Climatically Driven Holocene Glacier Advances in the Russian Altai Based on Radiocarbon and OSL Dating and Tree Ring Analysis
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
4. Results
4.1. Holocene Chronology of Glaciers Advances in the Russian Altai. Distribution of Forest Vegetation within the Periglacial Part of the Ridges in the Russian Altai
4.1.1. Katun Range
4.1.2. North Chuya Range
4.1.3. South Chuya Range
4.1.4. Chikhachev Range
4.2. Magnitude of the Holocene Glaciers Advances in the Russian Altai. Geological, Geomorphological, and Geochronological Study of the Upper Reaches of the Akkol River
4.2.1. The Upper Reaches of the Akkol Valley: Modern Moraines of the Sofiysky Glacier and Moraine Complexes of the Aktru and Historical Stages Range
4.2.2. Middle Part of the Akkol Valley: Genesis and Age of Landforms Downstream the Moraine Complexes of the Aktru and Historical Stages
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sapozhnikov, V.V. The Ways ALONG the Russian Altai; Printing house of the Siberian Printing Association: Tomsk, Russia, 1912. (In Russian) [Google Scholar]
- Vardanyants, L.A. About ancient glaciations of the Altai and the Caucasus (comparative sketch). News USSR Geogr. Soc. 1938, 70, 386–406. (In Russian) [Google Scholar]
- Tumencev, K.G. The Report on Geology-Glaciological Part of the Altai Glacial Expedition of the Year 1933. Transactions of Glacial Expedition of the USSR Academy of Sciences; USSR AS: Moscow, Russia, 1936; pp. 37–94. (In Russian) [Google Scholar]
- Myagkov, I.M. Moraines of Beluha glaciers. Bull. West. Sib. Geol. Trust. 1936, 1, 85–106. (In Russian) [Google Scholar]
- Devyatkin, E.V. Cenozoic Deposits and Neotectonics of Southeastern Altai; USSR Academy of Science: Moscow, Russia, 1965. (In Russian) [Google Scholar]
- Shnitnikov, A.V. Variability of General Moistening of the Continents in the Northern Hemisphere. Reports from the USSR Geographical Society; Nauka: Moscow/Leningrad, Russia, 1957; p. 16. (In Russian) [Google Scholar]
- Ivanovsky, L.N. Glacial Landforms and Their Palaeogeographical Importance in the Altai; Nauka: Leningrad, Russia, 1967. (In Russian) [Google Scholar]
- Okishev, P.A. The Dynamics of Glaciation in Altai During the Late Pleistocene and Holocene; Tomsk University Press: Tomsk, Russia, 1982. (In Russian) [Google Scholar]
- Agatova, A.R.; Nazarov, A.N.; Nepop, R.K.; Rodnight, H. Holocene glacier fluctuations and climate changes in the southeastern part of the Russian Altai (South Siberia) based on a radiocarbon chronology. Quat. Sci. Rev. 2012, 43, 74–93. [Google Scholar] [CrossRef]
- Solomina, O.N. Mountain Glaciations of the Northern Eurasia During the Holocene; Nauchny Mir: Moscow, Russia, 1999. (In Russian) [Google Scholar]
- Agatova, A.R.; Nepop, R.K.; Slyusarenko, I.Y.; Myglan, V.S.; Nazarov, A.N.; Barinov, V.V. Glacier dynamics, palaeohydrological changes and seismicity in southeastern Altai (Russia) and their influence on human occupation during the last 3000 years. Quat. Int. 2014, 324, 6–19. [Google Scholar] [CrossRef]
- Adamenko, M.F.; Selishchev, E.N. New data on glacier dynamics in the Akturu and Kurumdu river basins during the Little Ice Age. In Proceedings of the Scientific Conference: Nature and Economics of the Kuznetsk Basin, Novokuznetsk, Russia, 2–5 February 1984; pp. 58–61. (In Russian). [Google Scholar]
- Adamenko, M.F.; Syubaev, A.A. Climate dynamics in the territory of mountain Altai in the 15th–20th centuries on the basis of dendrochronological analysis. In Problems of Mountain Glaciology; Tomsk University Press: Tomsk, Russia, 1977; pp. 196–202. (In Russian) [Google Scholar]
- Dushkin, M.A. Perennial fluctuations of Aktru glaciers and conditions of young moraines forming. Altai Glaciol. 1965, 4, 83–101. (In Russian) [Google Scholar]
- Galahov, V.P.; Nazarov, A.N.; Harlamova, A.N. Glaciers Fluctuations and Climate Changes During Late Holocene on the Basis of Studying of Glaciers and Glacial Sediments of Aktru Basin (Central Altai, North Chuya Range); Altai University Press: Barnaul, Russia, 2005. (In Russian) [Google Scholar]
- Volkova, V.S.; Babushkin, A.E. Unified Regional Stratigraphic Scheme of Quaternary Deposits of the West Siberian Plain; SNIIGGiMS: Novosibirsk, Russia, 2000; p. 64. (In Russian) [Google Scholar]
