Drought Early Warning in Agri-Food Systems
Abstract
:1. Introduction
2. Rationale of Drought Early Warning Systems
- Priority 1: Understanding disaster risk.
- Priority 2: Strengthening disaster risk governance to manage disaster risk.
- Priority 3: Investing in disaster risk reduction for resilience.
- Priority 4: Enhancing disaster preparedness for effective response and to “Build Back Better” in recovery, rehabilitation, and reconstruction.
- Comprehensive monitoring and early warning system.
- Vulnerability and impact assessment.
- Mitigation, preparedness, and response.
- Disaster risk knowledge based on the systematic collection of data and disaster risk assessments.
- Detection, monitoring, analysis, and forecasting of the hazards and possible consequences.
- Dissemination and communication of authoritative, timely, accurate, and actionable warnings and associated information on likelihood and impact by an official source.
- Preparedness at all levels to respond to the warnings received.
3. DEWSs within Food-System Transformation
4. Drought, a Multiscale Phenomenon
5. Drought as a Global Phenomenon
6. Droughts and Local Consequences
- Meteorological drought: a prolonged reduction in precipitation relative to past average amounts, increased temperature, decreased humidity, and increased evapotranspiration.
- Hydrological drought: the availability of surface and subsurface water resources, including water storage and flow (e.g., lakes, streams, aquifers), being reduced due to lack of precipitation, a substantial deficit in surface runoff relative to past average amounts, or ground water not being recharged.
- Agricultural drought: soil moisture falling below crop requirements, leading to wilting crops and reduced yields.
- Socio-economic drought: Human activities being disturbed, economic losses incurred, due to meteorological, hydrological, and agricultural droughts, and reduced water availability, which result in socioeconomic impacts, and may lead to human famine and starvation.
7. The Consequences of No Action
8. Key Aspects of DEWS
9. Global
10. Regional
11. National
12. Dimensions of Drought Early Warning
13. Role of Human Activities
14. Role of Biodiversity and Crop Diversification
15. Incorporating Participatory, Local, and Indigenous Knowledge into DEWSs through Citizen Science and Enabling ICTs
- Drought definitions. The technical definitions of drought should move beyond just precipitation deficit, to increase rigorous monitoring of all relevant factors, facilitate the drought declaration process, and allow staged intervention processes.
- Information sharing. There is a need to formalize and automate data-sharing processes among all involved countries, with possibly a shared drought data platform.
- Ground truthing of remote-sensing-derived data. In order to build on the remote sensing and modeled data, more ground truthing is needed to increase the acceptable levels of accuracy, precision, and geographic scale, so that such data reflect the real drought impacts that observers see on the ground.
- Intersectoral engagement. Interactions among farming communities, the institutions that represent them, and government agencies responsible for drought management need strengthening. These include the opportunity for farmers and government agencies to exchange their own, often tailor-made, drought-related information both ways, as both parties have unique critical information on drought (potential) impacts.
16. Geo-Tagging and Agro-Tagging Inputs to DEWS
17. Conclusions and the Way Forward
Author Contributions
Funding
Conflicts of Interest
References
- Pulwarty, R.S.; Sivakumar, M.V.K. Information systems in a changing climate: Early warnings and drought risk management. Weather Clim. Extrem. High Level Meet. Natl. Drought Policy 2014, 3, 14–21. [Google Scholar] [CrossRef][Green Version]
- Funk, C.; Shukla, S.; Thiaw, W.M.; Rowland, J.; Hoell, A.; McNally, A.; Husak, G.; Novella, N.; Budde, M.; Peters-Lidard, C.; et al. Recognizing the famine early warning systems network: Over 30 years of drought early warning science advances and partnerships promoting global food security. Bull. Am. Meteorol. Soc. 2019, 100, 1011–1027. [Google Scholar] [CrossRef]
- Hayes, M.J.; Svoboda, M.D.; Wardlow, B.D.; Anderson, M.C.; Kogan, F. Drought Monitoring: Historical and Current Perspectives. In Remote Sensing of Drought: Innovative Monitoring Approaches; Wardlow, B.D., Anderson, M.C., Verdin, J.P., Eds.; CRC Press: Boca Raton, FL, USA; Taylor & Francis: Boca Raton, FL, USA, 2012. [Google Scholar]
- Kogan, F.; Guo, W.; Yang, W. Drought and food security prediction from NOAA new generation of operational satellites. Geomat. Nat. Hazards Risk 2019, 10, 651–666. [Google Scholar] [CrossRef][Green Version]
- Pozzi, W.; Sheffield, J.; Stefanski, R.; Cripe, D.; Pulwarty, R.; Vogt, J.V.; Heim, R.R.; Brewer, M.J.; Svoboda, M.; Westerhoff, R.; et al. Toward global drought early warning capability: Expanding international cooperation for the development of a framework for monitoring and forecasting. Bull. Am. Meteorol. Soc. 2013, 94, 776–785. [Google Scholar] [CrossRef]
