Spatial Distribution of the Mexican Daisy, Erigeron karvinskianus, in New Zealand under Climate Change
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hind, N. 729. ERIGERON KARVINSKIANUS. Curtis’s Bot. Mag. 2012, 29, 52–65. [Google Scholar] [CrossRef]
- Bala, S.; Kaushal, B.; Goyal, H.; Gupta, R.C. A Case of Synaptic Mutant in Erigeron Karvinskianus DC. (Latin American Fleabane). Cytologia 2010, 75, 299–304. [Google Scholar] [CrossRef]
- Henderson, L. Mapping of Invasive Alien Plants: The Contribution of the Southern African Plant Invaders Atlas (SAPIA) to Biological Weed Control. Afr. Entomol. 2011, 19, 498–503. [Google Scholar] [CrossRef]
- Hussey, B.M.J.; Keighery, G.J.; Cousens, R.D.; Dodd, J.; Lloyd, S.G. Western Weeds: A Guide to the Weeds of Western Australia (The Plant Protection Society of Western Australia (Inc.): Perth). Available online: https://www.wswa.org.au/western_weeds.htm#contents (accessed on 1 July 2018).
- Mito, T.; Uesugi, T. Invasive Alien Species in Japan: The Status Quo and the New Regulation for Prevention of Their Adverse Effects. Glob. Environ. Res. 2004, 8, 171–191. [Google Scholar]
- Negi, P.S.; Hajra, P.K. Alien Flora of Doon Valley, Northwest Himalaya. Curr. Sci. 2007, 92, 968–978. [Google Scholar]
- Botella, C.; Joly, A.; Bonnet, P.; Monestiez, P.; Munoz, F. Species Distribution Modeling Based on the Automated Identification of Citizen Observations. Appl. Plant Sci. 2018, 6, e1029. [Google Scholar] [CrossRef] [PubMed]
- Celesti-Grapow, L.; Blasi, C. The Role of Alien and Native Weeds in the Deterioration of Archaeological Remains in Italy. Weed Technol. 2004, 1508–1513. [Google Scholar]
- Lorence, D.H.; Perlman, S. A New Species of Cyrtandra (Gesneriaceae) from Hawai ‘i, Hawaiian Islands. Novon A J. Bot. Nomencl. 2007, 17, 357–361. [Google Scholar] [CrossRef]
- Wood, K.R. Rediscovery, Conservation Status and Taxonomic Assessment of Melicope Degeneri (Rutaceae), Kaua ‘i, Hawai ‘I. Endanger. Species Res. 2011, 14, 61–68. [Google Scholar] [CrossRef]
- Baret, S.; Rouget, M.; Richardson, D.M.; Lavergne, C.; Egoh, B.; Dupont, J.; Strasberg, D. Current Distribution and Potential Extent of the Most Invasive Alien Plant Species on La Réunion (Indian Ocean, Mascarene Islands). Austral Ecol. 2006, 31, 747–758. [Google Scholar] [CrossRef]
- Webb, C.J. Checklist of Dicotyledons Naturalised in New Zealand 18. Asteraceae (Compositae) Subfamily Asteroideae. N. Z. J. Bot. 1987, 25, 489–501. [Google Scholar] [CrossRef]
- Given, D.R. Checklist of Dicotyledons Naturalised in New Zealand 16. Compositae—Tribes Vernonieae, Eupatorieae, Astereae, Inuleae, Heliantheae, Tageteae, Calenduleae, and Arctoteae. N. Z. J. Bot. 1984, 22, 183–190. [Google Scholar] [CrossRef]
- Heenan, P.B.; De Lange, P.J.; Rance, B.D.; Sykes, W.R.; Meurk, C.D.; Korver, M.A. Additional Records of Indigenous and Naturalised Plants with Observations on the Distribution of Gunnera Tinctoria, on Stewart Island, New Zealand. N. Z. J. Bot. 2009, 47, 1–7. [Google Scholar] [CrossRef]
- Esler, A.E. The Naturalisation of Plants in Urban Auckland, New Zealand 3. Catalogue of Naturalised Species. N. Z. J. Bot. 1987, 25, 539–558. [Google Scholar] [CrossRef]