- Nazarov, A.N.; Agatova, A.R. Glacier dynamics in the North Chuya range, Central Altai, during the second half of the Holocene Materials of Glaciological Investigations. Quat. Sci. Rev. 2008, 105, 73–86. (In Russian) [Google Scholar]
- Ivanovsky, L.N.; Panychev, V.A. The Development and Age of Terminal Moraines of the XVII-Xixth Centuries of Aktru Glaciers, Altai. Present Relief Formation Processes in Siberia; Nauka: Irkutsk, Russia, 1978; pp. 127–138. (In Russian) [Google Scholar]
- Ivanovsky, L.N.; Panychev, V.A.; Orlova, L.A. Age of Terminal Moraines of “Aktru” and “Historical” Stages of Altai Glaciers. Late Pleistocene and Holocene of the Southern Part of Eastern Siberia; Nauka: Novosibirsk, Russia, 1982; pp. 57–64. (In Russian) [Google Scholar]
- Mikhailov, N.N.; Maksimov, E.V.; Kozyreva, M.G.; Larin, S.I.; Merkulov, P.I.; Chernov, S.B. Radiocarbon dating of the Holocene sediments from mountain provinces of the southern framing of the USSR. Bull. Leningr. State Univ. 1989, 7, 57–62. (In Russian) [Google Scholar]
- Galakhov, V.P.; Chernykh, D.V.; Zolotov, D.V.; Agatova, A.R.; Biryukov, R.Y.u.; Nazarov, A.N.; Orlova, L.A.; Ostanin, O.V.; Samoilova, S.Y.; Sheremetov, R.T.; et al. Glaciation of the Southwestern Part of Altai in the Second Half of the Holocene; Azbuka: Barnaul, Russia, 2012. (In Russian) [Google Scholar]
- Galahov, V.P.; Nazarov, A.N.; Lovckaya, O.V.; Agatova, A.R. Chronology of the Warm Period in the Second Half of the Holocene in SE Altai (on the Basis of Radiocarbon Dating of Glacial Sediments); Azbuka: Barnaul, Russia, 2008. (In Russian) [Google Scholar]
- Galakhov, V.P.; Nazarov, A.N.; Samoilova, S.Y.; Mardasova, E.V. Mountain Knot Belukha; Azbuka: Barnaul, Russia, 2018. (In Russian) [Google Scholar]
- Butvilovsky, V.V. Paleogeography of the Last Glaciation and the Holocene of Altai: A Catastrophic Events Model; Tomsk University Press: Tomsk, Russia, 1993; 253p. (In Russian) [Google Scholar]
- Agatova, A.R.; Van Huele, W.; Mistryukov, A.A. Dynamics of the Sofiyskiy glacier (South-Eastern Altai) The last glacial maximum-20th century. Russ. Geomorphol. 2002, 2, 92–105. (In Russian) [Google Scholar]
- Mistrukov, A.A.; Savelyeva, P.Y.; Marmulev, S.S. Development of the relief of the Akkol and Taltura river valleys in the Late Holocene (South-Eastern Altai). Bull. Trans. Baikal State Univ. 2016, 22, 4–44. (In Russian) [Google Scholar]
- Nazarov, A.N.; Solomina, O.N.; Myglan, V.S. Variations of the tree line and glaciers in the central and eastern Altai regions in the Holocene. Earth Sci. 2012, 444, 787–790. [Google Scholar] [CrossRef]
- Nazarov, A.N.; Myglan, V.S. The possibility of construction of the 6000-year chronology for Siberian pine in the Central Altai. J. Sib. Fed. Univ. Biol. 2012, 5, 70–88. (In Russian) [Google Scholar]
- Nazarov, A.N.; Myglan, V.S.; Orlova, L.A.; Ovchinnikov, I.Y. Activity of Maly Aktru Glacier (Central Altai) and changes tree line fluctuations in its basin for a historical period. Ice Snow 2016, 56, 103–118. (In Russian) [Google Scholar] [CrossRef]
- Ganiushkin, D.; Chistyakov, K.; Kunaeva, E. Fluctuation of glaciers in the southeast Russian Altai and northwest Mongolia Mountains since the Little Ice Age maximum. Environ. Earth Sci. 2015, 3, 1883–1904. [Google Scholar] [CrossRef]
- Ganyushkin, D.; Chistyakov, K.; Volkov, I.; Bantcev, D.; Kunaeva, E.; Brandová, D.; Raab, D.; Christl, M.; Egli, M. Palaeoclimate, glacier and treeline reconstruction based on geomorphic evidences in the Mongun-Taiga massif (south-eastern Russian Altai) during the Late Pleistocene and Holocene. Quat. Int. 2018, 470, 26–37. [Google Scholar] [CrossRef] [Green Version]
- Novikov, I.S. Morphotectonics of the Altai Mountains; SB RAS: Novosibirsk, Russia, 2004. (In Russian) [Google Scholar]
- Agatova, A.R.; Nepop, R.K. Pleistocene glaciations of the SE Altai, Russia, based on geomorphological data and absolute dating of glacial deposits in Chagan reference section. Geochronometria 2017, 44, 49–65. [Google Scholar] [CrossRef] [Green Version]
- Weatherbase, Kosh-Agach, Russia. Available online: http://www.weatherbase.com/weather/weather.php3?s=95263 (accessed on 19 March 2020).
