On Tanzania’s Precipitation Climatology, Variability, and Future Projection
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Climatology
3.2. Trends
3.3. Variability
3.4. Projected change
4. Conclusions
- Precipitation patterns in Tanzania are highly variable in both space and time, largely due to topographical variations, coastal influences, and presence of lakes.
- The average annual rainfall distribution is unimodal in southern and western to central Tanzania with one rainy season from November to May, and bimodal in northern and eastern Tanzania with two rainy seasons: the MAM long rains and the SON short rains.
- A general decreasing precipitation trend is observed in Tanzania since 1960, with the greatest decline in the MAM long rains season.
- A weak increasing precipitation trend for the SON short rains is observed in northwestern Tanzania around Lake Victoria, contradictory to the decreasing lake level.
- The IOD exerts a greater influence on Tanzania’s precipitation than other modes of climate variability including ENSO.
- Future projections show an increase in Tanzania’s rainfall in response to global warming; this trend contradicts the historical drying trend over East Africa.
- Observational data and climate model data show opposite precipitation trends for Tanzania, reflecting the challenges faced by climate models in the representation of natural variability.
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Liebmann, B.; Hoerling, M.P.; Funk, C.; Bladé, I.; Dole, R.M.; Allured, D.; Quan, X.; Pegion, P.; Eischeid, J.K. Understanding recent eastern Horn of Africa rainfall variability and change. J. Clim. 2014, 27, 8630–8645. [Google Scholar] [CrossRef]
- Lyon, B. Seasonal drought in the Greater Horn of Africa and its recent increase during the March-May long rains. J. Clim. 2014, 27, 7953–7975. [Google Scholar] [CrossRef]
- Hoell, A.; Hoerling, M.; Eischeid, J.K.; Quan, X.; Liebmann, B. Reconciling theories for human and natural attribution of recent East Africa drying. J. Clim. 2017, 30, 1939–1957. [Google Scholar] [CrossRef]
- Thompson, L.G. Climate change: The evidence and our options. Behav. Anal. 2010, 33, 153–170. [Google Scholar] [CrossRef] [PubMed]
- Awange, J.L.; Ogalo, L.; Bae, K.H.; Were, P.; Omondi, P.; Omute, P.; Omullo, M. Falling Lake Victoria water levels: Is climate a contributing factor? Clim. Chang. 2008, 89, 281–297. [Google Scholar] [CrossRef]
- Dube, K.; Nhamo, G. Climate variability, change and potential impacts on tourism: Evidence from the Zambian side of the Victoria Falls. Environ. Sci. Policy 2018, 84, 113–123. [Google Scholar] [CrossRef]
- Rowell, D.P.; Booth, B.B.; Nicholson, S.E.; Good, P. Reconciling Past and Future Rainfall Trends over East Africa. J. Clim. 2015, 28, 9768–9788. [Google Scholar] [CrossRef]
- Williams, A.P.; Funk, C. A westward extension of the warm pool leads to a westward extension of the Walker circulation, drying eastern Africa. Clim. Dyn. 2011, 37, 2417–2435. [Google Scholar] [CrossRef] [Green Version]
- Shongwe, M.E.; van Oldenborgh, G.J.; van den Hurk, B. Projected changes in mean and extreme precipitation in Africa under global warming. Part II: East Africa. J. Clim. 2011, 24, 3718–3733. [Google Scholar] [CrossRef] [Green Version]
- Mafuru, K.B.; Guirong, T. Assessing Prone Areas to Heavy Rainfall and the Impaction of the Upper Warm Temperature Anomaly during March–May Rainfall Season in Tanzania. Adv. Meteor. 2018, 2018, 17. [Google Scholar] [CrossRef] [Green Version]
- Camberlin, P.; Boyard-Micheau, J.; Philippon, N.; Baron, C.; Leclerc, C.; Mwongera, C. Climatic gradients along the windward slopes of Mount Kenya and their implication for crop risks. Part 1: Climate variability. Int. J. Climatol. 2014, 34, 2136–2152. [Google Scholar] [CrossRef]