- King-Okumu, C. 2019 Drought Impact and Vulnerability Assessment; A Rapid Review of Practices and Policy Recommendations; UNCCD: Bonn, Germany, 2019; p. 46. [Google Scholar]
- UNISDR. 2015 Sendai Framework for Disaster Risk Reduction 2015–2030; UNISDR: Geneva, Switzerland, 2015; p. 35. [Google Scholar]
- UNISDR. 2009 UNISDR Terminology on Disaster Risk Reduction; UNISDR: Geneva, Switzerland, 2009; p. 30. [Google Scholar]
- Global Water Partnership; World Meteorological Organization. Integrated Drought Management Programme for Central and Eastern Europe. In 2019 How to Communicate Drought; WMO: Geneva, Switzerland; GWP: Stockholm, Sweden, 2019; p. 21. [Google Scholar]
- UNISDR. Hyogo Framework for Action 2005–2015: Building the Resilience of Nations and Communities to Disasters; UNISDR: Geneva, Switzerland, 2007; p. 22. [Google Scholar]
- Wilhite, D.A.; Sivakumar, M.V.; Wood, D.A. Early warning systems for drought preparedness and drought management. In Proceedings of the an Expert Group Meeting, Lisbon, Portugal, 5–7 September 2000. [Google Scholar]
- International Network for Multi-Hazard Early Warning Systems. 2018 Multi-Hazard Early Warning Systems: A Checklist; World Meteorological Organization: Geneva, Switzerland, 2018; p. 16. [Google Scholar]
- Pingali, P.; Sunder, N. Transitioning toward nutrition-sensitive food systems in developing countries. Annu. Rev. Resour. Econ. 2017, 9, 439–459. [Google Scholar] [CrossRef]
- Pepper, A. Integrating Gender Analysis into Food & Nutrition Security early Warning Systems in West Africa; West African Papers 24; OECD: Paris, France, 2019. [Google Scholar]
- Global Panel on Agriculture and Food Systems for Nutrition. Future Food Systems: For People, Our Planet and Prosperity; Global Panel on Agriculture and Food Systems for Nutrition: London, UK, 2020. [Google Scholar]
- Steiner, A.; Aguilar, G.; Bomba, K.; Bonilla, J.P.; Campbell, A.; Echeverria, R.; Gandhi, R.; Hedegaard, C.; Holdorf, D.; Ishii, N.; et al. Actions to Transform Food Systems under Climate Change; CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS): Wageningen, The Netherlands, 2020; p. 67. [Google Scholar]
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F.N.; Leip, A. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef]
- FAO. FAO COVID-19 Response and Recovery Programme—Food Systems Transformation; FAO: Rome, Italy, 2020; p. 5. [Google Scholar]
- Schmidhuber, J.; Pound, J.; Qiao, B. COVID-19: Channels of Transmission to Food and Agriculture; FAO: Rome, Italy, 2020; p. 38. [Google Scholar]
- Rajaram, S.; van Ginkel, M. Prioritizing achievable goals for food security in the developing world. Glob. J. Med Res. L Nutr. Food Sci. 2021, 21. [Google Scholar] [CrossRef]
- Stringer, L.C.; Fraser, E.D.G.; Harris, D.; Lyon, C.; Pereira, L.; Ward, C.F.M.; Simelton, E. Adaptation and development pathways for different types of farmers. Environ. Sci. Policy 2020, 104, 174–189. [Google Scholar] [CrossRef]
- Wilhite, D.A. A methodology for drought preparedness. Nat. Hazards 1996, 13, 229–252. [Google Scholar] [CrossRef][Green Version]
- Rojas, O.; Vrieling, A.; Rembold, F. Assessing drought probability for agricultural areas in Africa with coarse resolution remote sensing imagery. Remote Sens. Environ. 2011, 115, 343–352. [Google Scholar] [CrossRef]
- Galieni, A.; D’Ascenzo, N.; Stagnari, F.; Pagnani, G.; Xie, Q.; Pisante, M. Past and future of plant stress detection: An overview from remote sensing to positron emission tomography. Front. Plant Sci. 2021, 11, 1975. [Google Scholar] [CrossRef]
- Szewczak, K.; Łoś, H.; Pudełko, R.; Doroszewski, A.; Gluba, Ł.; Łukowski, M.; Rafalska-Przysucha, A.; Słomiński, J.; Usowicz, B. Agricultural drought monitoring by MODIS potential evapotranspiration remote sensing data application. Remote Sens. 2020, 12, 3411. [Google Scholar] [CrossRef]
- Gavahi, K.; Abbaszadeh, P.; Moradkhani, H.; Zhan, X.; Hain, C. Multivariate assimilation of remotely sensed soil moisture and evapotranspiration for drought monitoring. J. Hydrometeorol. 2020, 21, 2293–2308. [Google Scholar] [CrossRef]
- Rajib, A.; Kim, I.L.; Golden, H.E.; Lane, C.R.; Kumar, S.V.; Yu, Z.; Jeyalakshmi, S. Watershed modeling with remotely sensed big data: MODIS leaf area index improves hydrology and water quality predictions. Remote Sens. 2020, 12, 2148. [Google Scholar] [CrossRef]
- Biradar, C.M.; Ghosh, S.; Löw, F.; Singh, R.; Chandna, P.; Sarker, A.; Sahoo, R.N.; Swain, N.; Choudhury, G.; Agrawal, S.; et al. Geo big data and digital augmentation for accelerating agroecological intensification in drylands. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-3/W6, 545–548. [Google Scholar] [CrossRef][Green Version]
- Herrero, M.; Thornton, P.K.; Mason-D’Croz, D.; Palmer, J.; Benton, T.G.; Bodirsky, B.L.; Bogard, J.R.; Hall, A.; Lee, B.; Nyborg, K.; et al. Innovation can accelerate the transition towards a sustainable food system. Nat. Food 2020, 1, 266–272. [Google Scholar] [CrossRef]
- Oliver, P.; Clark, A.; Meattle, C. Global Climate Finance: An Updated View 2018; Climate Policy Initiative: San Francisco, CA, USA, 2018; p. 15. Available online: https://www.climatepolicyinitiative.org/publication/global-climate-finance-an-updated-view-2018/ (accessed on 1 June 2021).
