Quantitative Weight and Two-Particle Search Algorithm to Optimize Aero-Stealth Performance of a Backward Inclined Vertical Tail
Abstract
:1. Introduction
2. Optimization Method
2.1. Quantitative Weight Coefficient
2.2. Two-Particle Search Algorithm
2.3. Aerodynamic Calculation
2.4. RCS Assessment
3. Model Establishment
4. Results and Discussion
4.1. Separate Aerodynamic Optimization
4.2. Separate Stealth Optimization
4.3. Aero-Stealth Optimization
4.4. Stealth-Aerodynamic Optimization
5. Conclusions
- (1)
- When only the weight coefficient of the aerodynamic performance index is considered, the two-particle search algorithm can provide a satisfactory optimal solution, while under the given conditions, the reduction in aerodynamic drag can reach 398.098 N;
- (2)
- In the same backward-tilt range, the optimal solution of separate stealth optimization is different from that of separate aerodynamic optimization, where the reduction in target performance is 6.7999 dBm2 when optimizing the stealth index alone;
- (3)
- When the weight coefficient of the aerodynamic index is greater than that of the stealth index, the two-particle algorithm can provide a satisfactory optimal solution for the aero-stealth optimization, where the comprehensive performance index and fitness index have been significantly reduced;
- (4)
- Considering the weight coefficient of the stealth index is greater than that of the aerodynamic index, the initial level of comprehensive performance indicators has changed significantly while the reduction effect is satisfactory, where the aerodynamic index has been reduced by 374.0295 N, and the RCS peak and mean indicator have been significantly reduced.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nicolosi, F.; Ciliberti, D.; Della Vecchia, P.; Corcione, S.; Cusati, V. A comprehensive review of vertical tail design. Aircr. Eng. Aerosp. Technol. 2017, 8, 547–557. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.S. Stealth technology for radar onboard next generation fighter. Mod. Radar 2018, 40, 11–14. [Google Scholar]
- Moëns, F. A Fast Aerodynamic Model for Aircraft Multidisciplinary Design and Optimization Process. Aerospace 2023, 10, 7. [Google Scholar] [CrossRef]
- Ciliberti, D.; Della Vecchia, P.; Nicolosi, F.; De Marco, A. Aircraft directional stability and vertical tail design: A review of semi-empirical methods. Prog. Aerosp. Sci. 2017, 95, 140–172. [Google Scholar] [CrossRef]
- Dong, Y.; Chen, Y.; Peng, J. Development and prospect of variable swept wing. Flight Dyn. 2014, 32, 97–100. [Google Scholar]
- Lee, B.H.K. Vertical tail buffeting of fighter aircraft. Prog. Aerosp. Sci. 2000, 36, 193–279. [Google Scholar] [CrossRef]
- Azeez, A.A.; Gadala, M.; Al Khudhiri, N.; Dol, S.S. Aerodynamics optimization of RC plane winglet. In Proceedings of the 2019 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO), Manama, Bahrain, 15–17 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar]
- Zhang, Y.; Xu, S.; Wan, Y. Performance improvement of centrifugal compressors for fuel cell vehicles using the aerodynamic optimization and data mining methods. Int. J. Hydrog. Energy 2020, 45, 11276–11286. [Google Scholar] [CrossRef]
- D’Amato, E.; Notaro, I.; Panico, G.; Blasi, L.; Mattei, M.; Nocerino, A. Trajectory Planning and Tracking for a Re-Entry Capsule with a Deployable Aero-Brake. Aerospace 2022, 9, 841. [Google Scholar] [CrossRef]
- Hassanpour, M.; Azadani, L.N. Aerodynamic optimization of the configuration of a pair of vertical axis wind turbines. Energy Convers. Manag. 2021, 238, 114069. [Google Scholar] [CrossRef]
- Mader, C.A.; Kenway, G.K.W.; Yildirim, A.; Martins, J.R. ADflow: An open-source computational fluid dynamics solver for aerodynamic and multidisciplinary optimization. J. Aerosp. Inf. Syst. 2020, 17, 508–527. [Google Scholar] [CrossRef]
