Adaptive Mode Filter for Lamb Wavefield in the Wavenumber-Time Domain Based on Wavenumber Response Function
Abstract
:1. Introduction
2. Adaptive Mode Filter
3. Experimental Investigation
3.1. Data Acquisition System
3.2. Specimen and Inspection Setup
3.3. Result Visualization
3.3.1. Spectral Energy Mapping
3.3.2. Wavenumber Imaging
3.4. Performance Metric
4. Results and Discussions
4.1. Effectiveness of Mode Filtering
4.2. Advantages of the Mode Filter
5. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arena, M.; Ambrogiani, P.; Raiola, V.; Bocchetto, F.; Tirelli, T.; Castaldo, M. Design and Qualification of an Additively Manufactured Manifold for Aircraft Landing Gears Applications. Aerospace 2023, 10, 69. [Google Scholar] [CrossRef]
- Kim, M.; Kim, Y. A Thermo-Mechanical Properties Evaluation of Multi-Directional Carbon/Carbon Composite Materials in Aerospace Applications. Aerospace 2022, 9, 461. [Google Scholar] [CrossRef]
- Rajak, D.K.; Wagh, P.H.; Kumar, A.; Sanjay, M.R.; Siengchin, S.; Khan, A.; Asiri, A.M.; Naresh, K.; Velmurugan, R.; Gupta, N.K. Impact of fiber reinforced polymer composites on structural joints of tubular sections: A review. Thin-Walled Struct. 2022, 180, 109967. [Google Scholar] [CrossRef]
- Cui, Z.; Wang, Z.; Cao, F. Research on Mechanical Properties of V-Type Folded Core Sandwich Structures. Aerospace 2022, 9, 398. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, B.; Wang, S. Finite element analysis on impact response and damage mechanism of composite laminates under single and repeated low-velocity impact. Aerosp. Sci. Technol. 2022, 129, 107810. [Google Scholar] [CrossRef]
- Othman, M.S.; Chun, O.T.; Harmin, M.Y.; Romli, F.I. Aeroelastic effects of a simple rectangular wing-box model with varying rib orientations. IOP Conf. Ser. Mater. Sci. Eng. 2016, 152, 012009. [Google Scholar] [CrossRef]
- Chan, Y.N.; Harmin, M.Y.; Othman, M.S. Parametric study of varying ribs orientation and sweep angle of un-tapered wing box model. Int. J. Eng. Technol. 2018, 7, 155–159. [Google Scholar] [CrossRef]
- Dawood Al-Wasiti, S.D.S.; Harmin, M.Y.; Harithuddin, A.S.M.; Chia, C.C.; Rafie, A.S.M. Computational Study of Mass Reduction of a Conceptual Microsatellite Structural Subassembly Utilizing Metal Perforations. J. Aeronaut. Astronaut. Aviat. 2021, 53, 57–66. [Google Scholar]
- Dawood, S.D.S.; Harithuddin, A.S.M.; Harmin, M.Y. Modal Analysis of Conceptual Microsatellite Design Employing Perforated Structural Components for Mass Reduction. Aerospace 2022, 9, 23. [Google Scholar] [CrossRef]
- Bin Kamarudin, M.N.; Mohamed Ali, J.S.; Aabid, A.; Ibrahim, Y.E. Buckling Analysis of a Thin-Walled Structure Using Finite Element Method and Design of Experiments. Aerospace 2022, 9, 541. [Google Scholar] [CrossRef]
- Shao, Z.; Zhang, C.; Li, Y.; Shen, H.; Zhang, D.; Yu, X.; Zhang, Y. A Review of Non-Destructive Evaluation (NDE) Techniques for Residual Stress Profiling of Metallic Components in Aircraft Engines. Aerospace 2022, 9, 534. [Google Scholar] [CrossRef]
