Past and Future Precipitation Trend Analysis for the City of Niamey (Niger): An Overview
Abstract
:1. Introduction
2. Materials and Method
2.1. Study Area
2.2. Climatological Dataset
2.3. Methods
2.3.1. RClimdex
2.3.2. Standardized Precipitation Index
3. Results and Discussion
3.1. Choice of the NAD-M Ensemble
3.2. RClimdex
3.3. SPI
3.4. Future Projections
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Le Barbé, L.; Lebel, T.; Tapsoba, D. Rainfall variability in West Africa during the years 1950–1990. J. Clim. 2002, 15, 187–202. [Google Scholar] [CrossRef]
- Lebel, T.; Ali, A. Recent trends in the Central and Western Sahel rainfall regime (1990–2007). J. Hydrol. 2009, 375, 52–64. [Google Scholar] [CrossRef]
- Siebert, A.; Ward, M.N. Exploring the frequency of hydroclimate extremes on the River Niger using historical data analysis and Monte Carlo methods. Afr. Geogr. Rev. 2013, 33, 124–149. [Google Scholar] [CrossRef]
- Lebel, T.; Cappelaere, B.; Galle, S.; Hanan, N.; Kergoat, L.; Levis, S.; Vieux, B.; Descroix, L.; Gosset, M.; Mougin, E.; et al. AMMA-CATCH studies in the Sahelian region of West-Africa: An overview. J. Hydrol. 2009, 375, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, S.E. On the question of the “recovery” of the rains in the West African Sahel. J. Arid Environ. 2005, 63, 615–641. [Google Scholar] [CrossRef]
- Descroix, L.; Mahé, G.; Lebel, T.; Favreau, G.; Galle, S.; Gautier, E.; Olivry, J.C.; Albergel, J.; Amogu, O.; Cappelaere, B.; et al. Spatio-temporal variability of hydrological regimes around the boundaries between Sahelian and Sudanian areas of West Africa: A synthesis. J. Hydrol. 2009, 375, 90–102. [Google Scholar] [CrossRef]
- Le Barbé, L.; Lebel, T. Rainfall climatology of the HAPEX-Sahel region during the years 1950–1990. J. Hydrol. 1997, 188, 43–73. [Google Scholar] [CrossRef]
- L’Hote, Y.; Mahe, G.; Some, B. The 1990s rainfall in the Sahel: The third driest decade since the beginning of the century. Hydrol. Sci. J. 2003, 48, 493–496. [Google Scholar] [CrossRef]
- L’Hôte, Y.; Mahé, G.; Somé, B.; Triboulet, J.P. Analysis of a Sahelian annual rainfall index from 1896 to 2000; the drought continues. Hydrol. Sci. J. 2002, 47, 563–572. [Google Scholar] [CrossRef] [Green Version]
- Mahé, G.; Paturel, J.E. 1896–2006 Sahelian annual rainfall variability and runoff increase of Sahelian Rivers. C. R. Geosci. 2009, 341, 538–546. [Google Scholar] [CrossRef]
- Nicholson, S.E. The West African Sahel: A review of recent studies on the rainfall regime and its interannual variability. ISRN Meteorol. 2013, 2013. [Google Scholar] [CrossRef]
- Messager, C.; Gallée, H.; Brasseur, O.; Cappelaere, B.; Peugeot, C.; Séguis, L.; Vauclin, M.; Ramel, R.; Grasseau, G.; Léger, L.; et al. Influence of observed and RCM-simulated precipitation on the water discharge over the Sirba basin, Burkina Faso/Niger. Clim. Dyn. 2006, 27, 199–214. [Google Scholar] [CrossRef]
- Ali, A.; Amani, A.; Diedhiou, A.; Lebel, T. Rainfall estimation in the Sahel. Part II: Evaluation of rain gauge networks in the CILSS countries and objective intercomparison of rainfall products. J. Appl. Meteorol. 2005, 44, 1707–1722. [Google Scholar] [CrossRef]
- Terhune, A. Damaging rainfall and flooding: The other Sahel Hazards. Clim. Chang. 2005, 72, 355–377. [Google Scholar] [CrossRef]
- Panthou, G.; Vischel, T.; Lebel, T. Recent trends in the regime of extreme rainfall in the Central Sahel. Int. J. Climatol. 2014, 34, 3998–4006. [Google Scholar] [CrossRef] [Green Version]
- Mouhamed, L.; Traore, S.B.; Alhassane, A.; Sarr, B. Evolution of some observed climate extremes in the West African Sahel. Weather Clim. Extremes 2013, 1, 19–25. [Google Scholar] [CrossRef]
- Ozer, P.; Houstonian, Y.; Manzo, O.L. Evolution des caractéristiques pluviométriques dans l’est du Niger de 1940 à 2007. Geo-Eco-Trop 2009, 33, 11–30. [Google Scholar]