- Narozhny, Y.K.; Osipov, A.V. Oroclimatic conditions of the Central Altai glaciations. News Russ. Geogr. Soc. 1999, 131, 49–57. (In Russian) [Google Scholar]
- Revjakin, V.S.; Galahov, V.P.; Goleschihin, V.P. Mountain Glacier Basins of Altai; Tomsk University Press: Tomsk, Russia, 1979. (In Russian) [Google Scholar]
- Nikitin, S.A.; Osipov, A.V.; Vesnin, A.V.; Iglovskaya, N.V. Distribution of fresh water resources in Central Altai glaciers. In Fundamental Problems of Water and Water Resources at the Edge of the Third Millennium, Proceedings of International Scientific Conference, Tomsk, Russia, 3–7 September 2000; NTL Press: Tomsk, Russia, 2000; pp. 341–345. (In Russian) [Google Scholar]
- Agatova, A.R. Geomorphologic mapping of the Chagan-Uzun river basin: A key for reconstructing history of Pleistocene glaciations in the Southeastern Altai. Stratigr. Geol. Correl. 2005, 13, 656–666. [Google Scholar]
- Narozhniy, Y.; Zemtsov, V. Current state of the Altai glaciers (Russia) and trends over the period of instrumental observations 1952–2008. Ambio 2011, 40, 575–588. [Google Scholar] [CrossRef] [Green Version]
- Shahgedanova, M.; Nosenko, G.; Khromova, T.; Muraveyev, A. Glacier shrinkage and climatic change in the Russian Altai from the mid-20th century: An assessment using remote sensing and PRECIS regional climate model. J. Geophys. Res. Atmos. 2010, 115, D16107. [Google Scholar] [CrossRef] [Green Version]
- Permafrost-Hydrogeological Map (Scale 1:200,000); Department of Funds, Western Siberian Geological Administration: Novosibirsk, Russia, 1977.
- Ostanin, O.V. Modern Evolution of High Mountain Systems (By the Example of Central and Southeastern Altai). Ph.D. Thesis, Altai State University, Barnaul, Russia, 2007. (In Russian). [Google Scholar]
- Egli, M.; Lessovaia, S.N.; Chistyakov, K.; Inozemzev, S.; Polekhovsky, Y.; Ganyushkin, D. Microclimate affects soil chemical and mineralogical properties of cold alpine soils of the Altai Mountains (Russia). J. Soils Sediments 2015, 15, 1420–1436. [Google Scholar] [CrossRef]
- Agatova, A.R.; Nepop, R.K.; Bronnikova, M.A.; Slyusarenko, I.Y.; Orlova, L.A. Human occupation of South Eastern Altai highlands (Russia) in the context of environmental changes. Archaeol. Anthropol. Sci. 2016, 8, 419–440. [Google Scholar] [CrossRef]
- Bronnikova, M.A.; Konoplianikova, Y.u.V.; Agatova, A.R.; Nepop, R.K.; Lebedeva, M.P. Holocene Environmental Change in South-East Altai Evidenced by Soil Record. Geogr. Environ. Sustain. 2018, 11, 100–111. [Google Scholar] [CrossRef] [Green Version]
- Agatova, A.R.; Nepop, R.K.; Bronnikova, M.A.; Zhdanova, A.N.; Moska, P.; Zazovskaya, E.P.; Khazina, I.V. Problems of 14C dating in fossil soils within tectonically active highlands of Russian Altai in the chronological context of the late Pleistocene megafloods. Catena 2020, 195, 104764. [Google Scholar] [CrossRef]
- Tronov, M.V.; Lupina, N.H.; Tronova, L.B. On Joint Research of the Snow Line and the Forest Boundary in Mountain-Glacial Basins; TSU Publishing House: Tomsk, Russia, 1974; pp. 3–21. (In Russian) [Google Scholar]
- Adamenko, M.F. Reconstruction of the Dynamics of Thermal Regime in Summer Months and Glaciation of the Altai Mountains in XIV–XX Centuries. Ph.D. Thesis, Institute of Geology and Geophysics, Novosibirsk, Russia, 1985. (In Russian). [Google Scholar]
- Arslanov, A.A. Radiocarbon: Geochemistry and Geochronology; Leningrad State University Press: Leningrad, Russia, 1987. (In Russian) [Google Scholar]
- Skripkin, V.; Kovaliukh, N. Recent Developments in the Procedures Used at the SSCER Laboratory for the Routine Preparation of Lithium Carbide. Radiocarbon 1997, 40, 211–214. [Google Scholar] [CrossRef] [Green Version]
- Wacker, L.; Němec, M.; Bourquin, J. A revolutionary graphitisation system: Fully automated, compact and simple. Nucl. Instrum. Methods Phys. Res. 2010, 268, 931–934. [Google Scholar] [CrossRef]