- Indeje, M.; Semazzi, F.H.; Ogallo, L.J. ENSO signals in East African rainfall seasons. Int. J. Climatol. 2000, 20, 19–46. [Google Scholar] [CrossRef]
- Schreck, C.J., III; Semazzi, F.H.M. Variability of the recent climate of eastern Africa. Int. J. Climatol. 2004, 24, 681–701. [Google Scholar] [CrossRef]
- Kijazi, A.; Reason, C. Relationships between intraseasonal rainfall variability of coastal Tanzania and ENSO. Theor. Appl. Climatol. 2005, 82, 153–176. [Google Scholar] [CrossRef]
- Lyon, B.; Vigaud, N. Unraveling East Africa’s Climate Paradox. In Climate Extremes: Patterns and Mechanisms, 1st ed.; Wang, S.Y., Yoon, J.H., Funk, C., Gillies, R., Eds.; John Wiley & Sons Inc.: New York, NY, USA, 2017; Volume 16, pp. 265–281. [Google Scholar] [CrossRef]
- Endris, H.S.; Lennard, C.; Hewitson, B.; Dosio, A.; Nikulin, G.; Artan, G.A. Future changes in rainfall associated with ENSO, IOD and changes in the mean state over Eastern Africa. Clim. Dyn. 2019, 52, 2029–2053. [Google Scholar] [CrossRef] [Green Version]
- Schneider, U.; Becker, A.; Finger, P.; Meyer-Christoffer, A.; Rudolf, B.; Ziese, M. GPCC Full Data Reanalysis Version 6.0 at 0.5°: Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historic Data. GPCC Data Rep. 2011, 10. [Google Scholar] [CrossRef]
- Meyer-Christoffer, A.; Becker, A.; Finger, P.; Schneider, U.; Ziese, M. GPCC Climatology Version 2018 at 0.25°: Monthly Land-Surface Precipitation Climatology for Every Month and the Total Year from Rain-Gauges built on GTS-based and Historical Data. GPCC Ger. 2018. [Google Scholar] [CrossRef]
- Rudolf, B.; Becker, A.; Schneider, U.; Meyer-Christoffer, A.; Ziese, M. New GPCC Full Data Reanalysis Version 5 Provides High-Quality Gridded Monthly Precipitation Data. GPCC Status Rep. 2011, 21, 1–7. [Google Scholar]
- Amante, C.; Eakins, B.W. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. In NOAA Technical Memorandum NESDIS NGDC-24; National Geophysical Data Center-NOAA: Boulder, CO, USA, 2009. [Google Scholar]
- National Center for Atmospheric Research Staff (Ed). Last modified 22 July 2013. The Climate Data Guide: Empirical Orthogonal Function (EOF) Analysis and Rotated EOF Analysis. Available online: https://climatedataguide.ucar.edu/climate-data-tools-and-analysis/empirical-orthogonal-function-eof-analysis-and-rotated-eof-analysis (accessed on 15 December 2019).
- Zhang, Z.; Moore, J.C. Mathematical and Physical Fundamentals of Climate Change, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 161–197. [Google Scholar] [CrossRef]
- Attuabea, D.; Oduro, F.; Ansah, R. Empirical orthogonal function (EOF) analysis of precipitation over Ghana. Int. J. Stat. Adv. Theor. Appl. 2017, 1, 121–141. [Google Scholar]
- Philippon, N.; Doblas-Reyes, F.J.; Ruti, P.M. Skill, reproducibility and potential predictability of the West African monsoon in coupled GCMs. Clim. Dyn. 2010, 35, 53–74. [Google Scholar] [CrossRef]
- Huang, B.; Thorne, P.W.; Banzon, V.F.; Boyer, T.; Chepurin, G.; Lawrimore, J.H.; Menne, M.J.; Smith, T.M.; Vose, R.S.; Zhang, H.M. NOAA Extended Reconstructed Sea Surface Temperature (ERSST), Version 5. NOAA National Centers for Environmental Information 2017. Inf. NNCfE 2017. [Google Scholar]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef] [Green Version]
