooling Channels. Master Thesis, The University of Texas at El Paso, El Paso, TX, USA, 2014. [Google Scholar]
- Rajagopal, M. Numerical Modeling of Regenerative Cooling System for Large Expansion Ratio Rocket Engines. J. Therm. Sci. Eng. Appl. 2015, 7, 011012. [Google Scholar] [CrossRef]
- Zhang, M.; Sun, B.; Song, J. Effect of Inlet and Outlet Manifolds on Regenerative Cooling in LOX/Methane Thrust Chambers. J. Therm. Sci. 2020, 30, 517–529. [Google Scholar] [CrossRef]
- Pizzarelli, M.; Battista, F. Oxygen–methane rocket thrust chambers: Review of heat transfer experimental studies. Acta Astronaut. 2023, 209, 48–66. [Google Scholar]
- Khan, T.W.; Qamar, I. Testing Procedure for Laboratory Scale Semi Cryogenic Combustion Chamber of LPRE with Problems Faced and Lessons Learned. J. Therm. Sci. 2022, 31, 2171–2177. [Google Scholar] [CrossRef]
- Shin, J.; Roh, T.; Lee, H.J. Comparison of the Semi-empirical Heat Transfer Coefficient for a Liquid Rocket Nozzle with Regenerative Cooling Jacket. J. Propuls. Energy 2022, 3, 51–60. [Google Scholar]
- Ebrahimi, A.; Shokri, M. Thermal Behaviour Analysis of Near-critical Cryogenic Fluids in Cooling Channels. Mech. Eng. 2019, 1, 23–31. [Google Scholar]
- Shokri, M.; Ebrahimi, A. Heat Transfer Aspects of Regenerative-cooling in Methane-based Propulsion Systems. Aerosp. Sci. Technol. 2018, 82, 412–424. [Google Scholar] [CrossRef]
- Hernandez, L.; Palacios, R.; Ortega, D.; Adams, J.; Bugarin, L.; Rahman, M.M.; Choudhuri, A. The Effects of Roughness on LCH4 Boiling Heat Transfer Performance of Conventionally and Additively Manufactured Rocket Engine Regenerative Cooling Channels. In Proceedings of the AIAA Propulsion and Energy 2019 Forum, Indianapolis, IN, USA, 19–22 August 2019. [Google Scholar]
- Haermisch, J.; Suslov, D.; Waxenegger-Wilfing, G.; Dresia, K.; Oschwald, M. LUMEN—Design of the Regenerative Cooling System for an Expander Bleed Cycle Engine using Methane. In Proceedings of the 7th Space Propulsion Conference, Virtual Conference, 17–19 March 2021. [Google Scholar]
- Waxenegger-Wilfing, G.; Dresia, K.; Deeken, J.C.; Oschwald, M. Heat Transfer Prediction for Methane in Regenerative Cooling Channels with Neural Networks. J. Thermophys. Heat Transf. 2020, 34, 347–357. [Google Scholar] [CrossRef]
- Waxenegger-Wilfing, G.; Dresia, K.; Oschwald, M. Machine Learning Methods for the Design and Operation of Liquid Rocket Engines—Research Activities at the DLR Institute of Space Propulsion. In Proceedings of the 7th Space Propulsion Conference, Virtual Conference, 17–19 March 2021. [Google Scholar]
- Kajon, D.; Liuzzi, D.; Boffa, C.; Rudnykh, M.; Drigo, D.; Arione, L.; Ierardo, N.; Sirbi, A. Development of the Liquid Oxygen and Methane M10 Rocket Engine for the Vega-E Upper Stage. In Proceedings of the 8th European Conference for Aeronautics and Space Sciences (EUCASS), Madrid, Spain, 1–4 July 2019. [Google Scholar]
- Bonhomme, C.; Theron, M.; Louaas, E.; Beaurain, A.; Seleznev, E.P. French/Russian Activities on LOX—LCH4 Area. In Proceedings of the 57th International Astronautical Congress, Valencia, Spain, 2–6 October 2006. [Google Scholar]
- Iannetti, A.; Girard, N.; Tchou-Kien, D.; Bonhomme, C.; Ravier, N.; Edeline, E. Prometheus, a LOX/LCH4 Reusable Rocket Engine. In Proceedings of the 7th European Conference for Aeronautics and Space Sciences (EUCASS), Milan, Italy, 1–6 July 2017. [Google Scholar]
- Simontacchi, P.; Blasi, R.; Edeline, E.; Sagnier, S.; Ravier, N.; Espinosa-Ramos, A.; Breteau, J.; Altenhoefer, P. Prometheus: Precursor of New Low-cost Rocket Engine Family. In Proceedings of the 8th European Conference for Aeronautics and Space Sciences (EUCASS), Madrid, Spain, 1–4 July 2019. [Google Scholar]
- Flock, A.; Underhill, K.; Caruana, J.N. Innovations in Propulsion within ESA’S Future Launcher Preparatory Programme (FLPP) Advanced Technology. In Proceedings of the 8th Space Propulsion Conference, Estoril, Portugal, 9–13 May 2022. [Google Scholar]
- Deeken, J.; Waxenegger-Wilfing, G.; Oschwald, M.; Schlechtriem, S. Lumen Demonstrator—Project Overview. In Proceedings of the 32nd International Symposium on Space Technology and Science, Beppu, Japan, 26 February–4 March 2019. [Google Scholar]
- Traudt, T.; Börner, M.; Suslov, D.; Dos Santos Hahn, R.H.; Saraf, A.M.; Klein, S.; Deeken, J.C.; Hardi, J.; Oschwald, M.; Schlechtriem, S. Liquid Upper Stage Demonstrator Engine (LUMEN): Component Test Results and Project Progress. In Proceedings of the International Astronautical Congress 2022, Paris, France, 18–22 September 2022. [Google Scholar]
- Russian Space Agency Launches Work to Develop Rocket with Methane Propellant Engine. Available online: https://tass.com/science/1178475 (accessed on 27 April 2023).
