Low-Pressure Optical Detection, Location, and Quantification of Electrical Discharges in Aircraft Wiring Systems
Abstract
:1. Introduction
2. Image Processing Approach
2.1. Normalized Intensity of the Discharges Obtained from the Digital Images
2.2. Electrical Power due to the Discharges
3. Experimental Setup
3.1. Analyzed Intentionally Damaged Insulated Wires
3.2. The Low-Pressure Chamber
3.3. The Electrical Instrumentation Used
4. Experimental Results
4.1. Digital Images of the Discharges
4.2. Results Obtained with ETFE Samples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- ICCT. CO2 Emissions from Commercial Aviation, 2018-International Council on Clean Transportation. Available online: https://theicct.org/publication/co2-emissions-from-commercial-aviation-2018/ (accessed on 4 November 2022).
- Riba, J.-R.; Bas-Calopa, P.; Qolla, Y.A.; Pourraz, M.; Ozsahin, B. Using CMOS Image Sensors to Determine the Intensity of Electrical Discharges for Aircraft Applications. Appl. Sci. 2022, 12, 8595. [Google Scholar] [CrossRef]
- Riba, J.-R.; Gómez-Pau, Á.; Moreno-Eguilaz, M. Experimental Study of Visual Corona under Aeronautic Pressure Conditions Using Low-Cost Imaging Sensors. Sensors 2020, 20, 411. [Google Scholar] [CrossRef] [Green Version]
- Mermigkas, A.C.; Clark, D.; Haddad, A.M. Investigation of High Altitude/Tropospheric Correction Factors for Electric Aircraft Applications. In Lecture Notes in Electrical Engineering; Springer: Cham, Switzerland, 2020; Volume 598, pp. 308–315. [Google Scholar] [CrossRef]
- Clean Sky. Annex V: 9th Call for Proposals (CFP09)—List and Full Description of Topics. 2018; pp. 1–354. Available online: http://ec.europa.eu/research/participants/portal/doc/call/h2020/jti-cs2-2018-cfp09-lpa-01-70/1837638-cfp09_call_text_-_list_and_full_description_of_topics_r1_en.pdf (accessed on 12 November 2020).
- Riba, J.-R.; Moreno-Eguilaz, M.; Ibrayemov, T.; Boizieau, M. Surface Discharges Performance of ETFE- and PTFE-Insulated Wires for Aircraft Applications. Materials 2022, 15, 1677. [Google Scholar] [CrossRef]
- Paschen, F. Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz. Ann. Phys. 1889, 273, 69–96. [Google Scholar] [CrossRef]
- Ravi, L.; Hu, J.; Zhao, X.; Dong, D.; Burgos, R.; Chandrasekaran, S.; Alipour, S.; Eddins, R. Electrical Insulation Design and Qualification of a SiC-based Generator-Rectifier Unit (GRU) for High-Altitude Operation. In Proceedings of the 2021 IEEE Energy Conversion Congress and Exposition (ECCE), Vancouver, BC, Canada, 10–14 October 2021. pp. 1514–1520. [CrossRef]
- Karady, G.G.; Sirkis, M.D.; Liu, L. Investigation of corona initiation voltage at reduced pressures. 1994. IEEE Trans. Aerosp. Electron. Syst. 1994, 30, 144–150. [Google Scholar] [CrossRef]
- Esfahani, A.N.; Shahabi, S.; Stone, G.; Kordi, B. Investigation of Corona Partial Discharge Characteristics Under Variable Frequency and Air Pressure. In Proceedings of the 2018 IEEE Electrical Insulation Conference (EIC), San Antonio, TX, USA, 17–20 June 2018; pp. 31–34. [Google Scholar] [CrossRef]
- Rui, R.; Cotton, I. Impact of low pressure aerospace environment on machine winding insulation. In Proceedings of the 2010 IEEE International Symposium on Electrical Insulation, San Diego, CA, USA, 6–9 June 2010; pp. 1–5. [Google Scholar] [CrossRef]
- Capineri, L.; Dainelli, G.; Materassi, M.; Dunn, B.D. Partial discharge testing of solder fillets on PCBs in a partial vacuum: New experimental results. IEEE Trans. Electron. Packag. Manuf. 2003, 26, 294–304. [Google Scholar] [CrossRef]
- Banerjee, S.; Shakthi Prasad, D. AC Corona Degradation of Silicone Rubber Nanocomposites at Low Air Pressure. IEEE Trans. Dielectr. Electr. Insul. 2022, 29, 800–807. [Google Scholar] [CrossRef]
- FAA. Aircraft Electrical Wiring Interconnect System (EWIS) Best Practices. 2020. Available online: https://www.faa.gov/training_testing/training/air_training_program/job_aids/media/ewis_job-aid_2.0_printable.pdf (accessed on 4 November 2022).