- Bengtsson, L.; Hodges, K.I. Can an ensemble climate simulation be used to separate climate change signals from internal unforced variability? Clim. Dyn. 2019, 52, 3553–3573. [Google Scholar] [CrossRef] [Green Version]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Meehl, G.; Boer, G.; Covey, C.; Latif, M.; Stouffer, R. The Coupled Model Intercomparison Project (CMIP). Bull. Amer. Meteorol. Soc. 2000, 81, 313–318. [Google Scholar] [CrossRef] [Green Version]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteor. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Sillmann, J.; Kharin, V.V.; Zwiers, F.W.; Zhang, X.; Bronaugh, D. Climate extremes indices in the CMIP5 multi-model ensemble. Part 1: Model evaluation in the present climate. J. Geophys. Res. Atmos. 2013, 118, 1716–1733. [Google Scholar] [CrossRef]
- Sillmann, J.; Kharin, V.V.; Zwiers, F.W.; Zhang, X.; Bronaugh, D. Climate extremes indices in the CMIP5 multi-model ensemble. Part 2: Future climate projections. J. Geophys. Res. Atmos. 2013, 118, 2473–2493. [Google Scholar] [CrossRef]
- Moss, R.; Edmonds, J.; Hibbard, K.; Manning, M.; Rose, S.; Vuuren, D.; Carter, T.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef]
- Freychet, N.; Hsu, H.H.; Chou, C.; Wu, C.H. Asian summer monsoon in CMIP5 projections: A link between the change in extreme precipitation and monsoon dynamics. J. Clim. 2015, 28, 1477–1493. [Google Scholar] [CrossRef]
- Duane, W.J.; Pepin, N.C.; Losleben, M.L.; Hardy, D.R. General Characteristics of Temperature and Humidity Variability on Kilimanjaro, Tanzania. Arct. Antarct. Alp. Res. 2008, 40, 323–334. [Google Scholar] [CrossRef]
- Nicholson, S.E. A review of climate dynamics and climate variability in eastern Africa. In The Limnology, Climatology, and Paleoclimatology of the East African Lakes; Johnson, T.C., Odada, E.O., Eds.; Gordon and Breach Publishers: Amsterdam, The Netherlands, 1996; pp. 25–56. [Google Scholar]
- Bryson, R.; Kuhn, P. Stress—Differential Induced Divergence with Application to Littoral Precipitation. Erdkunde 1961, 15, 287–294. [Google Scholar] [CrossRef]
- Nicholson, S.E. Climate and climatic variability of rainfall over eastern Africa. Rev. Geophys. 2017, 55, 590–635. [Google Scholar] [CrossRef] [Green Version]
- Flohn, H.; Fraedrich, K. Tagesperiodische zirkulation und niederschlagsverteilungam Victoria-See (Ostafrika) (the daily periodic circulation and distribution of rainfall over Lake Victoria, in German). Meteorologische Rundschau 1966, 19, 157–165. [Google Scholar]
- Yin, X.; Nicholson, S.E.; Ba, M.B. On the diurnal cycle of cloudiness over Lake Victoria and its influence on evaporation from the lake. Hydrolog. Sci. J. 2000, 45, 407–424. [Google Scholar] [CrossRef]
- Ba, M.B.; Nicholson, S.E. Analysis of Convective Activity and Its Relationship to the Rainfall over the Rift Valley Lakes of East Africa during 1983–90 Using the Meteosat Infrared Channel. J. Appl. Meteor. 1998, 37, 1250–1264. [Google Scholar] [CrossRef]
- Song, Y.; Semazzi, F.H.M.; Xie, L.; Ogallo, L.J. A coupled regional climate model for the Lake Victoria basin of East Africa. Int. J. Climatol. 2004, 24, 57–75. [Google Scholar] [CrossRef]
- Flohn, H.; Burkhardt, T. Nile Runoff at Aswan and Lake Victoria: A Case of a Discontinuous Climate Time Series. Z. Gletscherk. Glazialgeol. 1985, 21, 125–130. [Google Scholar]
- Thiery, W.; Davin, E.; Seneviratne, S.; Bedka, K.; Lhermitte, S.; van Lipzig, N.P.M. Hazardous thunderstorm intensification over Lake Victoria. Nat. Commun. 2016, 7, 12786. [Google Scholar] [CrossRef] [Green Version]
- Khavse, R.; Deshmukh, R.; Manikandan, N.; Chaudhary, J.L.; Kaushik, D. Statistical Analysis of Temperature and Rain fall Trend in Raipur District of Chhattisgarh. Curr. World Environ. 2015, 10, 305–312. [Google Scholar] [CrossRef] [Green Version]
- Kull, D. Connections between Recent Water Level Drops in Lake Victoria, Dam Operations and Drought. 2006. Available online: http://www.irn.org/programs/nile/pdf/060208vic.pdf (accessed on 20 December 2019).