- Biradar, C.; Krishna, G. Rapid response analytics of Covid-19 impact on agriculture and environment. CGIAR Consort. Spat. Inf. 2020. Available online: https://cgiarcsi.community/2020/05/11/rapid-response-analytics-of-covid-19-impact-on-agriculture-and-environment/ (accessed on 1 June 2021).
- Pendergrass, A.G.; Meehl, G.A.; Pulwarty, R.; Hobbins, M.; Hoell, A.; AghaKouchak, A.; Bonfils, C.J.W.; Gallant, A.J.E.; Hoerling, M.; Hoffmann, D.; et al. Flash droughts present a new challenge for subseasonal-to-seasonal prediction. Nat. Clim. Chang. 2020, 10, 191–199. [Google Scholar] [CrossRef]
- Herrera-Estrada, J.E.; Satoh, Y.; Sheffield, J. Spatiotemporal dynamics of global drought. Geophys. Res. Lett. 2017, 44, 2254–2263. [Google Scholar] [CrossRef][Green Version]
- World Meteorological Organization (WMO); Global Water Partnership (GWP). National Drought Management Policy Guidelines: A Template for Action; Wilhite, D.A., Ed.; Integrated Drought Management Programme (IDMP) Tools and Guidelines Series 1; WMO: Geneva, Switzerland; GWP: Stockholm, Sweden, 2014; p. 39. [Google Scholar]
- World Meteorological Organization (WMO); Global Water Partnership (GWP). Benefits of action and costs of inaction: Drought mitigation and preparedness—A literature review; Integrated Drought Management Programme (IDMP) Working Paper 1; Gerber, N., Mirzabaev, A., Eds.; WMO: Geneva, Switzerland; GWP: Stockholm, Sweden, 2017; p. 24. [Google Scholar]
- Vogt, J.; Naumann, G.; Masante, D.; Spinoni, J.; Cammalleri, C.; Erian, W.; Pischke, F.; Pulwarty, R.; Marinho Ferreira Barbosa, P. Drought Risk Assessment and Management; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar]
- Ahmadalipour, A.; Moradkhani, H.; Castelletti, A.; Magliocca, N. Future drought risk in Africa: Integrating vulnerability, climate change, and population growth. Sci. Total Environ. 2019, 662, 672–686. [Google Scholar] [CrossRef]
- Ahmadalipour, A.; Moradkhani, H. Multi-dimensional assessment of drought vulnerability in Africa: 1960–2100. Sci. Total Environ. 2018, 644, 520–535. [Google Scholar] [CrossRef]
- Otkin, J.A.; Svoboda, M.; Hunt, E.D.; Ford, T.W.; Anderson, M.C.; Hain, C.; Basara, J.B. Flash droughts: A review and assessment of the challenges imposed by rapid-onset droughts in the United States. Bull. Am. Meteorol. Soc. 2018, 99, 911–919. [Google Scholar] [CrossRef]
- Wang, L.; Yuan, X.; Xie, Z.; Wu, P.; Li, Y. Increasing flash droughts over China during the recent global warming hiatus. Sci. Rep. 2016, 6, 30571. [Google Scholar] [CrossRef] [PubMed]
- Lisonbee, J.; Woloszyn, M.; Skumanich, M. Making sense of flash drought: Definitions, indicators, and where we go from here. J. Appl. Serv. Climatol. 2021, 2021, 1–19. [Google Scholar] [CrossRef]
- Otkin, J.A.; Shafer, M.; Svoboda, M.; Wardlow, B.; Anderson, M.C.; Hain, C.; Basara, J. Facilitating the use of drought early warning information through interactions with agricultural stakeholders. Bull. Am. Meteorol. Soc. 2015, 96, 1073–1078. [Google Scholar] [CrossRef]
- Otkin, J.A.; Zhong, Y.; Hunt, E.D.; Christian, J.I.; Basara, J.B.; Nguyen, H.; Wheeler, M.C.; Ford, T.W.; Hoell, A.; Svoboda, M.; et al. Development of a flash drought intensity index. Atmosphere 2021, 12, 741. [Google Scholar] [CrossRef]
- Hu, C.; Xia, J.; She, D.; Li, L.; Song, Z.; Hong, S. A new framework for the identification of flash drought: Multivariable and probabilistic statistic perspectives. Int. J. Climatol. 2021, 1–17. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, L.; Wu, P.; Ji, P.; Sheffield, J.; Zhang, M. Anthropogenic shift towards higher risk of flash drought over China. Nat. Commun. 2019, 10, 4661. [Google Scholar] [CrossRef][Green Version]
- Costa, L.C.; Martins do Amaral Cunha, A.P.; Anderson, L.O.; Cunningham, C. New approach for drought assessment: A case study in the northern region of Minas Gerais. Int. J. Disaster Risk Reduct. 2021, 53, 102019. [Google Scholar] [CrossRef]