- Reimer, P.J.; Bard, E.; Bayliss, A.; Beck, J.W.; Blackwell, P.G.; Bronk Ramsey, C.; Buck, C.E.; Cheng, H.; Edwards, R.L.; Friedrich, M.; et al. IntCal13 and MARINE13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 2013, 55, 1869–1887. [Google Scholar] [CrossRef] [Green Version]
- Guerin, G.; Mercier, N.; Adamiec, G. Dose-rate conversion factors: Update. Ancient TL 2011, 29, 5–8. [Google Scholar]
- Prescott, J.R.; Stephan, L.G. The contribution of cosmic radiation to the environmental dose for thermoluminescence dating. Latitude, altitude and depth dependencies. Pact 1982, 6, 16–25. [Google Scholar]
- Aitken, M.J. An Introduction to Optical Dating. The Dating of Quaternary Sediments by the Use of Photon-Stimulated Luminescence; Oxford University Pres: Oxford, UK, 1998. [Google Scholar]
- Bøtter-Jensen, L.; Bulur, E.; Duller, G.A.T.; Murray, A.S. Advances in luminescence instrument systems. Radiat. Meas. 2000, 32, 523–528. [Google Scholar] [CrossRef]
- Murray, A.S.; Wintle, A.G. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiat. Meas. 2000, 32, 57–73. [Google Scholar] [CrossRef]
- Galbraith, R.F.; Roberts, R.G.; Laslett, G.M.; Yoshida, H.; Olley, J.M. Optical dating of single and multiple grains of quartz from Jinminum Rock Shelter, Northern 12 Australia. Part I, experimental design and statistical models. Archaeometry 1999, 41, 1835–1857. [Google Scholar] [CrossRef]
- Nepop, R.K.; Agatova, A.R.; Uspenskaya, O.N. Climatically driven late Pleistocene–Holocene hydrological system transformation and landscape evolution in the eastern periphery of Chuya basin, SE Altai, Russia. Quat. Int. 2020, 538, 63–79. [Google Scholar] [CrossRef]
- Pattyn, F.; De Smedt, B.; De Brabander, S.; Van Huele, W.; Agatova, A.; Mistrukov, A.; Decleir, H. Ice dynamics and basal properties of Sofiyskiy glacier, Altai mountains, Russia, based on DGPS and radio-echo sounding surveys. Ann. Glaciol. 2003, 37, 286–292. [Google Scholar] [CrossRef] [Green Version]
- Tronov, M.V. Essays on the Glaciation of Altai; Geografgiz: Moscow, Russia, 1949; 374p. (In Russian) [Google Scholar]
- Bulatov, V.I.; Dik, I.P.; Revyakin, V.S. Glaciological observations in the Akkol river basin. Glaciol. Altai 1967, 5, 178–183. (In Russian) [Google Scholar]
- Borodavko, P.S.; Litvinov, A.S. Russian Altai Mountains: Lake Maashey and Lake Sofiyskoe. In Hazard Assessment and Outburst Flood Estimation of Naturally Dammed Lakes in Central Asia; Borodavko, P.S., Glazirin, G.E., Herget, J., Severskiy, I.V., Eds.; Shaker Verlag: Aachen, Germany, 2013; pp. 35–43. [Google Scholar]
- Neuwirth, B.; Mahlberg, M.; Herget, J. Potential of tree-ring analysis for dating and tracing the development of thermokarst lakes In Russian Altai. In Hazard Assessment and Outburst Flood Estimation of Naturally Dammed Lakes in Central Asia; Borodavko, P.S., Glazirin, G.E., Herget, J., Severskiy, I.V., Eds.; Shaker Verlag: Aachen, Germany, 2013; pp. 44–60. [Google Scholar]
- Svitoch, A.A.; Boyarskaya, T.D.; Voskresenskaya, T.N.; Glushankova, I.I.; Evseev, A.V.; Kursalova, V.I.; Paramonova, N.N.; Faustov, S.S.; Khorev, V.S. The Sections of the Latest Deposits of Altai; MSU Publisher: Moscow, Russia, 1978. (In Russian) [Google Scholar]
- Blyakharchuk, T.; Wright, H.; Borodavko, P.; Knaap, W.O.; van der Ammann, B. The role of pingos in the development of the Dzhangyskol lake-pingo complex, central Altai Mountains, southern Siberia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2008, 257, 404–420. [Google Scholar] [CrossRef]
- Agatova, A.R.; Khazina, I.V.; Bronnikova, M.A.; Uspenskaya, O.N.; Nepop, R.K. Reconstruction of postglacial landscape evolution within the eastern periphery of Chuya depression on the basis of multidisciplinary analysis of peats in Boguty river basin, SE Altai, Russia. IOP C. Ser. Earth Env. 2018, 138, 012001. [Google Scholar] [CrossRef]