- IEEE. IEEE Std 100-2000 The Authoritative Dictionary of IEEE Standards Terms, 7th ed.; IEEE: Washington, DC, USA, 2000; pp. 1–1362. [Google Scholar] [CrossRef]
- Borghei, M.; Ghassemi, M. Separation and Classification of Corona Discharges under Low Pressures Based on Deep Learning Method. IEEE Trans. Dielectr. Electr. Insul. 2022, 29, 319–326. [Google Scholar] [CrossRef]
- Rudd, S.; McArthur, S.D.J.; Judd, M.D. A generic knowledge-based approach to the analysis of partial discharge data. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Yi, Y.; Zhang, C.; Wang, L. Time-domain performance of audible noise for positive dc corona: Numerical simulations and measurements. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 3275–3282. [Google Scholar] [CrossRef]
- IEC 60112:2020; Method for the determination of the proof and the comparative tracking indices of solid insulating materials. IEC Standards: Geneva, Switzerland, 2020; pp. 1–45.
- Du, B.X.; Liu, Y.; Liu, H.J. Effects of low pressure on tracking failure of printed circuit boards. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 1379–1384. [Google Scholar] [CrossRef]
- Riba, J.-R.; Gómez-Pau, Á.; Moreno-Eguilaz, M.; Bogarra, S. Arc Tracking Control in Insulation Systems for Aeronautic Applications: Challenges, Opportunities, and Research Needs. Sensors 2020, 20, 1654. [Google Scholar] [CrossRef] [Green Version]
- Cella, B. On-Line Partial Discharges Detection in Conversion Systems Used in Aeronautics; Université de Toulouse: Toulouse, France, 2015. [Google Scholar]
- Meng, D.; Zhang, B.Y.; Chen, J.; Lee, S.C.; Lim, J.Y. Tracking and erosion properties evaluation of polymeric insulating materials. In Proceedings of the ICHVE 2016–2016 IEEE International Conference on High Voltage Engineering and Application, Chengdu, China, 19–22 September 2016. [Google Scholar] [CrossRef]
- Jalil, M.; Samet, H.; Ghanbari, T.; Tajdinian, M. An Enhanced Cassie-Mayr Based Approach for DC Series Arc Modeling in PV Systems. IEEE Trans. Instrum. Meas. 2021, 70, 1–10. [Google Scholar] [CrossRef]
- Maqsood, A.; Oslebo, D.; Corzine, K.; Parsa, L.; Ma, Y. STFT Cluster Analysis for DC Pulsed Load Monitoring and Fault Detection on Naval Shipboard Power Systems. IEEE Trans. Transp. Electrif. 2020, 6, 821–831. [Google Scholar] [CrossRef]
- Bas-Calopa, P.; Riba, J.R.; Moreno-Eguilaz, M. Corona Discharge Characteristics under Variable Frequency and Pressure Environments. Sensors 2021, 21, 6676. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L. Electrical Tracking over Solid Insulating Materials for Aerospace Applications; University of Manchester: Singapore, 2011. [Google Scholar]
- Riba, J.-R.; Gomez-Pau, A.; Moreno-Eguilaz, M. Sensor Comparison for Corona Discharge Detection Under Low Pressure Conditions. IEEE Sens. J. 2020, 20, 11698–11706. [Google Scholar] [CrossRef]