- Asakawa, H.; Nanri, H.; Aoki, K.; Kubota, I.; Mori, H.; Ishikawa, Y.; Kimoto, K.; Ishihara, S.; Ishizaki, S. The Status of the Research and Development of LNG Rocket Engines in Japan. In Chemical Rocket Propulsion; Springer: Berlin/Heidelberg, Germany, 2017; pp. 463–487. [Google Scholar]
- Ukai, S.; Sakaki, K.; Ishikawa, Y.; Sakaguchi, H.; Ishihara, S. Component Tests of a LOX/Methane Full Expander Cycle Rocket Engine: Injector and Regeneratively Cooled Combustion Chamber. In Proceedings of the 8th European Conference for Aeronautics and Space Sciences (EUCASS), Madrid, Spain, 1–4 July 2019. [Google Scholar]
- Space Walker. Available online: https://www.space-walker.co.jp/en/service (accessed on 27 April 2023).
- Interstellar Technologies. Available online: https://www.istellartech.com/technology_en/engine_en (accessed on 27 April 2023).
- Boyle, R.; Barfknecht, P.; DeLee, H.; DiPirro, M.; Francis, J.; Mustafi, S.; McGuire, J.; Tuttle, J.; Whitehouse, P. Progress on the RRM3 Cryogen Demonstration System. In Proceedings of the 2015 Cryogenic Engineering Conference, Tucson, AZ, USA, 1 July 2015. [Google Scholar]
- McManamen, J.P.; Hurlbert, E.A.; Kroeger, D.J. Development and Flight Operation of a 5 lbf to 20 lbf O2/CH4 Roll Control Engine for Project Morpheus. In Proceedings of the 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Propulsion and Energy Forum, Cleveland, OH, USA, 28–30 July 2014. [Google Scholar]
- SpaceX. Available online: https://www.spacex.com/vehicles/starship/ (accessed on 27 April 2023).
- Blue Origin. Available online: https://www.blueorigin.com/engines/be-4 (accessed on 20 April 2023).
- Relativity Space. Available online: https://www.relativityspace.com/rockets (accessed on 20 April 2023).
- Astrobotic. Available online: https://masten.aero/rocket-engines/ (accessed on 20 April 2023).
- Tan, Y.; Zhao, J.; Chen, J.; Xu, Z. Progress in Technology of Main Liquid Rocket Engines of Launch Vehicles in China. Aerosp. China 2020, 2, 23–30. [Google Scholar]
- Land Space. Available online: http://www.landspace.com/propulsions/index_gb.html (accessed on 21 April 2023).
- I-Space. Available online: http://www.i-space.com.cn/index.php?m=content&c=index&a=lists&catid=4 (accessed on 21 April 2023).
- Link Space. Available online: http://linkspace.com.cn/srv.html (accessed on 27 April 2023).
- Salvatore, V.; Battista, F.; Votta, R.; Di Clemente, M.; Ferraiuolo, M.; Roncioni, P.; Ricci, D.; Natale, P.; Panelli, M.; Cardillo, D.; et al. Design and Development of a LOX/LCH4 Technology Demonstrator. In Proceedings of the 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Atlanta, GA, USA, 30 July–1 August 2012. [Google Scholar] [CrossRef]
- Ricci, D.; Battista, F.; Ferraiuolo, M.; Natale, P.; Fragiacomo, M. Development of a Liquid Rocket Ground Demonstrator through Thermal Analyses. Heat Transf. Eng. 2019, 41, 1100–1116. [Google Scholar] [CrossRef]
- Sutton, G.P.; Biblarz, O. Rocket Propulsion Elements; John Wiley & Sons: New York, NY, USA, 2010; ISBN 9780470080245. [Google Scholar]
- Ansys Fluent User’s Guide, version 17.0; Ansys Inc.: Canonsburg, PA, USA, 2017.