- Solh, M.; van Ginkel, M. Drought preparedness and drought mitigation in the developing world׳s drylands. Weather Clim. Extrem. High Level Meet. Natl. Drought Policy 2014, 3, 62–66. [Google Scholar] [CrossRef][Green Version]
- He, X.; Estes, L.; Konar, M.; Tian, D.; Anghileri, D.; Baylis, K.; Evans, T.P.; Sheffield, J. Integrated approaches to understanding and reducing drought impact on food security across scales. Curr. Opin. Environ. Sustain. 2019, 40, 43–54. [Google Scholar] [CrossRef]
- Nhamo, L.; Mabhaudhi, T.; Modi, A.T. Preparedness or repeated short-term relief aid? Building drought resilience through early warning in southern Africa. Water SA 2019, 45, 75–85. [Google Scholar] [CrossRef][Green Version]
- Vicente-Serrano, S.M.; Quiring, S.M.; Peña-Gallardo, M.; Yuan, S.; Domínguez-Castro, F. A review of environmental droughts: Increased risk under global warming. Earth-Sci. Rev. 2020, 201, 102953. [Google Scholar] [CrossRef]
- Tarnavsky, E.; Bonifacio, R. Drought Risk Management Using Satellite-Based Rainfall Estimates. In Satellite Precipitation Measurement; Levizzani, V., Kidd, C., Kirschbaum, D.B., Kummerow, C.D., Nakamura, K., Turk, F.J., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1029–1053. [Google Scholar]
- World Meteorological Organization (WMO); Global Water Partnership (GWP). Handbook of Drought Indicators and Indices; Integrated Drought Management Programme (IDMP), Integrated Drought Management Tools and Guidelines Series 2; Svobodaand, M., Fuchs, B.A., Eds.; WMO: Geneva, Switzerland; GWP: Stockholm, Sweden, 2016; p. 45. [Google Scholar]
- Sufri, S.; Dwirahmadi, F.; Phung, D.; Rutherford, S. A systematic review of community engagement (CE) in disaster early warning systems (EWSS). Prog. Disaster Sci. 2020, 5, 100058. [Google Scholar] [CrossRef]
- Vargas, J.; Paneque, P. Challenges for the integration of water resource and drought-risk management in Spain. Sustainability 2019, 11, 308. [Google Scholar] [CrossRef][Green Version]
- De Leeuw, J.; Vrieling, A.; Shee, A.; Atzberger, C.; Hadgu, K.M.; Biradar, C.M.; Keah, H.; Turvey, C. The potential and uptake of remote sensing in insurance: A review. Remote Sens. 2014, 6, 888. [Google Scholar] [CrossRef][Green Version]
- Haigh, T.R.; Otkin, J.A.; Mucia, A.; Hayes, M.; Burbach, M.E. Drought early warning and the timing of range managers’ drought response. Adv. Meteorol. 2019, 2019, 9461513. [Google Scholar] [CrossRef]
- Meissner, R.; Jacobs-Mata, I. South Africa’s Drought Preparedness in the Water Sector: Too Little Too Late? South African Institute of International Affairs: Pretoria, South Africa, 2016; p. 4. [Google Scholar]
- Bareki, N.P.; Antwi, M.I. Drought preparedness status of farmers in the nguni cattle development project and the sire subsidy scheme in North West Province, South Africa. Appl. Ecol. Environ. Res. 2017, 15, 589–603. [Google Scholar] [CrossRef]
- Belle, J.; Sithabile, M.; Ogundeji, A.A. Assessing communal farmers’ preparedness to drought in the Umguza district, Zimbabwe. Int. J. Disaster Risk Reduct. 2017, 22, 194–203. [Google Scholar] [CrossRef]
- Gutiérrez, A.P.A.; Engle, N.L.; De Nys, E.; Molejón, C.; Martins, E.S. Drought preparedness in brazil. Weather Clim. Extrem. 2014, 3, 95–106. [Google Scholar] [CrossRef][Green Version]
- Venton, P.; Venton, C.C.; Limones, N.; Ward, C.; Pischke, F.; Engle, N.; Wijnen, M.; Talbi, A. Framework for the Assessment of Benefits of Action or Cost of Inaction for Drought Preparedness; World Bank: Washington, DC, USA, 2019; p. 1. [Google Scholar]
- FAO. Global Information and Early Warning System; FAO: Rome, Italy, 2020. [Google Scholar]
- Rojas, O. Country-Level ASIS: An Agricultural Drought Monitoring System; FAO: Rome, Italy, 2018; p. 8. [Google Scholar]