- Verdin, J.; Funk, C.; Senay, G.; Choularton, R. Climate science and famine early warning. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2005, 360, 2155–2168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Funk, C.C.; Dettinger, M.D.; Michaelsen, J.C.; Verdin, J.P.; Brown, M.E.; Barlow, M.; Hoell, A. Warming of the Indian Ocean threatens eastern and southern African food security but could be mitigated by agricultural development. Proc. Natl. Acad. Sci. USA 2008, 105, 11081–11086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyon, B.; Dewitt, D.G. A recent and abrupt decline in the East African long rains. Geophys. Res. Lett. 2012, 39, L02702. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Seager, R.; Cane, M.A.; Lyon, B. The East African long rains in observations and models. J. Clim. 2014, 27, 7185–7202. [Google Scholar] [CrossRef]
- Tierney, J.E.; Ummenhofer, C.C.; DeMenocal, P.B. Past and future rainfall in the horn of Africa. Sci. Adv. 2015, 1, e1500682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vellinga, M.; Milton, S.F. Drivers of interannual variability of the East African “Long Rains”. Q. J. R. Meteorol. Soc. 2018, 144, 861–876. [Google Scholar] [CrossRef]
- Mazzarella, A.; Giuliacci, A.; Liritzis, I. On the 60-month cycle of multivariate ENSO index. Theor. Appl. Climatol. 2010, 100, 23–27. [Google Scholar] [CrossRef]
- Wainwright, C.M.; Marsham, J.H.; Keane, R.J.; Rowell, D.P.; Finney, D.L.; Black, E.; Allan, R.P. ‘Eastern African Paradox’ rainfall decline due to shorter not less intense Long Rains. npj Clim. Atmos. Sci. 2019, 2, 9. [Google Scholar] [CrossRef]
- Liebmann, B.; Bladé, I.; Funk, C.; Allured, D.; Quan, X.; Hoerling, M.; Hoell, A.; Peterson, P.; Thiaw, W.M. Climatology and Interannual Variability of Boreal Spring Wet Season Precipitation in the Eastern Horn of Africa and Implications for Its Recent Decline. J. Clim. 2017, 30, 3867–3886. [Google Scholar] [CrossRef]
- Funk, C.; Hoell, A.; Shukla, S.; Bladé, I.; Liebmann, B.; Roberts, J.B.; Robertson, F.R.; Husak, G. Predicting East African spring droughts using Pacific and Indian Ocean sea surface temperature indices. Hydrol. Earth Syst. Sci. 2014, 18, 4965–4978. [Google Scholar] [CrossRef] [Green Version]
- Ogallo, L.J.; Okoola, R.E.; Wanjohi, D.N. Characteristics of Quasi-Biennial Oscillation over Kenya and their predictability potential for seasonal rainfall. MAUSAM. Q. J. Meteorol. Hydrol. Geophys. 1994, 45, 57–62. [Google Scholar]
- Pohl, B.; Camberlin, P. Influence of the Madden–Julian Oscillation on East African rainfall. I: Intraseasonal variability and regional dependency. Q. J. R. Meteorol. Soc. 2006, 132, 2521–2539. [Google Scholar] [CrossRef] [Green Version]
- Saji, N.H.; Goswami, B.N.; Vinayachandran, P.N.; Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 1999, 401, 360–363. [Google Scholar] [CrossRef] [PubMed]
- Webster, P.J.; Moore, A.M.; Loschnigg, J.P.; Leben, R.R. Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997–98. Nature 1999, 401, 356–360. [Google Scholar] [CrossRef] [PubMed]
- Camberlin, P.; Wairoto, J. Intraseasonal wind anomalies related to wet and dry spells during the “long” and “short” rainy seasons in Kenya. Theor. Appl. Climatol. 1997, 58, 57–69. [Google Scholar] [CrossRef]