- Cameron, E.K. Environmental Vascular Plant Weeds and New Records for Motutapu, Waitemata Harbour. Auckl. Bot. Soc. J. 1994, 49, 3340. [Google Scholar]
- Wilcox, M.D.; Rogan, D.B. The Mural Flora of Auckland. Auckl. Bot. Soc. J. 1999, 54, 35–46. [Google Scholar]
- Sullivan, J.J.; Timmins, S.M.; Williams, P.A. Movement of Exotic Plants into Coastal Native Forests from Gardens in Northern New Zealand. N. Z. J. Ecol. 2005, 29, 1–10. [Google Scholar]
- Barton, J.; Fowler, S.V.; Gianotti, A.F.; Winks, C.J.; De Beurs, M.; Arnold, G.C.; Forrester, G. Successful Biological Control of Mist Flower (Ageratina Riparia) in New Zealand: Agent Establishment, Impact and Benefits to the Native Flora. Biol. Control 2007, 40, 370–385. [Google Scholar] [CrossRef]
- Clout, M.N.; Lowe, S.J. Invasive Species and Environmental Changes in New Zealand. In Invasive Species in a Changing World; Mooney, H., Hobbs, R., Eds.; Island Press Washington, District of Columbia: Washington, DC, USA, 2000. [Google Scholar]
- Appendix One: Invasive Weeds in the “Protecting and Restoring our Natural Heritage—A Practical Guide”. Available online: https://www.doc.govt.nz/about-us/science-publications/conservation-publications/protecting-and-restoring-our-natural-heritage-a-practical-guide/appendix-one-invasive-weeds (accessed on 28 November 2018).
- Appendix One: Invasive Weeds in the “Protecting and Restoring our Natural Heritage—A Practical Guide”. Available online: https://www.doc.govt.nz/documents/conservation/native-plants/motukarara-nursery/restoration-guide-complete.pdf (accessed on 28 November 2018).
- Williams, J.A.; West, C.J. Environmental Weeds in Australia and New Zealand: Issues and Approaches to Management. Austral Ecol. 2000, 25, 425–444. [Google Scholar] [CrossRef]
- Biosecurity New Zealand. Mexican Daisy. Available online: https://www.mpi.govt.nz/protection-and-response/finding-and-reporting-pests-and-diseases/pest-and-disease-search?Customisnppa=1 (accessed on 28 November 2018).
- Auckland Council. Surveillance Pest Plants, Auckland Regional Pest Strategy 2007–2012. Available online: https://www.aucklandcouncil.govt.nz/plans-projects-policies-reports-bylaws/our-plans-strategies/topic-based-plans-strategies/environmental-plans-strategies/docsregionalpestmanagementstrategy/surveillance-pest-plants-part-1.pdf (accessed on 28 November 2018).
- Pitelka, L.F.; Workshop, M. Plant Migration and Climate Change. Am. Sci. 2014, 85, 464–473. [Google Scholar]
- Meyerson, L.A.; Mooney, H.A. Invasive Alien Species in an Era of Globalization. Front. Ecol. Environ. 2007, 5, 199–208. [Google Scholar] [CrossRef]
- Thomas, Z.A.; Turney, C.S.M.; Palmer, J.G.; Lloydd, S.; Klaricich, J.N.L.; Hogg, A. Extending the Observational Record to Provide New Insights into Invasive Alien Species in a Coastal Dune Environment of New Zealand. Appl. Geogr. 2018, 98, 100–109. [Google Scholar] [CrossRef]
- Weber, E.; Gut, D. Assessing the Risk of Potentially Invasive Plant Species in Central Europe. J. Nat. Conserv. 2004, 12, 171–179. [Google Scholar] [CrossRef]
- O’Donnell, J.; Gallagher, R.V.; Wilson, P.D.; Downey, P.O.; Hughes, L.; Leishman, M.R. Invasion Hotspots for Non-Native Plants in Australia under Current and Future Climates. Glob. Chang. Biol. 2012, 18, 617–629. [Google Scholar] [CrossRef]