- Heim, R.R.; Brewer, M.J.; Pulwarty, R.S.; Wilhite, R.S.; Hayes, M.J.; Sivakumar, M.V.K. Drought Early Warning and Information Systems. In Handbook of Drought and Water Scarcity: Principles of Drought and Water Scarcity, 1st ed.; Eslamian, S., Eslamian, F.A., Eds.; CRC Press: Baca Raton, FL, USA, 2017. [Google Scholar] [CrossRef]
- Paul, J.D.; Buytaert, W.; Allen, S.; Ballesteros-Cánovas, J.A.; Bhusal, J.; Cieslik, K.; Clark, J.; Dugar, S.; Hannah, D.M.; Stoffel, M.; et al. Citizen science for hydrological risk reduction and resilience building. WIREs Water 2018, 5, e1262. [Google Scholar] [CrossRef][Green Version]
- Lawrimore, J.; Heim, R.R.; Svoboda, M.; Swail, V.; Englehart, P.J. Beginning a new era of drought monitoring across North America. Bull. Am. Meteorol. Soc. 2002, 83, 1191–1192. [Google Scholar] [CrossRef]
- ESCWA. ESCWA Water Development Report 7. Climate Change and Disaster Risk Reduction in the Arab Region; United Nations Economic and Social Commission for Western Asia: Beirut, Lebanon, 2017; p. 126. [Google Scholar]
- International Center for Biosaline Agriculture. Regional Drought Management System for Middle East and North Africa; International Center for Biosaline Agriculture: Dubai, United Arab Emirates, 2016; p. 2. [Google Scholar]
- Fragaszy, S.R.; Jedd, T.; Wall, N.; Knutson, C.; Fraj, M.B.; Bergaoui, K.; Svoboda, M.; Hayes, M.; McDonnell, R. Drought monitoring in the Middle East and North Africa (MENA) region: Participatory engagement to inform early warning systems. Bull. Am. Meteorol. Soc. 2020, 101, E1148–E1173. [Google Scholar] [CrossRef][Green Version]
- Kuleshov, Y.; Inape, I.; Watkins, A.B.; Bear-Crozier, A.; Chua, Z.-W.; Xie, P.; Kubota, T.; Tashima, T.; Stefanski, R.; Kurino, T. Climate Risk and Early Warning Systems (CREWS) for Papua New Guinea. In Drought—Detection and Solutions; Ondrasek, G., Ed.; InTech Open: London, UK, 2019; pp. 147–168. [Google Scholar]
- Estrela, T.; Vargas, E. Drought management plans in the European Union. The case of Spain. Water Resour. Manag. 2012, 26, 1537–1553. [Google Scholar] [CrossRef]
- Hervás-Gámez, C.; Delgado-Ramos, F. Drought management planning policy: From Europe to Spain. Sustainability 2019, 11, 1862. [Google Scholar] [CrossRef][Green Version]
- Sutanto, S.J.; Van Lanen, H.A.J.; Wetterhall, F.; Llort, X. Potential of pan-European seasonal hydrometeorological drought forecasts obtained from a multihazard early warning system. Bull. Am. Meteorol. Soc. 2020, 101, E368–E393. [Google Scholar] [CrossRef][Green Version]
- Dyer, J.A. A drought early warning system for prairie pasture land. Can. Water Resour. J. 1988, 13, 5–15. [Google Scholar] [CrossRef]
- Kuwayama, Y.; Thompson, A.; Bernknopf, R.; Zaitchik, B.; Vail, P. Estimating the impact of drought on agriculture using the U.S. drought monitor. Am. J. Agric. Econ. 2019, 101, 193–210. [Google Scholar] [CrossRef]
- Lorenz, D.J.; Otkin, J.A.; Svoboda, M.; Hain, C.R.; Anderson, M.C.; Zhong, Y. Predicting U.S. drought monitor states using precipitation, soil moisture, and evapotranspiration anomalies. Part I: Development of a nondiscrete USDM index. J. Hydrometeorol. 2017, 18, 1943–1962. [Google Scholar] [CrossRef]
- Rahmati, O.; Panahi, M.; Kalantari, Z.; Soltani, E.; Falah, F.; Dayal, K.S.; Mohammadi, F.; Deo, R.C.; Tiefenbacher, J.; Tien Bui, D. Capability and robustness of novel hybridized models used for drought hazard modeling in southeast Queensland, Australia. Sci. Total Environ. 2020, 718, 134656. [Google Scholar] [CrossRef]
- Kogan, F.; Guo, W.; Yang, W.; Harlan, S. Space-based vegetation health for wheat yield modeling and prediction in australia. J. Appl. Remote Sens. 2018, 12, 026002. [Google Scholar]
- Dikshit, A.; Pradhan, B.; Alamri, A.M. Temporal hydrological drought index forecasting for New South Wales, Australia using machine learning approaches. Atmosphere 2020, 11, 585. [Google Scholar] [CrossRef]