- Ilyashuk, B.P.; Ilyashuk, E.A. Chironomid record of Late Quaternary climatic and environmental changes from two sites in Central Asia (Tuva Republic, Russia)—Local, regional or global causes? Quat. Sci. Rev. 2007, 26, 705–731. [Google Scholar] [CrossRef]
- Schlütz, F.; Lehmkuhl, F. Climatic change in the Russian Altai, southern Siberia, based on palynological and geomorphological results, with implications for climatic teleconnections and human history since the middle Holocene. Veg. Hist. Archaeobotany 2007, 16, 101–118. [Google Scholar] [CrossRef]
- Blyakharchuk, T.A.; Wright, H.E.; Borodavko, P.S.; van der Knaap, W.O.; Ammann, B. Late Glacial and Holocene vegetational history of the Altai Mountains (southwestern Tuva Republic, Siberia). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 245, 518–534. [Google Scholar] [CrossRef]
- Westover, K.S.; Fritz, S.C.; Blyakharchuk, T.A.; Wright, H.E. Diatom paleolimnological record of Holocene climatic and environmental change in the Altai Mountains, Siberia. J. Paleolimnol. 2006, 35, 519–541. [Google Scholar] [CrossRef] [Green Version]
- Aizen, E.M.; Aizen, V.B.; Takeuchi, N.; Mayewski, P.A.; Grigholm, B.; Joswiak, D.R.; Nikitin, S.A.; Fujita, K.; Nakawo, M.; Zapf, A.; et al. Abrupt and moderate climate changes in the mid-latitudes of Asia during the Holocene. J. Glaciol. 2016, 62, 411–439. [Google Scholar] [CrossRef] [Green Version]
- Blyakharchuk, T.A.; Wright, H.E.; Borodavko, P.S.; van der Knaap, W.O.; Ammann, B. Late Glacial and Holocene vegetational changes on the Ulagan high-mountain plateau, Altai Mountains, southern Siberia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 209, 259–279. [Google Scholar] [CrossRef]
- Rudaya, N.; Li, H.C. A new approach for reconstruction of the Holocene climate in the Mongolian Altai: The high-resolution δ13C records of TOC and pollen complexes in Hoton-Nur Lake sediments. J. Asian Earth Sci. 2013, 69, 185–195. [Google Scholar] [CrossRef]
- Herren, P.A.; Eichler, A.; Machguth, H.; Papina, T.; Tobler, L.; Zapf, A.; Schwikowski, M. The onset of Neoglaciation 6000 years ago in western Mongolia revealed by an ice core from the Tsambagarav mountain range. Quat. Sci. Rev. 2013, 69, 59–68. [Google Scholar] [CrossRef]
Glacial Stages, after [2] | Altitude of Terminal Moraines of Different Stages for Russian Altai. Glacial Stages Chronology for Some Central Asia Mountains, after [6] | Glaciers Advances and ELA Depressions for Aktru Basin, the North Chuya Range, after [7] | Stadial Terminal Moraines for the Second Megastadial and ELA Depressions for the Right Aktru Glacier, North Chuya Range, after [8] | |||
---|---|---|---|---|---|---|
Altitude m a.s.l. | Chronological Limits of Glacial Stages * | Phase of Glaciers Advances | ELA Depression m | Moraine Number (from the Glacier) | ELA Depression m | |
Seventeenth–nineteenth centuries | 2200 | VII | 50–70 | 1 | 70 | |
Historical | 2300 | ~0 AD | VI | 100 | 2 | 175 |
Akkem | 1900–2000 | ~1900 BC | V | 250 | 3 | 285 |
Kochurlinskaya | 1700 | 3700–3800 BC | IV | 450–470 | 4 | 355 |
Multinskaya | ≈1550 | 5600–5800 BC | III | 600 | 5 | 430 |
Ognevskaya | 1350 | 7400–7600 BC | II | 650 | 6 | 485 |
First | 1250 | 9200–9400 BC | I | <700 | 7 | 540 |
Würm maximum | ≈1100 | 11,000–11,300 BC | - | 8 | 625 |
N | Lab. Code | Location | N° E° | Altitude m a.s.l. | Sample Type | 14C Age | Calibrated Age (2σ) | Tree Specie | Comments |
---|---|---|---|---|---|---|---|---|---|
Katun range | |||||||||
1 | SOAN-8745 | Mensu valley, forefield of Mensu glacier (number 4, Figure 4) | N 49°51′35″ E 86°42′31″ | 2137 | Tree fragment washed out from glacier | 3315 ± 35 | 3545 ± 85 | Pinus sibirica | Trees grow within modern glacial zone |