- Peterson, A.T.; Nakazawa, Y. Environmental Data Sets Matter in Ecological Niche Modelling: An Example with Solenopsis Invicta and Solenopsis Richteri. Glob. Ecol. Biogeogr. 2008, 17, 135–144. [Google Scholar] [CrossRef]
- Kulhanek, S.A.; Leung, B.; Ricciardi, A. Using Ecological Niche Models to Predict the Abundance and Impact of Invasive Species: Application to the Common Carp. Ecol. Appl. 2011, 21, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Fraser, D.; Aguilar, G.; Nagle, W.; Galbraith, M.; Ryall, C. The House Crow (Corvus Splendens): A Threat to New Zealand? ISPRS Int. J. Geo-Inf. 2015, 4, 725–740. [Google Scholar] [CrossRef]
- Yang, X.-Q.; Kushwaha, S.P.S.; Saran, S.; Xu, J.; Roy, P.S. Maxent Modeling for Predicting the Potential Distribution of Medicinal Plant, Justicia Adhatoda L. in Lesser Himalayan Foothills. Ecol. Eng. 2013, 51, 83–87. [Google Scholar] [CrossRef]
- Pěknicová, J.; Berchová-Bímová, K. Application of Species Distribution Models for Protected Areas Threatened by Invasive Plants. J. Nat. Conserv. 2016, 34, 1–7. [Google Scholar] [CrossRef]
- Yost, A.C.; Petersen, S.L.; Gregg, M.; Miller, R. Predictive Modeling and Mapping Sage Grouse (Centrocercus Urophasianus) Nesting Habitat Using Maximum Entropy and a Long-Term Dataset from Southern Oregon. Ecol. Inform. 2008, 3, 375–386. [Google Scholar] [CrossRef]
- Chai, S.-L.; Zhang, J.; Nixon, A.; Nielsen, S. Using Risk Assessment and Habitat Suitability Models to Prioritise Invasive Species for Management in a Changing Climate. PLoS ONE 2016, 11, e0165292. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.; Kumar, L. Potential Distribution of an Invasive Species under Climate Change Scenarios Using CLIMEX and Soil Drainage: A Case Study of Lantana Camara L. in Queensland, Australia. J. Environ. Manag. 2013, 114, 414–422. [Google Scholar] [CrossRef]
- Aguilar, G.D.; Blanchon, D.J.; Foote, H.; Pollonais, C.W.; Mosee, A.N. A Performance Based Consensus Approach for Predicting Spatial Extent of the Chinese Windmill Palm (Trachycarpus Fortunei) in New Zealand under Climate Change. Ecol. Inform. 2017, 39, 130–139. [Google Scholar] [CrossRef]
- Anderson, R.P.; Araújo, M.B.; Guisan, A.; Lobo, J.M.; Martínez-Meyer, E.; Peterson, A.T.; Soberón, J. Final Report of the Task Group on GBIF Data Fitness for Use in Distribution Modelling. 2016. Available online: https://doi.org/10.13140/RG.2.2.27191.93608 (accessed on 28 November 2018).
- ESRI. Arcmap. Available online: http://desktop.arcgis.com/en/arcmap/ (accessed on 12 November 2018).
- ESRI. Kernel Density. Available online: http://desktop.arcgis.com/en/arcmap/10.5/tools/spatial-analyst-toolbox/kernel-density.htm (accessed on 12 November 2018).
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. In Perspectives on Spatial Data Analysis; Springer: Berlin, Germany, 2010; pp. 127–145. [Google Scholar]
- Ord, J.K.; Getis, A. Local Spatial Autocorrelation Statistics: Distributional Issues and an Application. Geogr. Anal. 1995, 27, 286–306. [Google Scholar] [CrossRef]
- ESRI. How Hot Spot Analysis (Getis-Ord Gi*) Works. Available online: http://pro.arcgis.com/en/pro-app/tool-reference/spatial-statistics/h-how-hot-spot-analysis-getis-ord-gi-spatial-stati.htm (accessed on 9 November 2018).
- Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- ESRI. How Cluster and Outlier Analysis (Anselin Local Moran’s I) Works. Available online: http://pro.arcgis.com/en/pro-app/tool-reference/spatial-statistics/h-how-cluster-and-outlier-analysis-anselin-local-m.htm (accessed on 12 November 2018).
- Baldwin, R. Use of Maximum Entropy Modeling in Wildlife Research. Entropy 2009, 11, 854–866. [Google Scholar] [CrossRef] [Green Version]
- Fourcade, Y.; Engler, J.O.; Rödder, D.; Secondi, J. Mapping Species Distributions with MAXENT Using a Geographically Biased Sample of Presence Data: A Performance Assessment of Methods for Correcting Sampling Bias. PLoS ONE 2014, 9, e97122. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum Entropy Modeling of Species Geographic Distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M.; Elith, J.; Graham, C.H.; Lehmann, A.; Leathwick, J.; Ferrier, S. Sample Selection Bias and Presence-only Distribution Models: Implications for Background and Pseudo-absence Data. Ecol. Appl. 2009, 19, 181–197. [Google Scholar] [CrossRef]
- Wan, J.Z.; Wang, C.J.; Yu, F.H. Impacts of the Spatial Scale of Climate Data on the Modeled Distribution Probabilities of Invasive Tree Species throughout the World. Ecol. Inform. 2016, 36, 42–49. [Google Scholar] [CrossRef]
- Jaryan, V.; Datta, A.; Uniyal, S.K.; Kumar, A.; Gupta, R.C.; Singh, R.D. Modelling Potential Distribution of Sapium Sebiferum—An Invasive Tree Species in Western Himalaya. Curr. Sci. 2013, 105, 1282–1287. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very High Resolution Interpolated Climate Surfaces for Global Land Areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Aguilar, G.D.; Farnworth, M.J.; Winder, L. Mapping the Stray Domestic Cat (Felis Catus) Population in New Zealand: Species Distribution Modelling with a Climate Change Scenario and Implications for Protected Areas. Appl. Geogr. 2015, 63, 146–154. [Google Scholar] [CrossRef]
- Khanum, R.; Mumtaz, A.S.; Kumar, S. Predicting Impacts of Climate Change on Medicinal Asclepiads of Pakistan Using Maxent Modeling. Acta Oecol. 2013, 49, 23–31. [Google Scholar] [CrossRef]
- Hufnagel, L.; Garamvölgyi, Á. Impacts of Climate Change on Vegetation Distribution. No. 1: Climate Change Induced Vegetation Shifts in the Palearctic Region. Appl. Ecol. Environ. Res. 2013, 11, 79–122. [Google Scholar]
- Carraro, C.; Lanza, A.; Tavoni, M. All You Need to Know About the IPCC 5th Assessment Report. Mitigation of Climate Change. Rev. Environ. Energy Econ. 2014. [Google Scholar]
- Brown, J.L. SDMtoolbox: A Python-Based GIS Toolkit for Landscape Genetic, Biogeographic and Species Distribution Model Analyses. Methods Ecol. Evol. 2014, 5, 694–700. [Google Scholar] [CrossRef]
- Miller, J.A. Species Distribution Models: Spatial Autocorrelation and Non-Stationarity. Prog. Phys. Geogr. 2012, 36, 681–692. [Google Scholar] [CrossRef]
- De Oliveira, G.; Rangel, T.F.; Lima-Ribeiro, M.S.; Terribile, L.C.; Diniz-Filho, J.A.F. Evaluating, Partitioning, and Mapping the Spatial Autocorrelation Component in Ecological Niche Modeling: A New Approach Based on Environmentally Equidistant Records. Ecography 2014, 37, 637–647. [Google Scholar] [CrossRef]