- Ali, A.; Lebel, T. The Sahelian standardized rainfall index revisited. Int. J. Climatol. 2009, 29, 1705–1714. [Google Scholar] [CrossRef] [Green Version]
- Barry, A.A.; Caesar, J.; Klein Tank, A.M.; Aguilar, E.; McSweeney, C.; Cyrille, A.M.; Nikiema, M.P.; Narcisse, K.B.; Sima, F.; Stafford, G.; et al. West Africa climate extremes and climate change indices. Int. J. Climatol. 2018, 38, 921–938. [Google Scholar] [CrossRef]
- Oguntunde, P.G.; Lischeid, G.; Abiodun, B.J. Impacts of climate variability and change on drought characteristics in the Niger River Basin, West Africa. Stoch. Environ. Res. Risk Assess. 2018, 32, 1017–1034. [Google Scholar] [CrossRef]
- Lebel, T.; Taupin, J.D.; D’Amato, N. Rainfall monitoring during the HAPEX-Sahel. 1. General rainfall conditions and climatology. J. Hydrol. 1997, 188, 74–96. [Google Scholar] [CrossRef]
- Shinoda, M.; Okatani, T.; Salomoun, M. Diurnal variations of rainfall over Niger in the West African Sahel: A comparison between wet and drought years. Int. J. Climatol. 1999, 19, 81–94. [Google Scholar] [CrossRef]
- Casse, C.; Gosset, M.; Peugeot, C.; Pedinotti, V.; Boone, A.; Tanimoun, B.A.; Decharme, B. Potential of satellite rainfall products to predict Niger River flood events in Niamey. Atmos. Res. 2015, 163, 162–176. [Google Scholar] [CrossRef]
- Casse, C.; Gosset, M.; Vischel, T.; Quantin, G.; Tanimoun, B.A. Model-based study of the role of rainfall and land use–land cover in the changes in the occurrence and intensity of Niger red floods in Niamey between 1953 and 2012. Hydrol. Earth Syst. Sci. 2016, 20, 2841–2859. [Google Scholar] [CrossRef] [Green Version]
- Karl, T.R.; Nicholls, N.; Ghazi, A. Clivar/GCOS/WMO workshop on indices and indicators for climate extremes workshop summary in Weather and Climate Extremes. Clim. Chang. 1999, 42, 3–7. [Google Scholar] [CrossRef]
- Peterson, T.; Folland, C.; Gruza, G.; Hogg, W.; Mokssit, A.; Plummer, N. Report on the Activities of the Working Group on Climate Change Detection and Related Rapporteurs; World Meteorological Organization: Geneva, Switzerland, 2001. [Google Scholar]
- Svoboda, M.; Hayes, M.; Wood, D. Standardized Precipitation Index User Guide; World Meteorological Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Guttman, N.B. Accepting the standardized precipitation index: A calculation algorithm. JAWRA J. Am. Water Resour. Assoc. 1999, 35, 311–322. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scale. In Proceedings of the Eighth Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; American Meteorological Society: Boston, MA, USA, 1993; pp. 179–184. [Google Scholar]
- Leauthaud, C.; Cappelaere, B.; Demarty, J.; Guichard, F.; Velluet, C.; Kergoat, L.; Vischel, T.; Grippa, M.; Mouhaimouni, M.; Bouzou Moussa, I.; et al. A 60-year reconstructed high-resolution local meteorological data set in Central Sahel (1950–2009): Evaluation, analysis and application to land surface modelling. Int. J. Climatol. 2017, 37, 2699–2718. [Google Scholar] [CrossRef]
- A 60-Year Reconstructed High-Resolution Local Meteorological Dataset in Central Sahel (1950–2009). Available online: http://www.amma-catch.org/spip.php?article240&lang=fr (accessed on 30 July 2017).
- Barbier, J.; Guichard, F.; Bouniol, D.; Couvreux, F.; Roehrig, R. Detection of Intraseasonal Large-Scale Heat Waves: Characteristics and Historical Trends during the Sahelian Spring. J. Clim. 2018, 31, 61–80. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- EU WATCH-Data Availability. Available online: http://www.eu-watch.org/data_availability (accessed on 7 May 2018).
- ETCCDI/CRD Climate Change Indices-Software. Available online: http://etccdi.pacificclimate.org/software.shtml (accessed on 12 October 2017).