2 | SOAN-8746 | Mensu valley, forefield of Mensu glacier (number 4, Figure 4) | N 49°51′19″ E 86°42′23″ | 2152 | Tree fragment washed out from glacier | 4625 ± 85 | 5315 ± 265 | Pinus sibirica | Trees grow within modern glacial zone |
3 | SOAN-8752 | Suluajry valley, Iedygem basin (number 1, Figure 4) | N 49°55′30″ E 86°40′20″ | 2596 | Tree trunk buried by landslides | 5670 ± 110 | 6500 ± 220 | Pinus sibirica | Warm and humid climate, trees grow above the modern upper timber limit |
4 | SOAN-8753 | Suluajry valley, Iedygem basin (number 1, Figure 4) | N 49°55′30″ E 86°40′19″ | 2596 | Tree trunk buried by landslides | 9880 ± 115 | 11,345 ± 465 | Pinus sibirica | Warm and humid climate, trees grow above the modern upper timber limit |
5 | SOAN-8754 | Suluajry valley, Iedygem basin (number 1, Figure 4) | N 49°55′30″ E 86°40′19″ | 2596 | Tree trunk buried by landslides | 5305 ± 90 | 6100 ± 180 | Pinus sibirica | Warm and humid climate, trees grow above the modern upper timber limit |
6 | SOAN-8755 | Suluajry valley, Iedygem basin (number 1, Figure 4) | N 49°56′54″ E 86°40′36″ | 2620 | Tree trunk in fluvial deposits in front of moraine | 4760 ± 85 | 5480 ± 165 | Pinus sibirica | Trees grow within modern glacial zone |
7 | SOAN-9110 | Suluajry valley, Iedygem basin (number 1, Figure 4) | N 49°55′31″ E 86°40′11″ | 2651 | Tree trunk buried by landslides | 6620 ± 70 | 7515 ± 95 | Pinus sibirica | Warm and humid climate, trees grow above the modern upper timber limit |
8 | SOAN-9111 | Tekelu valley, Akkem basin (number 3, Figure 4) | N 49°54′04″ E 86°37′59″ | 2721 | Root fragment in glaciofluvial deposits, inner part of modern moraine | 2960 ± 80 | 3120 ± 230 | Juniperus | Trees grow within modern glacial zone |
9 | SOAN-9439 | Mensu right tributary valley (number 4, Figure 4) | N 49°51′39″ E 86°41′20″ | 2557 | Tree fragment washed out from glacier | 7440 ± 95 | 8225 ± 180 | Pinus sibirica | Warm and humid climate, trees grow above the modern upper timber limit |
10 | SOAN-9810 | Jarlu, watershed Jarlu-Tekelu (number 2, Figure 4) | N 49°55′48″ E 86°36′34″ | 2728 | Fragment of tree roots | 4910 ± 115 | 5620 ± 290 | Larix sibirica | Warm and humid climate, trees grow above the modern upper timber limit |
11 | SOAN-9811 | Jarlu, watershed Jarlu-Tekelu (number 2, Figure 4) | N 49°55′07″ E 86°36′37″ | 2700 | Fragment of tree trunk | 7235 ± 140 | 8070 ± 280 | Larix sibirica | Warm and humid climate, trees grow above the modern upper timber limit |
12 | SOAN-9812 | Jarlu, watershed Jarlu-Tekelu (number 2, Figure 4) | N 49°55′30″ E 86°36′45″ | 2700 | Fragment of tree trunk in moraine | 8605 ± 130 | 9730 ± 420 | Larix sibirica | Warm and humid climate, trees grow above the modern upper timber limit |
13 | SOAN-9813 | Jarlu, watershed Jarlu-Tekelu (number 2, Figure 4) | N 49°55′14″ E 86°36′42″ | 2674 | Fragment of tree roots in situ | 6050 ± 250 | 6050 ± 250 | Larix sibirica | Warm and humid climate, trees grow above the modern upper timber limit |
14 | SOAN-9888 | Mensu valley, forefield of Sapozhnikov glacier (number 4, Figure 4) | N 49°52′00″ E 86°43′11″ | 1993 | Tree fragment in front of Aktru moraine | 3215 ± 90 | 3445 ± 230 | Larix sibirica | Warm and humid climate, trees grow above the modern upper timber limit |
15 | SOAN-9889 | Mensu valley, forefield of Sapozhnikov glacier (number 4, Figure 4) | N 49°51′32″ E 86°42′50″ | 2149 | Tree fragment washed out from modern glacier | 2925 ± 85 | 3100 ± 240 | Larix sibirica | Warm and humid climate, trees grow above the modern upper timber limit |
North Chuya range | |||||||||
16 | SOAN-8748 | Jan-Karasu valley (number 2, Figure 5) | N 50°06′59″ E 87°44′55″ | 2337 | Tree fragment in rock glacier | 4250 ± 75 | 4785 ± 250 | Larix sibirica | Warm and humid climate |
