The Large Imaging Spectrometer for Solar Accelerated Nuclei (LISSAN): A Next-Generation Solar γ-ray Spectroscopic Imaging Instrument Concept
Abstract
:1. Introduction
2. Unresolved Questions Regarding Ion Acceleration in Solar Eruptive Events
2.1. Do Ion and Electron Acceleration in Solar Eruptive Events Share a Close Physical Relationship?
2.2. How Efficient Is Ion Acceleration in Solar Eruptive Events?
2.3. How Are the Most Energetic Particles in the Solar Atmosphere Accelerated?
3. LISSAN Instrument Requirements
4. LISSAN Design
4.1. Instrument Concept
4.2. Indirect Imaging System
4.3. Main Instrument Components
4.3.1. Grids
- Laser powder bed fusion (cf. [64]): for tungsten, the components for nuclear fusion, medical imaging, and space applications have been manufactured with this technique by the Fraunhofer Institute for Casting, Composite and Processing Technology (IGCV).
- Three-dimensional screen printing (cf. [65]): Anti-scatter grids with fine pitches and large-aspect ratios for medical imaging were developed in tungsten–copper by the Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM).
4.3.2. Detectors
- GAGG crystals that scintillate when X-rays and γ-rays are absorbed;
- Silicon photomultipliers (SiPMs) and their front-end electronics (FEE; analog/digital front–end ASIC and voltage regulation) that record the scintillation;
- Fully digital back-end electronics (BEEs).
4.3.3. Solar Aspect and Twist Monitoring System
4.3.4. Data Processing Unit (DPU)
4.4. Spacecraft Interface Requirements and Environmental Constraints
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
APC | Laboratoire Astroparticule & Cosmologie |
ASIC | Application-specific integrated circuit |
BEE | (Detector unit) back-end electronics |
CCD | Charge-coupled device |
CME | Coronal mass ejection |
CMOS | Complementary metal–oxide–semiconductor |
CNES | Centre National de la Recherche Scientifique |
CPU | Central processing unit |
DPU | Data processing unit |
ESA | European Space Agency |
EUV | Extreme ultraviolet |
FEE | (Detector unit) front-end electronics |
Fermi-LAT | Fermi large-area telescope |
FGS | Fast Gamma-ray spectrometer |
FOV | Field of view |
FPGA | Field-programmable gate array |
FWHM | Full-width half-maximum |
GAGG(CE) | Gadolinium aluminium gallium garnet (Cerium) |
HXR | Hard X-rays (≳5 keV) |
IGCV | Fraunhofer Institute for Casting, Composite and Processing Technology |
IFAM | Fraunhofer Institute for Manufacturing 294 Technology and Advanced Materials |
L1 | Lagrange point 1 |
LEO | Low Earth orbit |
LESIA | Laboratoire d’études spatiales et d’instrumentation en astrophysique |
LISSAN | Large Imaging Spectrometer for Solar Accelerated Nuclei |
MRAM | Magnetoresistive random-access memory |
PEEK | Polyether ether ketone |
PROM | Programmable read-only memory |
PSF | Point spread function |
RHESSI | Reuven Ramaty high-energy solar spectroscopic Imager |
SEPs | Solar energetic particles |
SiPM | Silicon photomultiplier |
SMM/GRS | Solar maximum mission/gamma-ray spectrometer |
SRAM | Static random-access memory |
STIX | Spectrometer/telescope for imaging X-rays |
TRL | Technology readiness level |
References
- Shibata, K. New observational facts about solar flares from YOHKOH studies—Evidence of magnetic reconnection and a unified model of flares. Adv. Space Res. 1996, 17, 9–18. [Google Scholar] [CrossRef]