- An, J.H.; Din, S.; Ahmed, H.; Lee, J.R. Simultaneous external and internal inspection of a cylindrical CFRP lattice-skin structure based on rotational ultrasonic propagation imaging and laser displacement sensing. Compos. Struct. 2021, 276, 114592. [Google Scholar] [CrossRef]
- Ahmed, O.; Wang, X.; Tran, M.-V.; Ismadi, M.-Z. Advancements in fiber-reinforced polymer composite materials damage detection methods: Towards achieving energy-efficient SHM systems. Compos. Part B Eng. 2021, 223, 109136. [Google Scholar] [CrossRef]
- Balageas, D. Introduction to Structural Health Monitoring. In Structural Health Monitoring; ISTE Ltd.: London, UK, 2006; p. 495. [Google Scholar]
- Fomitchov, P.A.; Kromin, A.K.; Krishnaswamy, S.; Achenbach, J.D. Imaging of damage in sandwich composite structures using a scanning laser source technique. Compos. Part B Eng. 2004, 35, 557–562. [Google Scholar] [CrossRef]
- Ostachowicz, W.; Kudela, P.; Radzienski, M. Guided Wavefield Images Filtering for Damage Localization. Key Eng. Mater. 2013, 558, 92–98. [Google Scholar] [CrossRef]
- Chia, C.-C.; Jang, S.-G.; Lee, J.-R.; Yoon, D.-J. Structural damage identification based on laser ultrasonic propagation imaging technology. In Optical Measurement Systems for Industrial Inspection VI; International Society for Optics and Photonics Location: Bellingham, WA, USA, 2009; Volume 7389, p. 73891S. [Google Scholar]
- Moore, P.O.; Workman, G.L. Nondestructive Testing Overview; The American Society for Nondestructive Testing: Columbus, OH, USA, 2012; Volume 10. [Google Scholar]
- Chia, C.C.; Lee, S.Y.; Harmin, M.Y.; Choi, Y.; Lee, J.-R. Guided Ultrasonic Waves Propagation Imaging: A Review. Meas. Sci. Technol. 2023, 34, 052001. [Google Scholar] [CrossRef]
- Rose, J.L. Ultrasonic Guided Waves in Solid Media; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Lamb, H. On Waves in an Elastic Plate. Proc. R. Soc. Lond. Ser. A Contain. Pap. A Math. Phys. Character 1917, 93, 114–128. [Google Scholar]
- Sharma, V.K.; Hanagud, S.; Ruzzene, M. Damage Index Estimation in Beams and Plates Using Laser Vibrometry. AIAA J. 2006, 44, 919–923. [Google Scholar] [CrossRef]
- Kudela, P.; Ostachowicz, W.; Żak, A. Damage detection in composite plates with embedded PZT transducers. Mech. Syst. Signal Process. 2008, 22, 1327–1335. [Google Scholar] [CrossRef]
- Giurgiutiu, V. Chapter 6—Guided Waves. In Structural Health Monitoring with Piezoelectric Wafer Active Sensors, 2nd ed.; Giurgiutiu, V., Ed.; Academic Press: Oxford, UK, 2014; pp. 293–355. [Google Scholar]
- Rose, J.L. Chapter 2. Dispersion Principles. In Ultrasonic Guided Waves in Solid Media; Cambridge University Press: Cambridge, UK, 2014; pp. 16–35. [Google Scholar]
- Huang, T.L.; Ichchou, M.N.; Bareille, O.A. Multi-mode wave propagation in damaged stiffened panels. Struct. Control Health Monit. 2012, 19, 609–629. [Google Scholar] [CrossRef]
- Aslam, M.; Bijudas, C.R.; Nagarajan, P.; Remanan, M. Numerical and Experimental Investigation of Nonlinear Lamb Wave Mixing at Low Frequency. J. Aerosp. Eng. 2020, 33, 04020037. [Google Scholar] [CrossRef]
- Alleyne, D.N.; Cawley, P. The interaction of Lamb waves with defects. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1992, 39, 381–397. [Google Scholar] [CrossRef] [PubMed]