- Menter, F.R. Two Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef] [Green Version]
- Lemmon, E.W.; McLinden, M.O.; Huber, M.L. NIST Standard Reference Database 23: REFPROP 7.0; National Institute of Standards & Technology: Gaithersburg, MD, USA, 2002. [Google Scholar]
- Ricci, D.; Battista, F.; Fragiacomo, M. Numerical Investigation on the Thermal Behaviour of a LOx/LCH4 Demonstrator Cooling System. Aerospace 2021, 8, 151. [Google Scholar] [CrossRef]
- De Groh, H.C.; Ellis, D.L.; Loewenthal, W.S. Comparison of GRCop-84 to Other Cu Alloys with High Thermal Conductivities. J. Mater. Eng. Perform. 2008, 17, 594–606. [Google Scholar] [CrossRef]
- Battista, F.; Ricci, D.; Natale, P.; Cardillo, D.; Fragiacomo, M.; Ferraiuolo, M.; Borrelli, R.; Salvatore, V. The HYPROB Demonstrator Line: Status of the LOX/LCH4 Propulsion Activities. In Proceedings of the 8th European Conference for Aeronautics and Space Sciences (EUCASS), Madrid, Spain, 1–4 July 2019. [Google Scholar] [CrossRef]
- Ricci, D.; Natale, P.; Battista, F. Experimental and Numerical Investigation on the Behaviour of Methane in Supercritical Conditions. Appl. Therm. Eng. 2016, 107, 1334–1353. [Google Scholar] [CrossRef]
- Negishi, H.; Daimon, Y.; Yamanishi, N.; Ohnishi, Y. Numerical Investigation of Supercritical Coolant Flow in Liquid Rocket Engine. In Proceedings of the 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Nashville, TN, USA, 25–28 July 2010. [Google Scholar] [CrossRef]
- Ricci, D.; Battista, F.; Fragiacomo, M. Transcritical Behavior of Methane in the Cooling Jacket of a Liquid-Oxygen/Liquid-Methane Rocket-Engine Demonstrator. Energies 2022, 15, 4190. [Google Scholar] [CrossRef]
- Kurganov, V.A.; Ankudinov, V.B. Calculation of Normal and Deterioration Heat Transfer in Tubes with Turbulent Flow of Liquids in the Near-critical and Vapour Region of State. Teploenergetika 1982, 32, 53–57. [Google Scholar]
- Pizzarelli, M.; Urbano, A.; Nasuti, F. Numerical Analysis of Deterioration in Heat Transfer to Near-Critical Rocket Propellants. Numer. Heat Transf. 2010, 57, 297–314. [Google Scholar] [CrossRef]
- Haemisch, J.; Suslov, D.; Oschwald, M. Experimental Study of Methane Heat Transfer Deterioration in a Subscale Combustion Chamber. J. Propuls. Power 2019, 35, 819–826. [Google Scholar] [CrossRef]
- Zhang, M.; Sun, B. Effect of Artificial Roughness on Flow and Heat Transfer of Transcritical Methane. Int. J. Therm. Sci. 2020, 158, 106528. [Google Scholar] [CrossRef]
- Trejo, A.G.; Garcia, C.; Choudhuria, A. Experimental Investigation of Transient Forced Convection of Liquid Methane in a Channel at High Heat Flux Conditions. Exp. Heat Transf. 2014, 29, 97–112. [Google Scholar] [CrossRef]
- Kawashima, H.; Okita, K.; Aoki, K.; Azuma, N.; Kumakawa, A.; Onodera, T.; Yoshida, S.; Negishi, H.; Manako, H.; Koganezawa, T. Combustion and Regenerative Cooling Characteristics of LOX/Methane Engine. Trans. Space Technol. Jpn. 2009, 7, Ta_7–Ta_11. [Google Scholar] [CrossRef] [Green Version]
- Ruan, B.; Lin, W. Numerical Investigation on Heat Transfer and Flow Characteristics of Supercritical Methane in a Horizontal Tube. Cryogenics 2022, 124, 103482. [Google Scholar] [CrossRef]