- Christe, S.; Alaoui, M.; Allred, J.; Battaglia, M.; Baumgartner, W.; Buitrago-Casas, J.C.; Chen, B.; Chen, T.; Dennis, B.; Drake, J.; et al. The Focusing Optics X-ray Solar Imager (FOXSI). Bull. Am. Astron. Soc. 2023, 55, 065. [Google Scholar] [CrossRef]
- Shih, A.Y.; Glesener, L.; Krucker, S.; Guidoni, S.; Christe, S.; Reeves, K.; Gburek, S.; Caspi, A.; Alaoui, M.; Allred, J.; et al. Combined Next-Generation X-ray and EUV Observations with the FIERCE Mission Concept. In Proceedings of the American Meteorological Society 100th Annual Meeting (AMS), Boston, MA, USA, 12–16 January 2020. [Google Scholar] [CrossRef]
- Chupp, E.L. High-Energy Neutral Radiations from the Sun. Annu. Rev. Astron. Astrophys. 1984, 22, 359–387. [Google Scholar] [CrossRef]
- Ramaty, R. Nuclear processes in solar flares. Phys. Sun 1986, 2, 291–323. [Google Scholar]
- Chupp, E.L. Evolution of our understanding of solar flare particle acceleration: (1942–1995). AIP Conf. Proc. 1996, 374, 3–31. [Google Scholar] [CrossRef]
- Trottet, G.; Vilmer, N. The Production of Flare-Accelerated Particles at the Sun. In European Meeting on Solar Physics; Simnett, G.M., Alissandrakis, C.E., Vlahos, L., Eds.; Springer: Berlin/Heidelberg, Germany, 1997; Volume 489, p. 219. [Google Scholar] [CrossRef]
- Share, G.H.; Murphy, R.J. Gamma Ray Spectroscopy in the Pre-HESSI Era. High Energy Sol. Phys. Workshop 2000, 206, 377. [Google Scholar]
- Vilmer, N.; MacKinnon, A.L.; Trottet, G.; Barat, C. High energy particles accelerated during the large solar flare of 1990 May 24: X/γ-rayobservations. Astron. Astrophys. 2003, 412, 865–874. [Google Scholar] [CrossRef]
- Share, G.H.; Murphy, R.J. Gamma Radiation from Flare-Accelerated Particles Impacting the Sun. Geophys. Monogr. Ser. 2006, 165, 177. [Google Scholar] [CrossRef]
- Vilmer, N.; MacKinnon, A.L.; Hurford, G.J. Properties of Energetic Ions in the Solar Atmosphere from γ-ray and Neutron Observations. Space Sci. Rev. 2011, 159, 167–224. [Google Scholar] [CrossRef]
- Stecker, F.W. The Cosmic γ-Ray Spectrum from Secondary Particle Production in Cosmic-Ray Interactions. Astrophys. Space Sci. 1970, 6, 377–389. [Google Scholar] [CrossRef]
- Murphy, R.J.; Dermer, C.D.; Ramaty, R. High-Energy Processes in Solar Flares. Astrophys. J. Suppl. Ser. 1987, 63, 721. [Google Scholar] [CrossRef]
- Brown, J.C. The Deduction of Energy Spectra of Non-Thermal Electrons in Flares from the Observed Dynamic Spectra of Hard X-ray Bursts. Sol. Phys. 1971, 18, 489–502. [Google Scholar] [CrossRef]
- Piana, M.; Massone, A.M.; Kontar, E.P.; Emslie, A.G.; Brown, J.C.; Schwartz, R.A. Regularized Electron Flux Spectra in the 23 July 2002 Solar Flare. Astrophys. J. Lett. 2003, 595, L127–L130. [Google Scholar] [CrossRef]
- Holman, G.D.; Aschwanden, M.J.; Aurass, H.; Battaglia, M.; Grigis, P.C.; Kontar, E.P.; Liu, W.; Saint-Hilaire, P.; Zharkova, V.V. Implications of X-ray Observations for Electron Acceleration and Propagation in Solar Flares. Space Sci. Rev. 2011, 159, 107–166. [Google Scholar] [CrossRef]
- Kontar, E.P.; Brown, J.C.; Emslie, A.G.; Hajdas, W.; Holman, G.D.; Hurford, G.J.; Kašparová, J.; Mallik, P.C.V.; Massone, A.M.; McConnell, M.L.; et al. Deducing Electron Properties from Hard X-ray Observations. Space Sci. Rev. 2011, 159, 301–355. [Google Scholar] [CrossRef]