- Hastenrath, S.; Polzin, D.; Mutai, C. Circulation Mechanisms of Kenya Rainfall Anomalies. J. Clim. 2011, 24, 404–412. [Google Scholar] [CrossRef]
- Moron, V.; Robertson, A.W.; Ward, M.N.; Camberlin, P. Spatial coherence of tropical rainfall at the regional scale. J. Clim. 2007, 20, 5244–5263. [Google Scholar] [CrossRef] [Green Version]
- Camberlin, P.; Moron, V.; Okoola, R.E.; Philippon, N.; Gitau, W. Components of rainy seasons’ variability in equatorial East Africa: Onset, cessation, rainfall frequency and intensity. Theor. Appl. Climatol. 2009, 98, 237–249. [Google Scholar] [CrossRef] [Green Version]
- Camberlin, P.; Philippon, N. The East African March–May Rainy Season: Associated Atmospheric Dynamics and Predictability over the 1968–97 Period. J. Clim. 2002, 15, 1002–1019. [Google Scholar] [CrossRef]
- Ogallo, L.J. Relationships between seasonal rainfall in East Africa and the Southern Oscillation. J. Climatol. 1988, 8, 31–43. [Google Scholar] [CrossRef]
- Reason, C.J.C.; Allan, R.J.; Lindesay, J.A.; Ansell, T.J. ENSO and climatic signals across the Indian Ocean basin in the global context: Part I. Interannual composite patterns. Int. J. Climatol. 2000, 20, 1285–1327. [Google Scholar] [CrossRef]
- Nicholson, S.E.; Kim, J. The relationship of the El Niño–Southern Oscillation to African rainfall. Int. J. Climatol. 1997, 17, 117–135. [Google Scholar] [CrossRef]
- Mahongo, S.B.; Francis, J. Analysis of rainfall variations and trends in Coastal Tanzania. Western Indian Ocean. J. Mar. Sci. 2002, 11, 121–133. [Google Scholar]
- Hastenrath, S.; Nicklis, A.; Greischar, L. Atmospheric-hydrospheric mechanisms of climate anomalies in the western equatorial Indian Ocean. J. Geophys. Res. 1993, 98, 20219–20235. [Google Scholar] [CrossRef]
- Diro, G.T.; Grimes, D.I.F.; Black, E. Teleconnections between Ethiopian summer rainfall and sea surface temperature: Part I—Observation and modelling. Clim. Dyn. 2011, 37, 103–119. [Google Scholar] [CrossRef]
- Goddard, L.; Graham, N.E. Importance of the Indian Ocean for simulating rainfall anomalies over eastern and southern Africa. J. Geophys. Res. Atmos. 1999, 104, 19099–19116. [Google Scholar] [CrossRef] [Green Version]
- Latif, M.; Dommenget, D.; Dima, M.; Grötzner, A. The role of Indian Ocean sea surface temperature in forcing East African rainfall anomalies during December–January 1997/98. J. Clim. 1999, 12, 3497–3504. [Google Scholar] [CrossRef]
- Bahaga, T.K.; Tsidu, M.; Kucharski, G.F.; Diro, G.T. Potential predictability of the sea-surface temperature forced equatorial East African short rains interannual variability in the 20th century. Q. J. R. Meteorol. Soc. 2015, 141, 16–26. [Google Scholar] [CrossRef]
- Endris, H.S.; Lennard, C.; Hewitson, B.; Dosio, A.; Nikulin, G.; Nikulin, G.; Panitz, H.J. Teleconnection responses in multi-GCM driven CORDEX RCMs over Eastern Africa. Clim. Dyn. 2016, 46, 2821–2846. [Google Scholar] [CrossRef]
- Black, E.; Slingo, J.; Sperber, K.R. An Observational Study of the Relationship between Excessively Strong Short Rains in Coastal East Africa and Indian Ocean SST. Mon. Weather Rev. 2003, 131, 74–94. [Google Scholar] [CrossRef]
- Behera, S.K.; Luo, J.J.; Masson, S.; Delecluse, P.; Gualdi, S.; Navarra, A.; Yamagata, T. Paramount impact of the Indian Ocean dipole on the East African short rains: A CGCM study. J. Clim. 2005, 18, 4514–4530. [Google Scholar] [CrossRef] [Green Version]