17 | SOAN-8749 | Jan-Karasu valley (number 2, Figure 5) | N 50°06′57″ E 87°44′40″ | 2384 | Tree fragment in rock glacier | 4540 ± 65 | 5210 ± 235 | Larix sibirica | Warm and humid climate |
18 | SOAN-9840 | Maashey valley, forefield of Maashey glacier (number 1, Figure 5) | N 50°06′44″ E 87°35′37″ | 2159 | Tree fragment washed out from modern glacier | 5085 ± 95 | 5850 ± 245 | Pinus sibirica | Warm and humid climate |
19 | SOAN-9841 | Maashey valley, forefield of Maashey glacier (number 1, Figure 5) | N 50°06′44″ E 87°35′37″ | 2159 | Tree fragment washed out from glacier | 5520 ± 95 | 6260 ± 245 | Pinus sibirica | Warm and humid climate |
South Chuya range | |||||||||
20 | IGAN 5966 | Akkol valley (number 2, Figure 6) | N 49°50′19″ E 87°52′40″ | 2334 | Charred fragment of tree trunk buried by aeolian sediments | 3630 ± 70 | 3935 ± 215 | Larix sibirica | Warm and humid climate |
21 | IGAN 6009 | Akkol valley (number 2, Figure 6) | N 49°49′12″ E 87°50′51″ | 2381 | Bark fragment on landslide in front of the Historical moraine | 3320 ± 80 | 3600 ± 220 | Larix sibirica | Warm and humid climate |
22 | SOAN-8747 | Taltura valley, forefield of Taltura glacier (number 1, Figure 6) | N 49°50′21″ E 87°42′13″ | 2460 | Tree fragment washed out from glacier | 3070 ± 35 | 3240 ± 125 | Larix sibirica | Warm and humid climate |
23 | SOAN-9908 | Akkol valley (number 1, Figure 6) | N 49°49′06″ E 87°50′45″ | 2390 | Tree fragment | 2865 ± 110 | 3045 ± 280 | Larix sibirica | Warm and humid climate |
Chikhachev range | |||||||||
24 | IGANAMS 6525 | Boguty valley | N 49°41′32″ E 89°31′06″ | 2473 | Fragment of charcoal | 6500 ± 25 | 7400 ± 70 | Larix sibirica | Warm and humid climate |
N | Lab Code | Section | N° E° | Altitude m a.s.l. | Sample Type | Dating Material | 14C Age | Calibrated Age (2σ) |
---|---|---|---|---|---|---|---|---|
1 | SOAN-9902 | 1 | N 49°48′54″ E 87°50′32″ | 2438 | Soil on the frontal part of the Historical moraine | Soil | Modern | |
2 | IGANAMS 8772 | 3 | N 49°49′02″ E 87°50′37″ | 2406 | Soil on the frontal part of the Historical moraine | Soil | Modern | |
3 | SOAN-9901 | 3 | N 49°49′02″ E 87°50′37″ | 2406 | Soil on the frontal part of the Historical moraine | Soil | Modern | |
4 | SOAN-9909 | 3 | N 49°49′02″ E 87°50′37″ | 2406 | Soil on the frontal part of the Historical moraine | Soil | Modern | |
5 | SOAN-9683 | 4 | N 49°49′05″ E 87°50′26″ | 2413 | Cryo-humus horizon of polygenetic soil profile in slope sediments | Soil | 340 ± 35 | 395 ± 90 |
6 | IGAN 6246 | 4 | N 49°49′05″ E 87°50′26″ | 2413 | Gray-humus horizon of polygenetic soil profile in slope sediments | Soil | 1220 ± 70 | 1135 ± 150 |
7 | SOAN-9682 | 4 | N 49°49′05″ E 87°50′26″ | 2413 | Dark humus horizon of polygenetic soil profile in slope sediments | Soil | 1645 ± 95 | 1575 ± 230 |
8 | SOAN-9910 | 5 | N 49°49′03″ E 87°50′38″ | 2396 | Paleosoil in landslide body | Soil | 930 ± 80 | 830 ± 140 |
9 | SOAN-9903 | 5 | N 49°49′03″ E 87°50′38″ | 2396 | Paleosoil on the landslide body | Soil | 1570 ± 80 | 1495 ± 190 |
10 | SOAN-9908 | 6 | N 49°49′06″ E 87°50′45″ | 2392 | Tree fragment in paleosoil | Wood | 2865 ± 110 | 3045 ± 280 |
11 | SOAN-9894 | 6 | N 49°49′06″ E 87°50′45″ | 2392 | Paleosoil in front of Historical moraine | Soil | 4420 ± 105 | 5130 ± 305 |
12 | SOAN-9893 | 7 | N 49°49′07″ E 87°50′45″ | 2391 | Humus layer of aeoline deposits above glacio-fluvial sands | Soil | 1695 ± 80 | 1610 ± 200 |
13 | SOAN-9897 | 8 | N 49°49′06″ E 87°50′46″ | 2391 | Paleosoil above glaciofluvial deposits | Soil | 615 ± 50 | 600 ± 65 |
14 | SOAN-9896 | 8 | N 49°49′06″ E 87°50′46″ | 2391 | Paleosoil above glaciofluvial deposits | Soil | 1145 ± 65 | 1085 ± 150 |
15 | SOAN-9895 | 8 | N 49°49′06″ E 87°50′46″ | 2391 | Paleosoil above glaciofluvial deposits | Soil | 2980 ± 120 | 3150 ± 295 |