- Hu, T.; van Dijk, A.I.J.M.; Renzullo, L.J.; Xu, Z.; He, J.; Tian, S.; Zhou, J.; Li, H. On agricultural drought monitoring in Australia using Himawari-8 geostationary thermal infrared observations. Int. J. Appl. Earth Obs. Geoinf. 2020, 91, 102153. [Google Scholar] [CrossRef]
- Rubio-Martin, A.; Pulido-Velazquez, M.; Macian-Sorribes, H.; Garcia-Prats, A. System dynamics modeling for supporting drought-oriented management of the Jucar river system, Spain. Water 2020, 12, 1407. [Google Scholar] [CrossRef]
- Ford, T.W.; McRoberts, D.B.; Quiring, S.M.; Hall, R.E. On the utility of in situ soil moisture observations for flash drought early warning in Oklahoma, USA. Geophys. Res. Lett. 2015, 42, 9790–9798. [Google Scholar] [CrossRef]
- Hoell, A.; Parker, B.-A.; Downey, M.; Umphlett, N.; Jencso, K.; Akyuz, F.A.; Peck, D.; Hadwen, T.; Fuchs, B.; Kluck, D.; et al. Lessons learned from the 2017 flash drought across the U.S. northern great plains and Canadian prairies. Bull. Am. Meteorol. Soc. 2020, 101, E2171–E2185. [Google Scholar] [CrossRef]
- Drechsler, M.; Soer, W. Early Warning, Early Action: The Use of Predictive Tools in Drought Response through Ethiopia’s Productive Safety Net Programme; Policy Research Working, Paper, No. 7716; World Bank: Washington, DC, USA, 2016. [Google Scholar]
- Feeny, E. From Early Warning to Early Action in Somalia: What Can We Learn to Support Early Action to Mitigate Humanitarian Crises? Oxfam: Oxford, UK, 2017; p. 44. [Google Scholar]
- Africa Risk View. Africa RiskView Brochure May 2019. African Risk Capacity; African Union: Johannesburg, South Africa, 2019; p. 2. [Google Scholar]
- Ewbank, R.; Perez, C.; Cornish, H.; Worku, M.; Woldetsadik, S. Building resilience to el niño-related drought: Experiences in early warning and early action from Nicaragua and Ethiopia. Disasters 2019, 43, S345–S367. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Akwango, D.; Obaa, B.B.; Turyahabwe, N.; Baguma, Y.; Egeru, A. Effect of drought early warning system on household food security in Karamoja subregion, Uganda. Agric. Food Secur. 2017, 6, 43. [Google Scholar] [CrossRef]
- Barrett, A.B.; Duivenvoorden, S.; Salakpi, E.E.; Muthoka, J.M.; Mwangi, J.; Oliver, S.; Rowhani, P. Forecasting vegetation condition for drought early warning systems in pastoral communities in Kenya. Remote Sens. Environ. 2020, 248, 111886. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, Z.-Y.; Xu, L.-J.; Ou, C.-Q. Meteorological drought forecasting based on a statistical model with machine learning techniques in shaanxi province, China. Sci. Total Environ. 2019, 665, 338–346. [Google Scholar] [CrossRef] [PubMed]
- Dehghan, S.; Salehnia, N.; Sayari, N.; Bakhtiari, B. Prediction of meteorological drought in arid and semi-arid regions using PDSI and SDSM: A case study in Fars province, Iran. J. Arid Land 2020, 12, 318–330. [Google Scholar] [CrossRef]
- Sharafi, L.; Zarafshani, K.; Keshavarz, M.; Azadi, H.; Van Passel, S. Farmers’ decision to use drought early warning system in developing countries. Sci. Total Environ. 2021, 758, 142761. [Google Scholar] [CrossRef] [PubMed]
- Van Loon, A.F.; Stahl, K.; Di Baldassarre, G.; Clark, J.; Rangecroft, S.; Wanders, N.; Gleeson, T.; Van Dijk, A.I.J.M.; Tallaksen, L.M.; Hannaford, J.; et al. Drought in a human-modified world: Reframing drought definitions, understanding, and analysis approaches. Hydrol. Earth Syst. Sci. 2016, 20, 3631–3650. [Google Scholar] [CrossRef][Green Version]
- Zhang, P.; Zhang, J.; Chen, M. Economic impacts of climate change on agriculture: The importance of additional climatic variables other than temperature and precipitation. J. Environ. Econ. Manag. 2017, 83, 8–31. [Google Scholar] [CrossRef]
- Ashraf, S.; AghaKouchak, A.; Nazemi, A.; Mirchi, A.; Sadegh, M.; Moftakhari, H.R.; Hassanzadeh, E.; Miao, C.-Y.; Madani, K.; Mousavi Baygi, M.; et al. Compounding effects of human activities and climatic changes on surface water availability in Iran. Clim. Chang. 2019, 152, 379–391. [Google Scholar] [CrossRef]