- WMO. Technical Regulations, Basic Documents No. 2, Volume I, General Meteorological Standards and Recommended Practices; Updated in 2017; WMO: Geneva, Switzerland, 2015; ISBN 978-92-63-10049-8. [Google Scholar]
- Murphy, A.H.; Brown, B.G.; Chen, Y. Diagnostic verification of temperature forecasts. Weather Forecast. 1989, 4, 485–501. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 1st ed.; Academic Press: San Diego, CA, USA, 1995; ISBN 0-12-751965-3. [Google Scholar]
- Ready to Use Future Climate Information. Available online: https://theclimatedatafactory.com/ (accessed on 30 April 2017).
- Agnew, C.T. Using the SPI to identify drought. Drought Netw. News 2000, 12, 6–12. [Google Scholar]
- Vrac, M.; Noël, T.; Vautard, R. Bias correction of precipitation through Singularity Stochastic Removal: Because occurrences matter. J. Geophys. Res. Atmos. 2016, 121, 5237–5258. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report; Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Barros, V.R.; Field, C.B.; Dokken, D.J.; Mastrandrea, M.D.; Mach, K.J.; Bilir, T.E.; Chatterjee, M.; Ebi, K.L.; Estrada, Y.O.; Genova, R.C.; et al. Climate Change 2014: Impacts, Adaptation, and Vulnerability Part. B: Regional Aspects; Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; p. 688. [Google Scholar]
- Vizy, E.K.; Cook, K.H. Mid-twenty-first-century changes in extreme events over northern and tropical Africa. J. Clim. 2012, 25, 5748–5767. [Google Scholar] [CrossRef]
- Mahe, G.; Paturel, J.E.; Servat, E.; Conway, D.; Dezetter, A. The impact of land use change on soil water holding capacity and river flow modelling in the Nakambe River, Burkina-Faso. J. Hydrol. 2005, 300, 33–43. [Google Scholar] [CrossRef]
- Sighomnou, D.; Descroix, L.; Genthon, P.; Mahé, G.; Moussa, I.B.; Gautier, E.; Mamadou, I.; Vandervaere, J.P.; Bachir, T.; Coulibaly, B.; et al. La crue de 2012 à Niamey: Un paroxysme du paradoxe du Sahel? Sécheresse 2013, 24, 3–13. [Google Scholar] [CrossRef]
- Aich, V.; Liersch, S.; Vetter, T.; Andersson, J.; Müller, E.N.; Hattermann, F.F. Climate or land use?—Attribution of changes in river flooding in the Sahel Zone. Water 2015, 7, 2796–2820. [Google Scholar] [CrossRef]
Year of Publication | Author | Major Findings | Study Area | Study Period |
---|---|---|---|---|
1997 | [21] Lebel et al. | Study of rainfall and climatic conditions | Niamey | 1990–1993 |
1997 | [7] Le Barbè and Lebel | Rainfall pattern analysis | Niamey | 1950–1990 |
1999 | [22] Shinoda et al. | Comparative study of the diurnal variations of 3-hourly rainfall | Niamey | 1950s–1990s |
2003 | [8] L’Hote et al. | Decrease in mean annual rainfall | Sahel | 1970s–1990s |
2005 | [5] Nicholson | Rainfall increase, wetter condition in West Sahel | West Sahel | 1998–2003 |
2009 | [17] Ozer et al. | Decreasing trend in total precipitation and extreme precipitations | Republic of Niger | 1940–2007 |
2009 | [18] Ali and Lebel | Probable existence of an east-west gradient (higher proportion of wet days in East Niger over the period) | Republic of Niger | 1993–2006 |
2018 | [19] Barry et al. | Decrease in total precipitation | West Africa | 1960–2010 |
2018 | [20] Oguntunde et al. | Increased number of heavy and very heavy events and future projections until 2100 | Niger River Basin | 1986–2005 |
ID | Indicator Name | Unit |
---|---|---|
RX1day | Max. 1-day precipitation amount. Monthly maximum 1-day precipitation. | mm |
Rx5day | Max. 5-day precipitation amount. Monthly maximum consecutive 5-day precipitation. | mm |