- Ummenhofer, C.C.; Gupta, A.S.; England, M.H.; Reason, C.J. Contributions of Indian Ocean Sea Surface Temperatures to Enhanced East African Rainfall. J. Clim. 2009, 22, 993–1013. [Google Scholar] [CrossRef] [Green Version]
- Loaiciga, H.A.; Valdes, J.B.; Vogel, R.; Garvey, J.; Schwarz, H. Global warming and the hydrologic cycle. J. Hydrol. 1996, 174, 83–127. [Google Scholar] [CrossRef]
- Arnell, N.W.; Liu, C.; Compagnucci, R.; da Cunha, L.; Hanaki, K.; Howe, C.; Mailu, G.; Shiklomanov, I.; Stakhiv, E. Hydrology and water resources. In Climate Change 2001: Impacts, Adaptation and Vulnerability, 1st ed.; McCarthy, J.J., Canziani, O.F., Leary, N.A., Dokken, D.J., White, K.S., Eds.; Cambridge University Press: Cambridge, UK, 2001; pp. 191–233. [Google Scholar]
- Huntington, T.G. Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol. 2006, 319, 83–95. [Google Scholar] [CrossRef]
- Souverijns, N.; Thiery, W.; Demuzere, M.; van Lipzig, N.P.M. Drivers of future changes in East African precipitation. Environ. Res. Lett. 2016, 11, 114011. [Google Scholar] [CrossRef] [Green Version]
- Estrada, F.; Tol, R.S.; Botzen, W.J. Global economic impacts of climate variability and change during the 20th century. PLoS ONE 2017, 12, e0172201. [Google Scholar] [CrossRef]
- Terray, L.; Cassou, C. Modes of low-frequency climate variability and their relationships with land precipitation and surface temperature: Application to the Northern Hemisphere winter climate. Stoch. Environ. Res. Risk A 2000, 14, 339–369. [Google Scholar] [CrossRef]
- Meehl, G.A.; Arblaster, J.M.; Fasullo, J.T.; Hu, A.; Trenberth, K.E. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat. Clim. Chang. 2011, 1, 360–364. [Google Scholar] [CrossRef]
- Meehl, G.A.; Hu, A.; Arblaster, J.M.; Fasullo, J.T.; Trenberth, K.E. Externally forced and internally generated decadal climate variability associated with the Interdecadal Pacific Oscillation. J. Clim. 2013, 26, 7298–7310. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Fasullo, J.T. An apparent hiatus in global warming? Earth’s Future 2013, 1, 19–32. [Google Scholar] [CrossRef]
- Tollefson, J. The case of the missing heat. Nature 2014, 505, 276–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, G.A.; Shindell, D.; Tsigaridis, K. Reconciling warming trends. Nat. Geosci. 2014, 7, 158–160. [Google Scholar] [CrossRef]
- Watanabe, M.; Shiogama, H.; Tatebe, H.; Hayashi, M.; Ishii, M.; Kimoto, M. Contribution of natural decadal variability to global warming acceleration and hiatus. Nat. Clim. Chang. 2014, 4, 893–897. [Google Scholar] [CrossRef]
- Flato, G.; Marotzke, J.; Abiodun, B.; Braconnot, P.; Chou, S.C.; Collins, W.; Cox, P.; Driouech, F.; Emori, S.; Eyring, V.; et al. Evaluation of Climate Models. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 741–866. [Google Scholar]
- Hawkins, E.; Sutton, R. The potential to narrow uncertainty in projections of regional precipitation change. Clim. Dyn. 2011, 37, 407–418. [Google Scholar] [CrossRef]
- Johnson, J.S.; Cui, Z.; Lee, L.A.; Gosling, J.P.; Blyth, A.M.; Carslaw, K.S. Evaluating uncertainty in convective cloud microphysics using statistical emulation. J. Adv. Model. Earth Syst. 2015, 7, 162–187. [Google Scholar] [CrossRef]