- Tsoar, A.; Allouche, O.; Steinitz, O.; Rotem, D.; Kadmon, R. A Comparative Evaluation of Presence-Only Methods for Modelling Species Distribution. Divers. Distrib. 2007, 13, 397–405. [Google Scholar] [CrossRef]
- Wisz, M.S.; Hijmans, R.J.; Li, J.; Peterson, A.T.; Graham, C.H.; Guisan, A. Effects of Sample Size on the Performance of Species Distribution Models. Divers. Distrib. 2008, 14, 763–773. [Google Scholar] [CrossRef]
- Nagaraju, S.K.; Gudasalamani, R.; Barve, N.; Ghazoul, J.; Narayanagowda, G.K.; Ramanan, U.S. Do Ecological Niche Model Predictions Reflect the Adaptive Landscape of Species? A Test Using Myristica Malabarica Lam., an Endemic Tree in the Western Ghats, India. PLoS ONE 2013, 8, e82066. [Google Scholar] [CrossRef] [PubMed]
- Khadka, K.K.; James, D.A. Modeling and Mapping the Current and Future Climatic-Niche of Endangered Himalayan Musk Deer. Ecol. Inform. 2017, 40, 1–7. [Google Scholar] [CrossRef]
- Pearson, R.G.; Raxworthy, C.J.; Nakamura, M.; Townsend Peterson, A. Predicting Species Distributions from Small Numbers of Occurrence Records: A Test Case Using Cryptic Geckos in Madagascar. J. Biogeogr. 2006, 34, 102–117. [Google Scholar] [CrossRef]
- Thorn, J.S.; Nijman, V.; Smith, D.; Nekaris, K.A.I. Ecological Niche Modelling as a Technique for Assessing Threats and Setting Conservation Priorities for Asian Slow Lorises (Primates: Nycticebus). Divers. Distrib. 2009, 15, 289–298. [Google Scholar] [CrossRef]
- Raxworthy, C.J.; Ingram, C.M.; Rabibisoa, N.; Pearson, R.G. Applications of Ecological Niche Modeling for Species Delimitation: A Review and Empirical Evaluation Using Day Geckos (Phelsuma) from Madagascar. Syst. Biol. 2007, 56, 907–923. [Google Scholar] [CrossRef] [Green Version]
- Sellers, P.J.; Mintz, Y.; Sud, Y.E.A.; Dalcher, A. A Simple Biosphere Model (SiB) for Use within General Circulation Models. J. Atmos. Sci. 1986, 43, 505–531. [Google Scholar] [CrossRef]
- Loveland, T.R.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; Zhu, Z.; Yang, L.; Merchant, J.W. Development of a Global Land Cover Characteristics Database and IGBP DISCover from 1 Km AVHRR Data. Int. J. Remote Sens. 2000, 21, 1303–1330. [Google Scholar] [CrossRef]
- Petitpierre, B.; McDougall, K.; Seipel, T.; Broennimann, O.; Guisan, A.; Kueffer, C. Will Climate Change Increase the Risk of Plant Invasions into Mountains? Ecol. Appl. 2016, 26, 530–544. [Google Scholar] [CrossRef]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J. Collinearity: A Review of Methods to Deal with It and a Simulation Study Evaluating Their Performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Raxworthy, C.J.; Martinez-Meyer, E.; Horning, N.; Nussbaum, R.A.; Schneider, G.E.; Ortega-Huerta, M.A.; Peterson, A.T. Predicting Distributions of Known and Unknown Reptile Species in Madagascar. Nature 2003, 426, 837–841. [Google Scholar] [CrossRef] [PubMed]
- Rödder, D.; Lötters, S. Niche Shift versus Niche Conservatism? Climatic Characteristics of the Native and Invasive Ranges of the Mediterranean House Gecko (Hemidactylus Turcicus). Glob. Ecol. Biogeogr. 2009, 18, 674–687. [Google Scholar] [CrossRef]
- Hanberry, B.B.; He, H.S. Prevalence, Statistical Thresholds, and Accuracy Assessment for Species Distribution Models. Web Ecol. 2013, 13, 13–19. [Google Scholar] [CrossRef]