- Minneci, R.P.; Lass, E.A.; Bunn, J.R.; Choo, H.; Rawn, C.J. Copper-based alloys for structural high-heat-flux applications: A review of development, properties, and performance of Cu-rich Cu–Cr–Nb alloys. Int. Mater. Rev. 2020, 66, 394–425. [Google Scholar] [CrossRef]
- Citarella, R.; Ferraiuolo, M.; Perrella, M.; Giannella, V. Thermostructural Numerical Analysis of the Thrust Chamber of a Liquid Propellant Rocket Engine. Materials 2022, 15, 5427. [Google Scholar] [CrossRef]
- Ferraiuolo, M.; Giannella, V.; Armentani, E.; Citarella, R. Numerical Investigation on the Service Life of a Liquid Rocket Engine Thrust Chamber. Metals 2023, 13, 470. [Google Scholar] [CrossRef]
O/F | 3.4 | PCC | 5.5 MPa |
---|---|---|---|
Reaction efficiency | 0.98 | Isp | 286 s |
Thrust | 30 kN | Acc/At | 4.0 |
Working Points | m [kg/s] | Tin [K] | Pin [MPa] | O/F [-] |
---|---|---|---|---|
N | 0.0200 | 110 | 16.0 | 3.4 |
A | 0.0183 | 120 | 15.7 | 4.08 |
B | 0.0218 | 100 | 16.3 | 3.43 |
C | 0.0218 | 100 | 16.3 | 2.83 |
D | 0.0183 | 120 | 15.7 | 3.36 |
Type of Mesh | ∆P [MPa] | Outlet Fluid Bulk Temperature Tb,f out [K] | Liner Maximum Temperature Tw, hg max [K] | Channel Bottom Wall Maximum Temperature Tw, ch max [K] |
---|---|---|---|---|
1—coarse | 5.051 | 420.1 | 600.4 | 555.4 |
2—fine | 5.094 | 420.4 | 610.8 | 562.7 |
3—finest | 5.096 | 420.5 | 611.5 | 563.4 |
Tests | Tin [K] | Tout [K] | ∆T Error% | Pin [MPa] | Pout [Mpa] | ∆P Error% | Wall Channel Maximum T Error% |
---|---|---|---|---|---|---|---|
2 | 137.1 | 245.2 | 0.6% | 11.175 | 10.312 | −4.0% | 0.9% |
4 | 140.8 | 261.2 | −1.3% | 12.905 | 12.061 | 1.6% | 1.5% |
6 | 142.1 | 263.2 | 0.9% | 15.649 | 14.872 | −4.2% | 1.3% |
7 | 139.6 | 264.4 | 0.2% | 16.722 | 15.943 | −2.5% | 0.6% |
Run | Inlet Temperature | Inlet Pressure | Mass Flow Rate | Imposed Heat Flux | ||||
---|---|---|---|---|---|---|---|---|
Tin,f [K] | Tin,f* (Tin,f/Tin,f−nom) | Pin [MPa] | Pin* (Pin/Pin,nom) | m [kg/s] | m* (m/mnom) | O/F | ||
1 | 110 | 1.00 | 16.0 | 1.00 | 0.020 | 1.00 | 3.4 | Nominal |
2 | 120 | 1.09 | 15.7 | 0.98 | 0.0183 | 0.91 | 4.08 | Point A |
3 | 100 | 0.91 | 16.3 | 1.00 | 0.0218 | 1.09 | 3.43 | Point B |
4 | 100 | 0.91 | 16.3 | 1.00 | 0.0218 | 1.09 | 2.83 | Point C |
5 | 120 | 1.09 | 15.7 | 0.98 | 0.0183 | 0.91 | 3.36 | Point D |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricci, D.; Battista, F.; Fragiacomo, M.; French, A.D. Thermal Behaviour of the Cooling Jacket Belonging to a Liquid Oxygen/Liquid Methane Rocket Engine Demonstrator in the Operation Box. Aerospace 2023, 10, 607. https://doi.org/10.3390/aerospace10070607
Ricci D, Battista F, Fragiacomo M, French AD. Thermal Behaviour of the Cooling Jacket Belonging to a Liquid Oxygen/Liquid Methane Rocket Engine Demonstrator in the Operation Box. Aerospace. 2023; 10(7):607. https://doi.org/10.3390/aerospace10070607
Chicago/Turabian StyleRicci, Daniele, Francesco Battista, Manrico Fragiacomo, and Ainslie Duncan French. 2023. "Thermal Behaviour of the Cooling Jacket Belonging to a Liquid Oxygen/Liquid Methane Rocket Engine Demonstrator in the Operation Box" Aerospace 10, no. 7: 607. https://doi.org/10.3390/aerospace10070607
APA StyleRicci, D., Battista, F., Fragiacomo, M., & French, A. D. (2023). Thermal Behaviour of the Cooling Jacket Belonging to a Liquid Oxygen/Liquid Methane Rocket Engine Demonstrator in the Operation Box. Aerospace, 10(7), 607. https://doi.org/10.3390/aerospace10070607