- Payne, M.R.; Barange, M.; Cheung, W.W.L.; MacKenzie, B.R.; Batchelder, H.P.; Cormon, X.; Eddy, T.D.; Fernandes, J.A.; Hollowed, A.B.; Jones, M.C.; et al. Uncertainties in projecting climate-change impacts in marine ecosystems. ICES J. Mar. Sci. 2016, 73, 1272–1282. [Google Scholar] [CrossRef]
- Hayhoe, K.; Edmonds, J.; Kopp, R.E.; LeGrande, A.N.; Sanderson, B.M.; Wehner, M.F.; Wuebbles, D.J. Climate models, scenarios, and projections. In Climate Science Special Report: Fourth National Climate Assessment, 1st ed.; Wuebbles, D.J., Fahey, D.W., Hibbard, K.A., Dokken, D.J., Stewart, B.C., Maycock, T.K., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2017; Volume I, pp. 133–160. [Google Scholar] [CrossRef]
- Kharin, V.V.; Zwiers, F.W.; Zhang, X.B.; Hegerl, G.C. Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Clim. 2007, 20, 1419–1444. [Google Scholar] [CrossRef] [Green Version]
- Kharin, V.V.; Zwiers, F.W.; Zhang, X.B.; Wehner, M. Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim. Chang. 2013, 119, 345–357. [Google Scholar] [CrossRef]
- Chen, C.T.; Knutson, T. On the verification and comparison of extreme rainfall indices from climate models. J. Clim. 2008, 21, 1605–1621. [Google Scholar] [CrossRef]
- Chou, C.; Neelin, J.D. Mechanisms of Global Warming Impacts on Regional Tropical Precipitation. J. Clim. 2004, 17, 2688–2701. [Google Scholar] [CrossRef] [Green Version]
- Giannini, A.; Biasutti, M.; Held, I.M.; Sobel, A.H. A global perspective on African climate. Clim. Chang. 2008, 90, 359–383. [Google Scholar] [CrossRef]
- Allan, R.P.; Soden, B.J.; John, V.O.; Ingram, W.; Good, P. Current chances in tropical precipitation. Environ. Res. Lett. 2010, 5, 25205. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.; Deser, C.; Vecchi, G.A.; Ma, J.; Teng, H.; Wittenberg, A.T. Global Warming Pattern Formation: Sea Surface Temperature and Rainfall. J. Clim. 2010, 23, 966–986. [Google Scholar] [CrossRef]
- Mizuta, R.; Yoshimura, H.; Murakami, H.; Matsueda, M.; Endo, H.; Ose, T.; Kamiguchi, K.; Hosaka, M.; Sugi, M.; Yukimoto, S.; et al. Climate simulations using MRI-AGCM3.2 with 20-km grid. J. Meteorol. Soc. Jpn. 2012, 90A, 233–258. [Google Scholar] [CrossRef] [Green Version]
- James, R.; Washington, R. Changes in African temperature and precipitation associated with degrees of global warming. Clim. Chang. 2013, 117, 859–872. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borhara, K.; Pokharel, B.; Bean, B.; Deng, L.; Wang, S.-Y.S. On Tanzania’s Precipitation Climatology, Variability, and Future Projection. Climate 2020, 8, 34. https://doi.org/10.3390/cli8020034
Borhara K, Pokharel B, Bean B, Deng L, Wang S-YS. On Tanzania’s Precipitation Climatology, Variability, and Future Projection. Climate. 2020; 8(2):34. https://doi.org/10.3390/cli8020034
Chicago/Turabian StyleBorhara, Krishna, Binod Pokharel, Brennan Bean, Liping Deng, and S.-Y. Simon Wang. 2020. "On Tanzania’s Precipitation Climatology, Variability, and Future Projection" Climate 8, no. 2: 34. https://doi.org/10.3390/cli8020034
APA StyleBorhara, K., Pokharel, B., Bean, B., Deng, L., & Wang, S. -Y. S. (2020). On Tanzania’s Precipitation Climatology, Variability, and Future Projection. Climate, 8(2), 34. https://doi.org/10.3390/cli8020034