- Le Bas, P.-Y.; Remillieux, M.C.; Pieczonka, L.; Ten Cate, J.A.; Anderson, B.E.; Ulrich, T.J. Damage imaging in a laminated composite plate using an air-coupled time reversal mirror. Appl. Phys. Lett. 2015, 107, 184102. [Google Scholar] [CrossRef] [Green Version]
- Mańka, M.; Rosiek, M.; Martowicz, A.; Stepinski, T.; Uhl, T. PZT based tunable Interdigital Transducer for Lamb waves based NDT and SHM. Mech. Syst. Signal Process. 2016, 78, 71–83. [Google Scholar] [CrossRef]
- Ambroziński, Ł.; Stepinski, T. Robust polarization filter for separation of Lamb wave modes acquired using a 3D laser vibrometer. Mech. Syst. Signal Process. 2017, 93, 368–378. [Google Scholar] [CrossRef]
- Hosoya, N.; Katsumata, T.; Kajiwara, I.; Onuma, T.; Kanda, A. Measurements of S mode Lamb waves using a high-speed polarization camera to detect damage in transparent materials during non-contact excitation based on a laser-induced plasma shock wave. Opt. Lasers Eng. 2022, 148, 106770. [Google Scholar] [CrossRef]
- Alleyne, D.; Cawley, P. A two-dimensional Fourier transform method for the measurement of propagating multimode signals. J. Acoust. Soc. Am. 1991, 89, 1159–1168. [Google Scholar] [CrossRef]
- Ruzzene, M. Frequency–wavenumber domain filtering for improved damage visualization. Smart Mater. Struct. 2007, 16, 2116–2129. [Google Scholar] [CrossRef] [Green Version]
- Kudela, P.; Radzieński, M.; Ostachowicz, W. Identification of cracks in thin-walled structures by means of wavenumber filtering. Mech. Syst. Signal Process. 2015, 50–51, 456–466. [Google Scholar] [CrossRef]
- Lee, J.-R.; Chia, C.C.; Park, C.-Y.; Jeong, H. Laser ultrasonic anomalous wave propagation imaging method with adjacent wave subtraction: Algorithm. Opt. Laser Technol. 2012, 44, 1507–1515. [Google Scholar] [CrossRef]
- Gan, C.S.; Chia, C.C.; Tan, L.Y.; Mazlan, N.; Harley, J.B. Statistical evaluation of damage size based on amplitude mapping of damage-induced ultrasonic wavefield. IOP Conf. Ser. Mater. Sci. Eng. 2018, 405, 012006. [Google Scholar] [CrossRef] [Green Version]
- Gan, C.S.; Tan, L.Y.; Chia, C.C.; Mustapha, F.; Lee, J.-R. Nondestructive detection of incipient thermal damage in glass fiber reinforced epoxy composite using the ultrasonic propagation imaging. Funct. Compos. Struct. 2019, 1, 025006. [Google Scholar] [CrossRef] [Green Version]
- Segers, J.; Hedayatrasa, S.; Poelman, G.; Van Paepegem, W.; Kersemans, M. Robust and baseline-free full-field defect detection in complex composite parts through weighted broadband energy mapping of mode-removed guided waves. Mech. Syst. Signal Process. 2021, 151, 107360. [Google Scholar] [CrossRef]
- Michaels, T.E.; Michaels, J.E.; Ruzzene, M. Frequency–wavenumber domain analysis of guided wavefields. Ultrasonics 2011, 51, 452–466. [Google Scholar] [CrossRef] [PubMed]
- Rogge, M.D.; Leckey, C.A.C. Characterization of impact damage in composite laminates using guided wavefield imaging and local wavenumber domain analysis. Ultrasonics 2013, 53, 1217–1226. [Google Scholar] [CrossRef] [PubMed]