- Xavier, G.V.R.; da Costa, E.G.; Serres, A.J.R.; Nobrega, L.A.M.M.; Oliveira, A.C.; Sousa, H.F.S. Design and Application of a Circular Printed Monopole Antenna in Partial Discharge Detection. IEEE Sens. J. 2019, 19, 3718–3725. [Google Scholar] [CrossRef]
- Riba, J.-R.; Moreno-Eguilaz, M.; Ortega, J.A. Arc Fault Protections for Aeronautic Applications: A Review Identifying the Effects, Detection Methods, Current Progress, Limitations, Future Challenges, and Research Needs. IEEE Trans. Instrum. Meas. 2022, 71, 1–14. [Google Scholar] [CrossRef]
- Bas-Calopa, P.; Riba, J.-R.; Moreno-Eguilaz, M. Measurement of Corona Discharges under Variable Geometry, Frequency and Pressure Environment. Sensors 2022, 22, 1856. [Google Scholar] [CrossRef]
- Xu, Y.; Yu, M.; Cao, X.; Qiu, C.; Chen, G. Comparison between optical and electrical methods for partial discharge measurement. In Proceedings of the 6th International Conference on Properties and Applications of Dielectric Materials, Xi’an, China, 21–26 June 2000; pp. 300–303. [Google Scholar] [CrossRef]
- Burjupati, N.R.; Puhan, D.K.; Sharma, R. Opto Electronic Technique for Detection of Corona Discharges in Air and Oil. In Proceedings of the 2019 IEEE Electrical Insulation Conference (EIC), Calgary, AB, Canada, 16–19 June 2019; pp. 184–187. [Google Scholar] [CrossRef]
- Riba, J.-R.; Gómez-Pau, Á.; Moreno-Eguilaz, M. Insulation Failure Quantification Based on the Energy of Digital Images Using Low-Cost Imaging Sensors. Sensors 2020, 20, 7219. [Google Scholar] [CrossRef]
- Prasad, D.S.; Reddy, B.S. Image Saturation as a Tool to Understand the Corona Induced Degradation of Polymeric Insulators. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 1837–1844. [Google Scholar] [CrossRef]
- Prasad, D.S.; Reddy, B.S. Impact of mist and acidic fog on polymer insulator samples exposed to corona discharges. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 1546–1554. [Google Scholar] [CrossRef]
- Prasad, D.S.; Reddy, B.S. Study on Corona Activity Using an Image Processing Approach. IEEE Trans. Ind. Appl. 2017, 53, 4008–4014. [Google Scholar] [CrossRef]
- Pinnangudi, B.; Gorur, R.S.S.; Kroese, A.J.J. Quantification of corona discharges on nonceramic insulators. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 513–523. [Google Scholar] [CrossRef]
- Prasad, D.S.; Reddy, B.S. Digital image processing techniques for estimating power released from the corona discharges. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 75–82. [Google Scholar] [CrossRef]
- CEN. EN 3475-603—Aerospace Series—Cables, Electrical, Aircraft Use—Test Methods—Part 603: Resistance to Wet Arc Tracking; European Committee for Standardization: Brussels, Belgium, 2018; pp. 1–11. Available online: https://tienda.aenor.com/norma-din-en-3475-603-2018-03-283092077 (accessed on 14 December 2021).