- Benz, A.O. Flare Observations. Living Rev. Sol. Phys. 2017, 14, 2. [Google Scholar] [CrossRef]
- Lin, R.P.; Dennis, B.R.; Hurford, G.J.; Smith, D.M.; Zehnder, A.; Harvey, P.R.; Curtis, D.W.; Pankow, D.; Turin, P.; Bester, M.; et al. The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Sol. Phys. 2002, 210, 3–32. [Google Scholar] [CrossRef]
- Krucker, S.; Hurford, G.J.; Grimm, O.; Kögl, S.; Gröbelbauer, H.P.; Etesi, L.; Casadei, D.; Csillaghy, A.; Benz, A.O.; Arnold, N.G.; et al. The Spectrometer/Telescope for Imaging X-rays (STIX). Astron. Astrophys. 2020, 642, A15. [Google Scholar] [CrossRef]
- Hurford, G.J.; Schwartz, R.A.; Krucker, S.; Lin, R.P.; Smith, D.M.; Vilmer, N. First Gamma-Ray Images of a Solar Flare. Astrophys. J. Lett. 2003, 595, L77–L80. [Google Scholar] [CrossRef]
- Hurford, G.J.; Krucker, S.; Lin, R.P.; Schwartz, R.A.; Share, G.H.; Smith, D.M. Gamma-Ray Imaging of the 2003 October/November Solar Flares. Astrophys. J. Lett. 2006, 644, L93–L96. [Google Scholar] [CrossRef]
- Ramaty, R.; Mandzhavidze, N. High energy processes in solar flares. AIP Conf. Proc. 2000, 522, 401–410. [Google Scholar] [CrossRef]
- Emslie, A.G.; Dennis, B.R.; Shih, A.Y.; Chamberlin, P.C.; Mewaldt, R.A.; Moore, C.S.; Share, G.H.; Vourlidas, A.; Welsch, B.T. Global Energetics of Thirty-eight Large Solar Eruptive Events. Astrophys. J. 2012, 759, 71. [Google Scholar] [CrossRef]
- Aschwanden, M.J.; Caspi, A.; Cohen, C.M.S.; Holman, G.; Jing, J.; Kretzschmar, M.; Kontar, E.P.; McTiernan, J.M.; Mewaldt, R.A.; O’Flannagain, A.; et al. Global Energetics of Solar Flares. V. Energy Closure in Flares and Coronal Mass Ejections. Astrophys. J. 2017, 836, 17. [Google Scholar] [CrossRef]
- Reid, H.A.S.; Musset, S.; Ryan, D.F.; Calcines Rosario, A.; Dudík, J.; Auchère, F.; Dahlin, J.; Hayes, L.A.; Kerr, G.S.; Nakariakov, V.M.; et al. The Solar Particle Acceleration Radiation and Kinetics (SPARK) mission concept. Aerospace 2023. submitted. [Google Scholar]
- Kiener, J.; Gros, M.; Tatischeff, V.; Weidenspointner, G. Properties of the energetic particle distributions during the 28 October 2003 solar flare from INTEGRAL/SPI observations. Astron. Astrophys. 2006, 445, 725–733. [Google Scholar] [CrossRef]
- Dahlin, J.T.; Drake, J.F.; Swisdak, M. The mechanisms of electron heating and acceleration during magnetic reconnection. Phys. Plasmas 2014, 21, 092304. [Google Scholar] [CrossRef]
- Drake, J.F.; Swisdak, M.; Cassak, P.A.; Phan, T.D. On the 3-D structure and dissipation of reconnection-driven flow bursts. Geophys. Res. Lett. 2014, 41, 3710–3716. [Google Scholar] [CrossRef]
- Dahlin, J.T.; Drake, J.F.; Swisdak, M. Parallel electric fields are inefficient drivers of energetic electrons in magnetic reconnection. Phys. Plasmas 2016, 23, 120704. [Google Scholar] [CrossRef]
- Dahlin, J.T.; Drake, J.F.; Swisdak, M. The role of three-dimensional transport in driving enhanced electron acceleration during magnetic reconnection. Phys. Plasmas 2017, 24, 092110. [Google Scholar] [CrossRef]
- Shih, A.Y.; Lin, R.P.; Smith, D.M. RHESSI Observations of the Proportional Acceleration of Relativistic >0.3 MeV Electrons and >30 MeV Protons in Solar Flares. Astrophys. J. Lett. 2009, 698, L152–L157. [Google Scholar] [CrossRef]