- Flynn, E.B.; Chong, S.Y.; Jarmer, G.J.; Lee, J.-R. Structural imaging through local wavenumber estimation of guided waves. NDT E Int. 2013, 59, 1–10. [Google Scholar] [CrossRef]
- Ma, Z.; Yu, L. Lamb wave imaging with actuator network for damage quantification in aluminum plate structures. J. Intell. Mater. Syst. Struct. 2021, 32, 182–195. [Google Scholar] [CrossRef]
- Spytek, J.; Pieczonka, L.; Stepinski, T.; Ambrozinski, L. Mean local frequency-wavenumber estimation through synthetic time-reversal of diffuse Lamb waves. Mech. Syst. Signal Process. 2021, 156, 107712. [Google Scholar] [CrossRef]
- Spytek, J.; Ambrozinski, L.; Pieczonka, L. Evaluation of disbonds in adhesively bonded multilayer plates through local wavenumber estimation. J. Sound Vib. 2022, 520, 116624. [Google Scholar] [CrossRef]
- Shahrim, M.A.; Harmin, M.Y.; Romli, F.I.; Chia, C.C.; Lee, J.-R. Damage Visualization based on Frequency Shift of Single-Mode Ultrasound-Guided Wavefield. J. Aeronaut. Astronaut. Aviat. 2022, 54, 297–305. [Google Scholar]
- Michaels, T.E.; Michaels, J.E. Application of acoustic wavefield imaging to non-contact ultrasonic inspection of bonded components. Rev. Prog. Quant. Nonde-Struct. Eval. 2006, 25, 1484–1491. [Google Scholar]
- Sohn, H.; Dutta, D.; Yang, J.Y.; Park, H.J.; DeSimio, M.; Olson, S.; Swenson, E. Delamination detection in composites through guided wave field image processing. Compos. Sci. Technol. 2011, 71, 1250–1256. [Google Scholar] [CrossRef]
- Vallen Systeme GmbH. Vallen Dispersion, version R2008.0915; Vallen Systeme GmbH: Wolfratshausen, Germany, 2008. [Google Scholar]
- Fuentes-Domínguez, R.; Yao, M.; Colombi, A.; Dryburgh, P.; Pieris, D.; Jackson-Crisp, A.; Colquitt, D.; Clare, A.; Smith, R.J.; Clark, M. Design of a resonant Luneburg lens for surface acoustic waves. Ultrasonics 2021, 111, 106306. [Google Scholar] [CrossRef]
- Legrand, F.; Gérardin, B.; Bruno, F.; Laurent, J.; Lemoult, F.; Prada, C.; Aubry, A. Cloaking, trapping and superlensing of lamb waves with negative refraction. Sci. Rep. 2021, 11, 23901. [Google Scholar] [CrossRef]
- Schaeffer, M.; Trainiti, G.; Ruzzene, M. Optical Measurement of In-plane Waves in Mechanical Metamaterials Through Digital Image Correlation. Sci. Rep. 2017, 7, 42437. [Google Scholar] [CrossRef] [Green Version]
- Jung, B.-H.; Lee, J.-R. Laser-based structural training algorithm for AE localization and damage accumulation visualization in a composite wing skin with various sub-structures. Smart Mater. Struct. 2020, 29, 115014. [Google Scholar] [CrossRef]
- Gonella, S.; Ruzzene, M. Analysis of in-plane wave propagation in hexagonal and re-entrant lattices. J. Sound Vib. 2008, 312, 125–139. [Google Scholar] [CrossRef]
- Luo, Y.-S.; Yang, S.-X.; Lv, X.-F.; He, J.; Liu, Y.; Cheng, Q.-C. An algorithm based on logarithm of wavenumber amplitude for detection of delamination in carbon fiber composite. Meas. Sci. Technol. 2021, 32, 105024. [Google Scholar] [CrossRef]
- Wandowski, T.; Mindykowski, D.; Kudela, P.; Radzienski, M. Analysis of Air-Coupled Transducer-Based Elastic Waves Generation in CFRP Plates. Sensors 2021, 21, 7134. [Google Scholar] [CrossRef]