- Zhou, Z.; Huang, J. Mixed design of radar/infrared stealth for advanced fighter intake and exhaust system. Aerosp. Sci. Technol. 2021, 110, 106490. [Google Scholar] [CrossRef]
- Pisanu, T.; Muntoni, G.; Schirru, L.; Ortu, P.; Urru, E.; Montisci, G. Recent Advances of the BIRALET System about Space Debris Detection. Aerospace 2021, 8, 86. [Google Scholar] [CrossRef]
- Bashir, M.; Longtin-Martel, S.; Botez, R.M.; Wong, T. Aerodynamic design optimization of a morphing leading edge and trailing edge airfoil–application on the uas-s45. Appl. Sci. 2021, 11, 1664. [Google Scholar] [CrossRef]
- Zhou, Z.; Huang, J. Auto Sweptback Wing Based on Low Scattering Demand for an Unmanned Aerial Vehicle in Phase Flight. Aerospace 2022, 9, 757. [Google Scholar] [CrossRef]
- Sharma, A.; Ghosh, S.; Srivastava, K.V. A polarization-insensitive band-notched absorber for radar cross section reduction. IEEE Antennas Wirel. Propag. Lett. 2020, 20, 259–263. [Google Scholar] [CrossRef]
- Peršić, J.; Marković, I.; Petrović, I. Extrinsic 6dof calibration of a radar–lidar–camera system enhanced by radar cross section estimates evaluation. Robot. Auton. Syst. 2019, 114, 217–230. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Y.; Wu, T.; Cao, J.; Chen, Z.; Guan, J. Broadband radar cross section reduction by in-plane integration of scattering metasurfaces and magnetic absorbing materials. Results Phys. 2019, 12, 1964–1970. [Google Scholar] [CrossRef]
- Rahman, S.U.; Cao, Q.; Akram, M.R.; Amin, F.; Wang, Y. Multifunctional polarization converting metasurface and its application to reduce the radar cross-section of an isolated MIMO antenna. J. Phys. D Appl. Phys. 2020, 53, 305001. [Google Scholar] [CrossRef]
- Zhou, Z.; Huang, J. Numerical investigations on radar cross-section of helicopter rotor with varying blade pitch. Aerosp. Sci. Technol. 2022, 123, 107452. [Google Scholar] [CrossRef]
- Pervaiz, S.; Ul-Qayyum, Z.; Bangyal, W.H.; Gao, L.; Ahmad, J. A systematic literature review on particle swarm optimization techniques for medical diseases detection. Comput. Math. Methods Med. 2021, 2021, 5990999. [Google Scholar] [CrossRef]
- Jahandideh-Tehrani, M.; Bozorg-Haddad, O.; Loáiciga, H.A. Application of particle swarm optimization to water management: An introduction and overview. Environ. Monit. Assess. 2020, 192, 181. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Yang, Y.; Wang, Z.; Zhang, S.; Sun, X.; Feng, W. Design and Shape Monitoring of a Morphing Wing Trailing Edge. Aerospace 2023, 10, 127. [Google Scholar] [CrossRef]
- Xia, X.; Gui, L.; Yu, F.; Wu, H.; Wei, B.; Zhang, Y.-L.; Zhan, Z.-H. Triple archives particle swarm optimization. IEEE Trans. Cybern. 2019, 50, 4862–4875. [Google Scholar] [CrossRef] [PubMed]
- Shan, X.; Wang, Y.; Ji, Z. Energy efficiency optimization for discrete workshop based on parametric knowledge pigeon swarm algorithm. J. Syst. Simul. 2017, 29, 2140. [Google Scholar]
- Fathollahi-Fard, A.M.; Govindan, K.; Hajiaghaei-Keshteli, M.; Ahmadi, A. A green home health care supply chain: New modified simulated annealing algorithms. J. Clean. Prod. 2019, 240, 118200. [Google Scholar] [CrossRef]
- Yang, Q.; Deng, M.; Peng, Y. Urban UAV Path Planning Based on improved Beetle search algorithm. J. Syst. Simul. 2022, 8, 192760–192776. [Google Scholar] [CrossRef]
- Cai, Z.; Gao, Z. Design of a variable sweep wing driving mechanism and CFD simulation. J. Mach. Des. 2018, 35, 17–22. [Google Scholar]
- Zhou, Z.; Huang, J. Y-type quadrotor radar cross-section analysis. Aircr. Eng. Aerosp. Technol. 2022; ahead-of-print. [Google Scholar] [CrossRef]
- Su, F. 3D Path Planning of UAVs Based on Improved Bat Algorithm. Radio Engineering. 2022. Available online: https://kns.cnki.net/kcms/detail/13.1097.TN.20221028.0954.010.html (accessed on 28 October 2022).