- Drake, J.F.; Swisdak, M.; Che, H.; Shay, M.A. Electron acceleration from contracting magnetic islands during reconnection. Nature 2006, 443, 553–556. [Google Scholar] [CrossRef] [PubMed]
- Litvinenko, Y.E.; Craig, I.J.D. Flare Energy Release by Flux Pile-up Magnetic Reconnection in a Turbulent Current Sheet. Astrophys. J. 2000, 544, 1101–1107. [Google Scholar] [CrossRef]
- Holman, G.D.; Benka, S.G. A Hybrid Thermal/Nonthermal Model for the Energetic Emissions from Solar Flares. Astrophys. J. Lett. 1992, 400, L79. [Google Scholar] [CrossRef]
- Krucker, S.; Hudson, H.S.; Glesener, L.; White, S.M.; Masuda, S.; Wuelser, J.P.; Lin, R.P. Measurements of the Coronal Acceleration Region of a Solar Flare. Astrophys. J. 2010, 714, 1108–1119. [Google Scholar] [CrossRef]
- Oka, M.; Krucker, S.; Hudson, H.S.; Saint-Hilaire, P. Electron Energy Partition in the Above-the-looptop Solar Hard X-ray Sources. Astrophys. J. 2015, 799, 129. [Google Scholar] [CrossRef]
- Knight, J.W.; Sturrock, P.A. Reverse current in solar flares. Astrophys. J. 1977, 218, 306–310. [Google Scholar] [CrossRef]
- Emslie, A.G. The effect of reverse currents on the dynamics of nonthermal electron beams in solar flares and on their emitted X-ray bremsstrahlung. Astrophys. J. 1980, 235, 1055–1065. [Google Scholar] [CrossRef]
- van den Oord, G.H.J. The electrodynamics of beam/return current systems in the solar corona. Astron. Astrophys. 1990, 234, 496–518. [Google Scholar]
- Zharkova, V.V.; Gordovskyy, M. The Effect of the Electric Field Induced by Precipitating Electron Beams on Hard X-ray Photon and Mean Electron Spectra. Astrophys. J. 2006, 651, 553–565. [Google Scholar] [CrossRef]
- Alaoui, M.; Holman, G.D. Understanding Breaks in Flare X-ray Spectra: Evaluation of a Cospatial Collisional Return-current Model. Astrophys. J. 2017, 851, 78. [Google Scholar] [CrossRef]
- Murphy, R.J.; Ramaty, R.; Kozlovsky, B.; Reames, D.V. Solar Abundances from Gamma-ray Spectroscopy: Comparisons with Energetic Particle, Photospheric, and Coronal Abundances. Astrophys. J. 1991, 371, 793. [Google Scholar] [CrossRef]
- Trottet, G.; Barat, C.; Ramaty, R.; Vilmer, N.; Dezalay, J.P.; Kuznetsov, A.; Mandzhavidze, N.; Sunyaev, R.; Talon, R.; Terekhov, O. Thin target γ-ray line production during the 1991 June 1 flare. AIP Conf. Proc. 1996, 374, 153–161. [Google Scholar] [CrossRef]
- Alexander, W.M.; Tanner, W.G.; McDonald, R.A.; Schaub, G.E.; Stephenson, S.L.; McDonnell, J.A.M.; Maag, C.R. The Status of Measurement Technologies Concerning Micrometer and Submicrometer Space Articulate Matter Capture, Recovery, Velocity, and Trajectory. In Proceedings of the Workshop on Particle Capture, Recovery and Velocity/Trajectory Measurement Technologies, Houston, TX, USA, 27–28 September 1993; p. 11. [Google Scholar]
- Dunphy, P.P.; Chupp, E.L.; Bertsch, D.L.; Schneid, E.J.; Gottesman, S.R.; Kanbach, G. Gamma-Rays and Neutrons as a Probe of Flare Proton Spectra: The Solar Flare of 11 June 1991. Sol. Phys. 1999, 187, 45–57. [Google Scholar] [CrossRef]
- Kocharov, L.G.; Lee, J.W.; Zirin, H.; Kovaltsov, G.A.; Usoskin, I.G.; Pyle, K.R.; Shea, M.A.; Smart, D.F. Neutron and electromagnetic emissions during the 24 May 1990 solar flare. Sol. Phys. 1994, 155, 149–170. [Google Scholar] [CrossRef]