- Jehanzaib, M.; Shah, S.A.; Kwon, H.-H.; Kim, T.-W. Investigating the influence of natural events and anthropogenic activities on hydrological drought in south korea. Terr. Atmos. Ocean. Sci. J. 2020, 31, 85–96. [Google Scholar] [CrossRef][Green Version]
- Barbier, E.B.; Hochard, J.P. Land degradation and poverty. Nat. Sustain. 2018, 1, 623–631. [Google Scholar] [CrossRef]
- Kane, D.A.; Bradford, M.A.; Fuller, E.; Oldfield, E.E.; Wood, S.A. Soil organic matter protects us maize yields and lowers crop insurance payouts under drought. Environ. Res. Lett. 2021, 16, 044018. [Google Scholar] [CrossRef]
- Noack, F.; Riekhof, M.-C.; Di Falco, S. Droughts, biodiversity, and rural incomes in the tropics. J. Assoc. Environ. Resour. Econ. 2019, 6, 823–852. [Google Scholar] [CrossRef]
- Birthal, P.S.; Hazrana, J. Crop diversification and resilience of agriculture to climatic shocks: Evidence from India. Agric. Syst. 2019, 173, 345–354. [Google Scholar] [CrossRef]
- Bowles, T.M.; Mooshammer, M.; Socolar, Y.; Calderón, F.; Cavigelli, M.A.; Culman, S.W.; Deen, W.; Drury, C.F.; Garcia y Garcia, A.; Gaudin, A.C.M.; et al. Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in North America. One Earth 2020, 2, 284–293. [Google Scholar] [CrossRef]
- Craven, D.; Isbell, F.; Manning, P.; Connolly, J.; Bruelheide, H.; Ebeling, A.; Roscher, C.; van Ruijven, J.; Weigelt, A.; Wilsey, B.; et al. Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought. Philos. Trans. R. Soc. B: Biol. Sci. 2016, 371, 20150277. [Google Scholar] [CrossRef]
- Wagg, C.; O’Brien, M.J.; Vogel, A.; Scherer-Lorenzen, M.; Eisenhauer, N.; Schmid, B.; Weigelt, A. Plant diversity maintains long-term ecosystem productivity under frequent drought by increasing short-term variation. Ecology 2017, 98, 2952–2961. [Google Scholar] [CrossRef] [PubMed]
- Isbell, F.; Craven, D.; Connolly, J.; Loreau, M.; Schmid, B.; Beierkuhnlein, C.; Bezemer, T.M.; Bonin, C.; Bruelheide, H.; de Luca, E.; et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 2015, 526, 574–577. [Google Scholar] [CrossRef] [PubMed]
- Löw, F.; Biradar, C.; Fliemann, E.; Lamers, J.P.A.; Conrad, C. Assessing gaps in irrigated agricultural productivity through satellite earth observations—a case study of the Fergana valley, Central Asia. Int. J. Appl. Earth Obs. Geoinf. 2017, 59, 118–134. [Google Scholar] [CrossRef]
- Wright, A.J.; Mommer, L.; Barry, K.; van Ruijven, J. Stress gradients and biodiversity: Monoculture vulnerability drives stronger biodiversity effects during drought years. Ecology 2021, 102, e03913. [Google Scholar] [CrossRef]
- Bezner Kerr, R.; Madsen, S.; Stüber, M.; Liebert, J.; Enloe, S.; Borghino, N.; Parros, P.; Mutyambai, D.M.; Prudhon, M.; Wezel, A. Can agroecology improve food security and nutrition? A review. Glob. Food Secur. 2021, 29, 100540. [Google Scholar] [CrossRef]
- Kelman, I.; Glantz, M.H. Early Warning Systems Defined. In Reducing Disaster: Early Warning Systems For Climate Change; Singh, A., Zommers, Z., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 89–108. [Google Scholar]
- Baudoin, M.-A.; Henly-Shepard, S.; Fernando, N.; Sitati, A.; Zommers, Z. From top-down to “community-centric” approaches to early warning systems: Exploring pathways to improve disaster risk reduction through community participation. Int. J. Disaster Risk Sci. 2016, 7, 163–174. [Google Scholar] [CrossRef][Green Version]
- Florey, C.; Hellin, J.; Balié, J. Digital agriculture and pathways out of poverty: The need for appropriate design, targeting, and scaling. Enterp. Dev. Microfinance 2020, 31, 126–140. [Google Scholar] [CrossRef]
- Akwango, D.; Obaa, B.B.; Turyahabwe, N.; Baguma, Y.; Egeru, A. Quality and dissemination of information from a drought early warning system in Karamoja sub-region, Uganda. J. Arid Environ. 2017, 145, 69–80. [Google Scholar] [CrossRef]