SDII | Simple daily intensity index. Annual total precipitation divided by the number of wet days (defined as PRCP ≥ 1.0 mm) in the year. | mm/day |
R10 | Number of heavy precipitation days. Annual count of days when PRCP ≥ 10 mm. | Days |
R20 | Number of very heavy precipitation day. Annual count of days when PRCP ≥ 20 mm. | Days |
Rnn | Number of days above nn (50, 100, 150) mm. Annual count of days when PRCP ≥ nn mm, nn is user defined threshold. | Days |
CDD | Consecutive dry days. Maximum number of consecutive days with RR < 1 mm. | Days |
CWD | Consecutive wet days. Maximum number of consecutive days with RR ≥ 1 mm. | Days |
R95p | Very wet days. Annual total PRCP when RR > 95th percentile. | mm |
R99p | Extremely wet days. Annual total PRCP when RR > 99th percentile. | mm |
PRCPTOT | Annual total wet-day precipitation. Annual total PRCP in wet days (RR ≥ 1 mm). | mm |
SPI Values | |
---|---|
2.0+ | Extremely wet |
1.5 to 1.99 | Very wet |
1.0 to 1.49 | Moderately wet |
−0.99 to 0.99 | Near normal |
−1.0 to −1.49 | Moderately dry |
−1.5 to −1.99 | Very dry |
−2.0 and less | Extremely dry |
Correlation | MSE | RMSE | Identity | ||||||
---|---|---|---|---|---|---|---|---|---|
Rank | Rank | Rank | True | False | Rank | ||||
NAD-M_1 | 0.6631 | 7 | 25.1712 | 7 | 5.0171 | 7 | 9339 | 1619 | 3 |
NAD-M_2 | 0.6771 | 4 | 23.9598 | 4 | 4.8949 | 4 | 9340 | 1618 | 2 |
NAD-M_3 | 0.6411 | 9 | 26.8923 | 9 | 5.1858 | 9 | 9315 | 1643 | 7 |
NAD-M_4 | 0.6299 | 10 | 28.7196 | 10 | 5.3591 | 10 | 9313 | 1645 | 9 |
NAD-M_5 | 0.6828 | 2 | 23.4805 | 3 | 4.8457 | 3 | 9309 | 1649 | 10 |
NAD-M_6 | 0.6717 | 6 | 24.7032 | 6 | 4.9702 | 6 | 9324 | 1634 | 5 |
NAD-M_7 | 0.6540 | 8 | 25.9240 | 8 | 5.0916 | 8 | 9314 | 1644 | 8 |
NAD-M_8 | 0.6823 | 3 | 23.3331 | 2 | 4.8304 | 2 | 9320 | 1638 | 6 |
NAD-M_9 | 0.6844 | 1 | 23.3269 | 1 | 4.8298 | 1 | 9335 | 1623 | 4 |
NAD-M_10 | 0.6768 | 5 | 24.2649 | 5 | 4.9259 | 5 | 9348 | 1610 | 1 |
DMN | NAD-M_9 | WFDEI | |
---|---|---|---|
MEAN VALUE [mm] | 513.8433 | 515.8333 | 458.2303 |
MAX VALUE [mm] | 816.6 | 855.9 | 720.4756 |
MIN VALUE [mm] | 293.8 | 292 | 287.6057 |
25th PERCENTILE [mm] | 425.775 | 401.55 | 386.1046 |
75th PERCENTILE [mm] | 606.125 | 611.85 | 516.0072 |
50th PERCENTILE [mm] | 502.8 | 504.8 | 448.3169 |
STANDARD DEVIATION [mm] | 116.391 | 126.0978 | 94.37051 |
CORRELATION (with DMN dataset) | 0.905741 | 0.914621 |
RX1day | Rx5day | SDII | R10 | R20 | R30 | R40 | R50 | CDD | CWD | R95p | R99p | PTOT | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1950–2009 (A) | −0.249 | −0.365 | −0.002 | −0.05 | −0.039 | −0.039 | −0.012 | −0.004 | 0.414 | −0.02 | −0.664 | −0.346 | −2.29 |
1980–2009 (B) | 0.565 | 1.215 | 0.111 | 0.073 | 0.127 | 0.079 | 0.052 | 0.027 | 0.259 | −0.036 | 2285 | 0.345 | 4.316 |
Coherent trend between case A and case B | + | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bigi, V.; Pezzoli, A.; Rosso, M. Past and Future Precipitation Trend Analysis for the City of Niamey (Niger): An Overview. Climate 2018, 6, 73. https://doi.org/10.3390/cli6030073
Bigi V, Pezzoli A, Rosso M. Past and Future Precipitation Trend Analysis for the City of Niamey (Niger): An Overview. Climate. 2018; 6(3):73. https://doi.org/10.3390/cli6030073
Chicago/Turabian StyleBigi, Velia, Alessandro Pezzoli, and Maurizio Rosso. 2018. "Past and Future Precipitation Trend Analysis for the City of Niamey (Niger): An Overview" Climate 6, no. 3: 73. https://doi.org/10.3390/cli6030073