- Al-Qassar, A.A.; Abdulkareem, A.I.; Humaidi, A.J.; Ibraheem, I.K.; Azar, A.T.; Hameed, A.H. Grey-wolf optimization better enhances the dynamic performance of roll motion for tail-sitter VTOL aircraft guided and controlled by STSMC. J. Eng. Sci. Technol. 2021, 16, 1932–1950. [Google Scholar]
- Taj, Z.U.D.; Bilal, A.; Awais, M.; Salamat, S.; Abbas, M.; Maqsood, A. Design Exploration and Optimization of Aerodynamics and Radar Cross Section for a Fighter Aircraft. Aerosp. Sci. Technol. 2023, 133, 108114. [Google Scholar] [CrossRef]
- Saheby, E.B.; Hays, A.P.; Xing, S. Aerodynamic design and evaluation of an open-nose supersonic drone. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2022, 236, 3387–3410. [Google Scholar] [CrossRef]
- Klimczyk, W.; Sieradzki, A. RANS-Based Aeroacoustic Global Sensitivity Study and Optimization of UAV Propellers. Aerospace 2023, 10, 306. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, C.G.; Zhang, L. Deployment of SMP Miura-ori sheet and its application: Aerodynamic drag and RCS reduction. Chin. J. Aeronaut. 2022, 35, 121–131. [Google Scholar] [CrossRef]
Parameter | Ct (m) | Cb (m) | Hts (m) | Hvm (m) | Xm (m) |
---|---|---|---|---|---|
Value | 1.3994 | 2.7989 | 0.168 | 3 | 2.5 |
Region | Limit (mm) | Region | Limit (mm) |
---|---|---|---|
Global minimum | 1 | Trailing edge | 1 |
Leading edge | 2 | Top edge | 3 |
Bottom edge | 5 | Top surface | 30 |
Side surface | 35 | Bottom end face | 35 |
Xt (m) | 0.235 | 1.195 | 1.69 | 1.81 | 2.5 |
---|---|---|---|---|---|
σ (dBm2) | −22.3958 | −25.7927 | −26.3307 | −27.2187 | −28.0567 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Huang, J. Quantitative Weight and Two-Particle Search Algorithm to Optimize Aero-Stealth Performance of a Backward Inclined Vertical Tail. Aerospace 2023, 10, 345. https://doi.org/10.3390/aerospace10040345
Zhou Z, Huang J. Quantitative Weight and Two-Particle Search Algorithm to Optimize Aero-Stealth Performance of a Backward Inclined Vertical Tail. Aerospace. 2023; 10(4):345. https://doi.org/10.3390/aerospace10040345
Chicago/Turabian StyleZhou, Zeyang, and Jun Huang. 2023. "Quantitative Weight and Two-Particle Search Algorithm to Optimize Aero-Stealth Performance of a Backward Inclined Vertical Tail" Aerospace 10, no. 4: 345. https://doi.org/10.3390/aerospace10040345
APA StyleZhou, Z., & Huang, J. (2023). Quantitative Weight and Two-Particle Search Algorithm to Optimize Aero-Stealth Performance of a Backward Inclined Vertical Tail. Aerospace, 10(4), 345. https://doi.org/10.3390/aerospace10040345