- Hicks, A.; Barclay, J.; Chilvers, J.; Armijos, M.T.; Oven, K.; Simmons, P.; Haklay, M. Global mapping of citizen science projects for disaster risk reduction. Front. Earth Sci. 2019, 7, 226. [Google Scholar] [CrossRef]
- Jamieson, M.; Elson, M.; Carruthers, R.; Ordens, C.M. The contribution of citizen science in managing and monitoring groundwater systems impacted by coal seam gas production: An example from the Surat basin in Australia’s great artesian basin. Hydrogeol. J. 2020, 28, 439–459. [Google Scholar] [CrossRef][Green Version]
- Kocaman, S.; Anbaroglu, B.; Gokceoglu, C.; Altan, O. A review on citizen science (CITSCI) applications for disaster management. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS-Arch. 2018, XLII-3/W4, 301–306. [Google Scholar] [CrossRef][Green Version]
- Marchezini, V.; Horita, F.E.A.; Matsuo, P.M.; Trajber, R.; Trejo-Rangel, M.A.; Olivato, D. A review of studies on participatory early warning systems (P-EWS): Pathways to support citizen science initiatives. Front. Earth Sci. 2018, 6, 184. [Google Scholar] [CrossRef]
- Akanbi, A.K.; Masinde, M. Towards the Development of a Rule-Based Drought Early Warning Expert Systems Using Indigenous Knowledge. In Proceedings of the 2018 International Conference on Advances in Big Data, Computing and Data Communication Systems (icABCD), Durban, South Africa, 6–7 August 2018; pp. 1–8. [Google Scholar]
- Andersson, L.; Wilk, J.; Graham, L.P.; Wikner, J.; Mokwatlo, S.; Petja, B. Local early warning systems for drought—Could they add value to nationally disseminated seasonal climate forecasts? Weather Clim. Extrem. 2020, 28, 100241. [Google Scholar] [CrossRef]
- Atyang, A. Study on Early Warning Systems in Uganda; Report Prepared for Office of the Prime Minister; Office of the Prime Minister, Department for Disaster Preparedness and Management: Kampala, Uganda, 2014; p. 38. [Google Scholar]
- Thothela, N.P.; Markus, E.D.; Masinde, M.; Abu-Mahfouz, A.M. A Survey of Intelligent Agro-climate Decision Support Tool for Small-Scale Farmers: An Integration of Indigenous Knowledge, Mobile Phone Technology and Smart Sensors. In ICT Analysis and Applications; Springer: Singapore, 2021; pp. 715–730. [Google Scholar]
- Singh, P.K.; Chudasama, H. Pathways for drought resilient livelihoods based on people’s perception. Clim. Chang. 2017, 140, 179–193. [Google Scholar] [CrossRef][Green Version]
- Dossou-Yovo, E.R.; Zwart, S.J.; Kouyaté, A.; Ouédraogo, I.; Bakare, O. Predictors of drought in inland valley landscapes and enabling factors for rice farmers’ mitigation measures in the Sudan-Sahel zone. Sustainability 2019, 11, 79. [Google Scholar] [CrossRef][Green Version]
- Xiao, X.; Dorovskoy, P.; Biradar, C.; Bridge, E. A library of georeferenced photos from the field. EOS 2011, 92, 453–454. [Google Scholar] [CrossRef]
- Dejene Aredo, S.; Kramer, B. Using Digital Repeat Photography to Strengthen Seasonal Monitoring in Ethiopia’s R4 Rural Resilience Initiative; CCAFS Working Paper no. 342. CGIAR Research Program on Climate Change; Agriculture and Food Security (CCAFS): Wageningen, The Netherlands, 2020. [Google Scholar]
- Gilani, H.; Qamer, F.M.; Sohail, M.; Uddin, K.; Jain, A.; Ning, W. Review of Ecosystem Monitoring in Nepal and Evolving Earth Observation Technologies. In Land Cover Change and Its Eco-Environmental Responses in Nepal; Li, A., Deng, W., Zhao, W., Eds.; Springer: Singapore, 2017; pp. 165–183. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Ginkel, M.; Biradar, C. Drought Early Warning in Agri-Food Systems. Climate 2021, 9, 134. https://doi.org/10.3390/cli9090134
van Ginkel M, Biradar C. Drought Early Warning in Agri-Food Systems. Climate. 2021; 9(9):134. https://doi.org/10.3390/cli9090134
Chicago/Turabian Stylevan Ginkel, Maarten, and Chandrashekhar Biradar. 2021. "Drought Early Warning in Agri-Food Systems" Climate 9, no. 9: 134. https://doi.org/10.3390/cli9090134