- Thapa, S.; Chitale, V.; Rijal, S.J.; Bisht, N.; Shrestha, B.B. Understanding the Dynamics in Distribution of Invasive Alien Plant Species under Predicted Climate Change in Western Himalaya. PLoS ONE 2018. [Google Scholar] [CrossRef] [PubMed]
- Cunze, S.; Heydel, F.; Tackenberg, O. Are Plant Species Able to Keep Pace with the Rapidly Changing Climate? PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [PubMed]
- Beck, J.; Böller, M.; Erhardt, A.; Schwanghart, W. Spatial Bias in the GBIF Database and Its Effect on Modeling Species’ Geographic Distributions. Ecol. Inform. 2014, 19, 10–15. [Google Scholar] [CrossRef]
- Turbelin, A.J.; Malamud, B.D.; Francis, R.A. Mapping the Global State of Invasive Alien Species: Patterns of Invasion and Policy Responses. Glob. Ecol. Biogeogr. 2017, 26, 78–92. [Google Scholar] [CrossRef]
- Araújo, M.B.; Guisan, A. Five (or so) Challenges for Species Distribution Modelling. J. Biogeogr. 2006, 33, 1677–1688. [Google Scholar] [CrossRef]
- Narouei-Khandan, H.A.; Halbert, S.E.; Worner, S.P.; van Bruggen, A.H.C. Global Climate Suitability of Citrus Huanglongbing and Its Vector, the Asian Citrus Psyllid, Using Two Correlative Species Distribution Modeling Approaches, with Emphasis on the USA. Eur. J. Plant Pathol. 2016, 144, 655–670. [Google Scholar] [CrossRef]
- Engemann, K.; Enquist, B.J.; Sandel, B.; Boyle, B.; Jørgensen, P.M.; Morueta-Holme, N.; Peet, R.K.; Violle, C.; Svenning, J.C. Limited Sampling Hampers “Big Data” Estimation of Species Richness in a Tropical Biodiversity Hotspot. Ecol. Evol. 2015, 5, 807–820. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Newell, G.; White, M. On the Selection of Thresholds for Predicting Species Occurrence with Presence-Only Data. Ecol. Evol. 2016, 6, 337–348. [Google Scholar] [CrossRef] [PubMed]
- Bean, W.T.; Stafford, R.; Brashares, J.S. The Effects of Small Sample Size and Sample Bias on Threshold Selection and Accuracy Assessment of Species Distribution Models. Ecography 2012, 35, 250–258. [Google Scholar] [CrossRef]
- Liu, C.; White, M.; Newell, G. Selecting Thresholds for the Prediction of Species Occurrence with Presence-only Data. J. Biogeogr. 2013, 40, 778–789. [Google Scholar] [CrossRef]
- Rota, C.T.; Fletcher, R.J.; Evans, J.M.; Hutto, R.L. Does Accounting for Imperfect Detection Improve Species Distribution Models? Ecography 2011, 34, 659–670. [Google Scholar] [CrossRef]
- Uden, D.R.; Allen, C.R.; Angeler, D.G.; Corral, L.; Fricke, K.A. Adaptive Invasive Species Distribution Models: A Framework for Modeling Incipient Invasions. Biol. Invasions 2015, 17, 2831–2850. [Google Scholar] [CrossRef]
- Roger, E.; Duursma, D.E.; Downey, P.O.; Gallagher, R.V.; Hughes, L.; Steel, J.; Johnson, S.B.; Leishman, M.R. A Tool to Assess Potential for Alien Plant Establishment and Expansion under Climate Change. J. Environ. Manag. 2015, 159, 121–127. [Google Scholar] [CrossRef]
- Jarnevich, C.S.; Stohlgren, T.J. Near Term Climate Projections for Invasive Species Distributions. Biol. Invasions 2009, 11, 1373–1379. [Google Scholar] [CrossRef]
Distance (km) | World | NZ | ||
---|---|---|---|---|
No. of Samples | AUC | No. of Samples | AUC | |
1 | 3564 | 0.919 | 216 | 0.915 |