- Kocharov, L.; Debrunner, H.; Kovaltsov, G.; Lockwood, J.; McConnell, M.; Nieminen, P.; Rank, G.; Ryan, J.; Schoenfelder, V. Deduced spectrum of interacting protons accelerated after the impulsive phase of the 15 June 1991 solar flare. Astron. Astrophys. 1998, 340, 257–264. [Google Scholar]
- Vilmer, N.; Krucker, S.; Trottet, G.; Lin, R.P. Hard X-ray and metric/decimetric spatially resolved observations of the 10 April 2002 solar flare. Adv. Space Res. 2003, 32, 2509–2515. [Google Scholar] [CrossRef]
- Kanbach, G.; Bertsch, D.L.; Fichtel, C.E.; Hartman, R.C.; Hunter, S.D.; Kniffen, D.A.; Kwok, P.W.; Lin, Y.C.; Mattox, J.R.; Mayer-Hasselwander, H.A. Detection of a long-duration solar gamma-ray flare on 11 June 1991 with EGRET on COMPTON-GRO. Astron. Astrophys. Suppl. Ser. 1993, 97, 349–353. [Google Scholar]
- Ryan, J.M.; Lockwood, J.A.; Debrunner, H. Solar Energetic Particles. Space Sci. Rev. 2000, 93, 35–53. [Google Scholar] [CrossRef]
- Share, G.H.; Murphy, R.J.; White, S.M.; Tolbert, A.K.; Dennis, B.R.; Schwartz, R.A.; Smart, D.F.; Shea, M.A. Characteristics of Late-phase >100 MeV Gamma-Ray Emission in Solar Eruptive Events. Astrophys. J. 2018, 869, 182. [Google Scholar] [CrossRef]
- de Nolfo, G.A.; Bruno, A.; Ryan, J.M.; Dalla, S.; Giacalone, J.; Richardson, I.G.; Christian, E.R.; Stochaj, S.J.; Bazilevskaya, G.A.; Boezio, M.; et al. Comparing Long-duration Gamma-Ray Flares and High-energy Solar Energetic Particles. Astrophys. J. 2019, 879, 90. [Google Scholar] [CrossRef]
- Hutchinson, A.; Dalla, S.; Laitinen, T.; de Nolfo, G.A.; Bruno, A.; Ryan, J.M.; Waterfall, C.O.G. Energetic proton back-precipitation onto the solar atmosphere in relation to long-duration gamma-ray flares. Astron. Astrophys. 2022, 658, A23. [Google Scholar] [CrossRef]
- Grechnev, V.V.; Kurt, V.G.; Chertok, I.M.; Uralov, A.M.; Nakajima, H.; Altyntsev, A.T.; Belov, A.V.; Yushkov, B.Y.; Kuznetsov, S.N.; Kashapova, L.K.; et al. An Extreme Solar Event of 20 January 2005: Properties of the Flare and the Origin of Energetic Particles. Sol. Phys. 2008, 252, 149–177. [Google Scholar] [CrossRef]
- McCracken, K.G.; Moraal, H.; Stoker, P.H. Investigation of the multiple-component structure of the 20 January 2005 cosmic ray ground level enhancement. J. Geophys. Res. Space Phys. 2008, 113, A12101. [Google Scholar] [CrossRef]
- Masson, S.; Pariat, E.; Aulanier, G.; Schrijver, C.J. The Nature of Flare Ribbons in Coronal Null-Point Topology. Astrophys. J. 2009, 700, 559–578. [Google Scholar] [CrossRef]
- Ajello, M.; Albert, A.; Allafort, A.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Bonamente, E.; Brandt, T.J.; et al. Impulsive and Long Duration High-energy Gamma-ray Emission from the Very Bright 7 March 2012 Solar Flares. Astrophys. J. 2014, 789, 20. [Google Scholar] [CrossRef]
- Ajello, M.; Baldini, L.; Bastieri, D.; Bellazzini, R.; Berretta, A.; Bissaldi, E.; Blandford, R.D.; Bonino, R.; Bruel, P.; Buson, S.; et al. First Fermi-LAT Solar Flare Catalog. Astrophys. J. Suppl. Ser. 2021, 252, 13. [Google Scholar] [CrossRef]
- Chen, W.; Gan, W.Q. A Spectroscopic Method Based on the Shapes of Nuclear Deexcitation γ-ray Lines in Solar Flares. Astrophys. J. 2020, 895, 8. [Google Scholar] [CrossRef]
- Massa, P.; Battaglia, A.F.; Volpara, A.; Collier, H.; Hurford, G.J.; Kuhar, M.; Perracchione, E.; Garbarino, S.; Massone, A.M.; Benvenuto, F.; et al. First Hard X-ray Imaging Results by Solar Orbiter STIX. Sol. Phys. 2022, 297, 93. [Google Scholar] [CrossRef]