- Truong, T.C.; Lee, J.-R. Thickness reconstruction of nuclear power plant pipes with flow-accelerated corrosion damage using laser ultrasonic wavenumber imaging. Struct. Health Monit. 2017, 17, 255–265. [Google Scholar] [CrossRef]
- Kang, T.; Moon, S.; Han, S.; Jeon, J.Y.; Park, G. Measurement of shallow defects in metal plates using inter-digital transducer-based laser-scanning vibrometer. NDT E Int. 2019, 102, 26–34. [Google Scholar] [CrossRef]
- Hayashi, T.; Fujishima, R. Defect detection in a plate loaded with water on a single surface using quasi-Scholte wave. J. Jpn. Inst. Met. 2017, 81, 71–79. [Google Scholar] [CrossRef] [Green Version]
P1 | D1 | D2 | D3 | D4 | |
---|---|---|---|---|---|
Specimen | Stainless-steel plate | Stainless-steel plate | Stainless-steel plate | Aluminium honeycomb panel | CFRP wing section |
Overall size (mm3) | Nominal skin thickness 2.0 mm | ||||
Scan ROI (mm2) | |||||
Damage type | - | Hidden crack | Hidden corrosion | Water ingress | Barely visible impact |
Damage Position (mm) (with reference to ROI) | - | (50, 50) | (50, 50) | (62.5, 210.0) (125.0, 210.0) (187.5, 210.0) (62.5, 40.0) (125.0, 40.0) (187.5, 40.0) | (200, 200) |
Damage size (mm) | - | 2.0 Depth 1.0 | 30.0 Depth 1.0 | 10.4 | 20.0 |
Frequency bandpass (kHz) | 200–400 | 200–400 | 450–550 | 150–250 | 120–130 |
Sampling frequency (MHz) | 5 | 5 | 2.5 | 1.5 | 1.25 |
Source (sensor) coordinate (mm) | (150, 150) | (200, 200) | (50, −50) | (125, 375) | (200, −130) |
Sensor-affix surface | Opposite | Front | Opposite | Front | On spar web |
Bandpass (kHz) | 200–400 | 200–250 | 250–300 | 300–350 | 350–400 | |
---|---|---|---|---|---|---|
S0 time zone (index) | 142–260 | 154–326 | 162–326 | 164–320 | 164–304 | |
A0 time zone (index) | 260–441 | 326–499 | 326–499 | 320–496 | 304–494 | |
S0 isolation | ER of S0 (%) | 101.3 | 122.0 | 107.2 | 104.9 | 78.2 |
ER of A0 (%) | 0.1 | 0.4 | 0.8 | 0.5 | 0.4 | |
A0 isolation | ER of S0 (%) | 1.3 | 4.5 | 3.0 | 2.1 | 1.9 |
ER of A0 (%) | 96.0 | 97.3 | 106.9 | 98.2 | 106.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahrim, M.A.A.; Chia, C.C.; Ramli, H.R.; Harmin, M.Y.; Lee, J.-R. Adaptive Mode Filter for Lamb Wavefield in the Wavenumber-Time Domain Based on Wavenumber Response Function. Aerospace 2023, 10, 347. https://doi.org/10.3390/aerospace10040347
Shahrim MAA, Chia CC, Ramli HR, Harmin MY, Lee J-R. Adaptive Mode Filter for Lamb Wavefield in the Wavenumber-Time Domain Based on Wavenumber Response Function. Aerospace. 2023; 10(4):347. https://doi.org/10.3390/aerospace10040347
Chicago/Turabian StyleShahrim, Muhamad Azim Azhad, Chen Ciang Chia, Hafiz Rashidi Ramli, Mohammad Yazdi Harmin, and Jung-Ryul Lee. 2023. "Adaptive Mode Filter for Lamb Wavefield in the Wavenumber-Time Domain Based on Wavenumber Response Function" Aerospace 10, no. 4: 347. https://doi.org/10.3390/aerospace10040347
APA StyleShahrim, M. A. A., Chia, C. C., Ramli, H. R., Harmin, M. Y., & Lee, J. -R. (2023). Adaptive Mode Filter for Lamb Wavefield in the Wavenumber-Time Domain Based on Wavenumber Response Function. Aerospace, 10(4), 347. https://doi.org/10.3390/aerospace10040347