16 | IGAN 6247 | 9 | N 49°49′12″ E 87°50′51″ | 2381 | Paleosoil on landslide body | Soil | 140 ± 50 | 225 ± 60 |
17 | IGAN 6248 | 9 | N 49°49′12″ E 87°50′51″ | 2381 | Paleosoil on landslide body | Soil | 1110 ± 70 | 1075 ± 160 |
18 | IGAN 6009 | 9 | N 49°49′12″ E 87°50′51″ | 2381 | Fragment of larch bark on landslide | Wood | 3320 ± 80 | 3600 ± 220 |
19 | IGANAMS 8771 | 10 | N 49°49′10″ E 87°50′55″ | 2373 | Paleosoil on the landslide body | Soil | 330 ± 20 | 385 ± 75 |
20 | SOAN-9898 | 10 | N 49°49′10″ E 87°50′55″ | 2373 | Paleosoil on the landslide body | Soil | 2225 ± 95 | 2210 ± 255 |
21 | SOAN-9684 | 11 | N 49°49′24″ E 87°51′28″ | 2354 | Paleosoil in the river terrace | Soil | 1490 ± 90 | 1430 ± 165 |
22 | SOAN-9686 | 11 | N 49°49′24″ E 87°51′28″ | 2354 | Lens of humus material with charcoal in the lower river terrace | Soil | 4470 ± 105 | 5145 ± 300 |
23 | SOAN-9685 | 11 | N 49°49′24″ E 87°51′28″ | 2354 | Lens of humus material with a large amount of root detritus in the lower river terrace | Detritus | 5090 ± 95 | 5885 ± 285 |
24 | SOAN-9687 | 12 | N 49°49′40″ E 87°52′08″ | 2348 | Peat with detritus in the scarp of the lower river terrace | Detritus | 1730 ± 60 | 1675 ± 140 |
25 | IGAN 6100 | 13 | N 49°49′12″ E 87°50′51″ | 2339 | Peat bog on the lower river terrace | Peat | Modern | |
26 | IGAN 6099 | 13 | N 49°49′12″ E 87°50′51″ | 2339 | Peat bog on the lower river terrace | Peat | 200 ± 50 | 330 ± 90 |
27 | IGAN 6098 | 13 | N 49°49′12″ E 87°50′51″ | 2339 | Peat bog on the lower river terrace | Peat | 1160 ± 60 | 1105 ± 150 |
28 | IGAN 6097 | 13 | N 49°49′12″ E 87°50′51″ | 2339 | Peat bog on the lower river terrace | Peat | 1760 ± 60 | 1685 ± 135 |
29 | SOAN-9904 | 14 | N 49°49′41″ E 87°52′16″ | 2347 | Peat in an erosion scarp, high floodplain | Peat | Modern | |
30 | SOAN-9907 | 15 | N 49°50′09″ E 87°52′28″ | 2334 | Peat in the first terrace above the floodplain | Peat | 320 ± 40 | 390 ± 90 |
31 | SOAN-9906 | 15 | N 49°50′09″ E 87°52′28″ | 2334 | Peat in the first terrace above the floodplain | Peat | 1350 ± 85 | 1235 ± 175 |
32 | SOAN-9905 | 15 | N 49°50′09″ E 87°52′28″ | 2334 | Peat in the first terrace above the floodplain | Peat | 1440 ± 80 | 1355 ± 170 |
33 | IGAN 5966 | 16 | N 49°50′19″ E 87°52′40″ | 2334 | Charred fragment of tree trunk buried by aeolian sediments | Charcoal | 3630 ± 70 | 3935 ± 215 |
34 | SOAN-9899 | 17 | N 49°51′01″ E 87°53′20″ | 2311 | Peat in lacustrine deposits of the river terrace | Peat | 805 ± 55 | 780 ± 120 |
Sample ID | Water Content (%) | U (Bq/kg) | Th (Bq/kg) | K (Bq/kg) | Dose Rate (Gy/ka) | Equivalent Dose (Gy) | OSL Age (ka) |
---|---|---|---|---|---|---|---|
GdTL-3905 | 10 ± 5 | 26.9 ± 1.4 | 30.8 ± 1.8 | 547 ± 46 | 2.77 ± 0.15 | 8.12 ± 0.14 | 2.93 ± 0.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agatova, A.; Nepop, R.; Nazarov, A.; Ovchinnikov, I.; Moska, P. Climatically Driven Holocene Glacier Advances in the Russian Altai Based on Radiocarbon and OSL Dating and Tree Ring Analysis. Climate 2021, 9, 162. https://doi.org/10.3390/cli9110162
Agatova A, Nepop R, Nazarov A, Ovchinnikov I, Moska P. Climatically Driven Holocene Glacier Advances in the Russian Altai Based on Radiocarbon and OSL Dating and Tree Ring Analysis. Climate. 2021; 9(11):162. https://doi.org/10.3390/cli9110162
Chicago/Turabian StyleAgatova, Anna, Roman Nepop, Andrey Nazarov, Ivan Ovchinnikov, and Piotr Moska. 2021. "Climatically Driven Holocene Glacier Advances in the Russian Altai Based on Radiocarbon and OSL Dating and Tree Ring Analysis" Climate 9, no. 11: 162. https://doi.org/10.3390/cli9110162
APA StyleAgatova, A., Nepop, R., Nazarov, A., Ovchinnikov, I., & Moska, P. (2021). Climatically Driven Holocene Glacier Advances in the Russian Altai Based on Radiocarbon and OSL Dating and Tree Ring Analysis. Climate, 9(11), 162. https://doi.org/10.3390/cli9110162