- Hurford, G.J. X-ray imaging with collimators, masks and grids. ISSI Sci. Rep. Ser. 2010, 9, 223–234. [Google Scholar]
- Högbom, J.A. Aperture Synthesis with a Non-Regular Distribution of Interferometer Baselines. Astron. Astrophys. Suppl. Ser. 1974, 15, 417. [Google Scholar]
- Müller, A.v.; Dorow-Gerspach, D.; Balden, M.; Binder, M.; Buschmann, B.; Curzadd, B.; Loewenhoff, T.; Neu, R.; Schlick, G.; You, J.H. Progress in additive manufacturing of pure tungsten for plasma-facing component applications. J. Nucl. Mater. 2022, 566, 153760. [Google Scholar] [CrossRef]
- Studnitzky, T.; Reuter, K.; Stiebritz, G.; Wirth, S. 3D Screen Printing of Anti-Scatter Grids—Part Development and Industrialization. In Proceedings of the EuroPM 2019, Maastricht, The Netherlands, 14–16 October 2019. Euro Powder Metallurgy Conference Series. [Google Scholar]
LISSAN Parameter | Performance Requirement | Predicted Performance |
---|---|---|
Energy range—low | 40 keV | 40 keV |
Energy range—high | 80 MeV | 100 MeV |
Imaging effective area (2.2 MeV) | 75 cm2 | 100 cm2 |
Spectral effective area (2.2 MeV) | 400 cm2 | 440 cm2 |
Sensitivity (2.2 MeV) | 50 photons/cm2 | 50 photons/cm2 |
Sensitivity (6.1 MeV) | 5 photons/cm2 | 5 photons/cm2 |
Imaging time resolution | 10 s | 1 s |
Angular resolution | <10″ | 8″ |
Field of view | >10’ diameter | 13’ diameter |
Energy resolution (6.1 MeV) | 1.5% dE/E | 1.5% dE/E |
Largest observable flare | >X5 | >X5 |
Resource | Requirement |
---|---|
Mass | 370 kg |
Volume | 1.96 m3 |
Power (peak) | 125 W |
Operating temperature (FEE) | 0 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryan, D.F.; Musset, S.; Reid, H.A.S.; Krucker, S.; Battaglia, A.F.; Bréelle, E.; Chapron, C.; Collier, H.; Dahlin, J.; Denker, C.; et al. The Large Imaging Spectrometer for Solar Accelerated Nuclei (LISSAN): A Next-Generation Solar γ-ray Spectroscopic Imaging Instrument Concept. Aerospace 2023, 10, 985. https://doi.org/10.3390/aerospace10120985
Ryan DF, Musset S, Reid HAS, Krucker S, Battaglia AF, Bréelle E, Chapron C, Collier H, Dahlin J, Denker C, et al. The Large Imaging Spectrometer for Solar Accelerated Nuclei (LISSAN): A Next-Generation Solar γ-ray Spectroscopic Imaging Instrument Concept. Aerospace. 2023; 10(12):985. https://doi.org/10.3390/aerospace10120985
Chicago/Turabian StyleRyan, Daniel F., Sophie Musset, Hamish A. S. Reid, Säm Krucker, Andrea F. Battaglia, Eric Bréelle, Claude Chapron, Hannah Collier, Joel Dahlin, Carsten Denker, and et al. 2023. "The Large Imaging Spectrometer for Solar Accelerated Nuclei (LISSAN): A Next-Generation Solar γ-ray Spectroscopic Imaging Instrument Concept" Aerospace 10, no. 12: 985. https://doi.org/10.3390/aerospace10120985
APA StyleRyan, D. F., Musset, S., Reid, H. A. S., Krucker, S., Battaglia, A. F., Bréelle, E., Chapron, C., Collier, H., Dahlin, J., Denker, C., Dickson, E., Gallagher, P. T., Hannah, I., Jeffrey, N. L. S., Kašparová, J., Kontar, E., Laurent, P., Maloney, S. A., Massa, P., ... Volpara, A. (2023). The Large Imaging Spectrometer for Solar Accelerated Nuclei (LISSAN): A Next-Generation Solar γ-ray Spectroscopic Imaging Instrument Concept. Aerospace, 10(12), 985. https://doi.org/10.3390/aerospace10120985