5 | 1232 | 0.934 | 127 | 0.914 |
10 | 1147 | 0.927 | 97 | 0.896 |
20 | 867 | 0.937 | 74 | 0.860 |
50 | 467 | 0.947 | 46 | 0.832 |
100 | 274 | 0.951 | 28 | 0.821 |
Layer | Climatic Variable | Minimum | Maximum | Mean | Standard Error | Standard Deviation |
---|---|---|---|---|---|---|
*BIO1 | Annual Mean Temperature | 1.594 | 27.354 | 13.991 | 0.160 | 4.125 |
*BIO2 | Mean Diurnal Range (Mean of monthly (max temperature–min temperature)) | 4.863 | 18.540 | 9.700 | 0.102 | 2.634 |
BIO3 | Isothermality (BIO2/BIO7) (* 100) | 0.239 | 0.913 | 0.482 | 0.006 | 0.152 |
BIO4 | Temperature Seasonality (standard deviation * 100) | 0.001 | 0.029 | 0.013 | 0.000 | 0.006 |
BIO5 | Max Temperature of Warmest Month | 13.400 | 37.236 | 24.955 | 0.151 | 3.906 |
BIO6 | Min Temperature of Coldest Month | −9.371 | 19.048 | 4.138 | 0.182 | 4.702 |
BIO7 | Temperature Annual Range (BIO5–BIO6) | 8.587 | 35.222 | 20.809 | 0.165 | 4.270 |
BIO8 | Mean Temperature of Wettest Quarter | −3.399 | 29.053 | 13.334 | 0.227 | 5.867 |
BIO9 | Mean Temperature of Driest Quarter | −5.387 | 26.571 | 14.703 | 0.230 | 5.936 |
BIO10 | Mean Temperature of Warmest Quarter | 8.780 | 29.130 | 18.830 | 0.128 | 3.291 |
BIO11 | Mean Temperature of Coldest Quarter | −5.392 | 26.286 | 9.213 | 0.217 | 5.604 |
*BIO12 | Annual Precipitation | 134.000 | 4330.000 | 1102.018 | 21.867 | 564.320 |
BIO13 | Precipitation of Wettest Month | 6.894 | 169.847 | 36.987 | 0.946 | 24.404 |
BIO14 | Precipitation of Driest Month | 0.000 | 64.178 | 9.243 | 0.269 | 6.938 |
*BIO15 | Precipitation Seasonality (Coefficient of Variation) | 0.067 | 1.258 | 0.411 | 0.011 | 0.284 |
BIO16 | Precipitation of Wettest Quarter | 78.355 | 1852.770 | 431.371 | 10.458 | 269.901 |
BIO17 | Precipitation of Driest Quarter | 0.629 | 949.616 | 142.521 | 3.829 | 98.828 |
BIO18 | Precipitation of Warmest Quarter | 4.765 | 1278.280 | 268.646 | 7.392 | 190.758 |
BIO19 | Precipitation of Coldest Quarter | 17.143 | 951.106 | 238.663 | 6.082 | 156.966 |
Variable | Percent Contribution | Permutation Importance | Response of Model to Variable | |
---|---|---|---|---|
Model with all Variables | Model with Only the Corresponding Variable | |||
Population | 46 | 10.5 | ||
Land Cover | 22.7 | 26 | ||
BIO1 | 17.3 | 35.9 | ||
Elevation | 9.7 | 13.8 | ||
BIO15 | 2.7 | 4.2 | ||
BIO2 | 1.4 | 7.2 | ||
BIO12 | 0.3 | 2.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hannah, L.; Aguilar, G.; Blanchon, D. Spatial Distribution of the Mexican Daisy, Erigeron karvinskianus, in New Zealand under Climate Change. Climate 2019, 7, 24. https://doi.org/10.3390/cli7020024
Hannah L, Aguilar G, Blanchon D. Spatial Distribution of the Mexican Daisy, Erigeron karvinskianus, in New Zealand under Climate Change. Climate. 2019; 7(2):24. https://doi.org/10.3390/cli7020024
Chicago/Turabian StyleHannah, Lauren, Glenn Aguilar, and Dan Blanchon. 2019. "Spatial Distribution of the Mexican Daisy, Erigeron karvinskianus, in New Zealand under Climate Change" Climate 7, no. 2: 24. https://doi.org/10.3390/cli7020024
APA StyleHannah, L., Aguilar, G., & Blanchon, D. (2019). Spatial Distribution of the Mexican Daisy, Erigeron karvinskianus, in New Zealand under Climate Change. Climate, 7(2), 24. https://doi.org/10.3390/cli7020024