- Borghei, M.; Ghassemi, M. Insulation Materials and Systems for More and All-Electric Aircraft: A Review Identifying Challenges and Future Research Needs. IEEE Trans. Transp. Electrif. 2021, 7, 1930–1953. [Google Scholar] [CrossRef]
- Lopez, G. High-Performance Polymers for Aeronautic Wires Insulation: Current Uses and Future Prospects. Recent Prog. Mater. 2021, 3, 5. [Google Scholar] [CrossRef]
- Babrauskas, V. Mechanisms and modes for ignition of low-voltage, PVC-insulated electrotechnical products. Fire Mater. 2006, 30, 151–174. [Google Scholar] [CrossRef]
- Turner, J.; Igoe, D.; Parisi, A.V.; McGonigle, A.J.; Amar, A.; Wainwright, L. A review on the ability of smartphones to detect ultraviolet (UV) radiation and their potential to be used in UV research and for public education purposes. Sci. Total Environ. 2020, 706, 135873. [Google Scholar] [CrossRef]
Properties | Values/Description |
---|---|
Manufacturer | Thermax(Poona, India) |
Effective conductor diameter | 0.51 mm |
External diameter | 1.09 mm |
Insulation thickness | 0.24 mm |
Voltage rating | 600 V |
Temperature range | −55 to 150 °C |
Specific gravity of insulation | 1.74 g/cm3 |
Surface resistivity of insulation | >1016 Ohm·sq |
Dielectric constant of insulation | 2.6 |
Dielectric strength of insulation | 15 kV/mm |
Arc resistance of insulation | 122 s |
Frequency | Pressure | (Electrical Energy)1/2 | Discharge Intensity | ||||
---|---|---|---|---|---|---|---|
Linear Regression Parameters | Determination Coefficient | Linear Regression Parameters | Determination Coefficient | ||||
a | b | R2 | a | b | R2 | ||
50 Hz | 100 kPa | 0.010 | −0.025 | 0.982 | 1.960 | −3.206 | 0.981 |
75 kPa | 0.009 | −0.018 | 0.964 | 2.460 | −3.557 | 0.972 | |
50 kPa | 0.009 | −0.014 | 0.974 | 3.279 | −3.858 | 0.963 | |
30 kPa | 0.008 | −0.009 | 0.954 | 4.003 | −3.112 | 0.952 | |
10 kPa | 0.009 | −0.007 | 0.936 | 7.612 | −3.749 | 0.983 | |
400 Hz | 100 kPa | 0.026 | −0.052 | 0.986 | 7.441 | −17.257 | 0.996 |
75 kPa | 0.027 | −0.051 | 0.983 | 8.761 | −16.932 | 0.997 | |
50 kPa | 0.025 | −0.035 | 0.981 | 10.889 | −16.388 | 0.992 | |
30 kPa | 0.028 | −0.035 | 0.982 | 15.120 | −17.645 | 0.995 | |
10 kPa | 0.019 | −0.013 | 0.972 | 23.319 | −16.384 | 0.991 | |
800 Hz | 100 kPa | 0.036 | −0.082 | 0.992 | 9.599 | −20.980 | 0.983 |
75 kPa | 0.035 | −0.066 | 0.984 | 11.503 | −23.129 | 0.983 | |
50 kPa | 0.033 | −0.048 | 0.985 | 14.525 | −20.046 | 0.971 | |
30 kPa | 0.036 | −0.044 | 0.990 | 22.402 | −25.976 | 0.982 | |
10 kPa | 0.022 | −0.015 | 0.922 | 39.366 | −28.455 | 0.977 |
Pressure | Linear Regression Parameters | Determination Coefficient | |
---|---|---|---|
a | b | R2 | |
100 kPa | 268.4 | 0.03 | 0.985 |
75 kPa | 310.8 | 0.09 | 0.992 |
50 kPa | 449.7 | 0.11 | 0.982 |
30 kPa | 608.2 | 0.36 | 0.981 |
10 kPa | 1597 | −1.6 | 0.915 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bas-Calopa, P.; Riba, J.-R.; Ortega, J.A. Low-Pressure Optical Detection, Location, and Quantification of Electrical Discharges in Aircraft Wiring Systems. Aerospace 2023, 10, 3. https://doi.org/10.3390/aerospace10010003
Bas-Calopa P, Riba J-R, Ortega JA. Low-Pressure Optical Detection, Location, and Quantification of Electrical Discharges in Aircraft Wiring Systems. Aerospace. 2023; 10(1):3. https://doi.org/10.3390/aerospace10010003
Chicago/Turabian StyleBas-Calopa, Pau, Jordi-Roger Riba, and Juan Antonio Ortega. 2023. "Low-Pressure Optical Detection, Location, and Quantification of Electrical Discharges in Aircraft Wiring Systems" Aerospace 10, no. 1: 3. https://doi.org/10.3390/aerospace10010003
APA StyleBas-Calopa, P., Riba, J. -R., & Ortega, J. A. (2023). Low-Pressure Optical Detection, Location, and Quantification of Electrical Discharges in Aircraft Wiring Systems. Aerospace, 10(1), 3. https://doi.org/10.3390/aerospace10010003