Barley, Canola and Spring Wheat Yield Throughout the Canadian Prairies Under the Effect of Climate Change
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Decision Support System for Agrotechnology Transfer
2.3. Model Performance Evaluation
2.4. Statistical Evaluation Method
2.5. Agroclimatic Indices
2.6. NEX-GDDP-CMIP6
3. Results
3.1. Projected Tmax, Tmin and Precipitation Changes
3.2. Projected Changes in Agroclimatic Indices
3.3. DSSAT Model Calibration and Validation
3.4. Impacts of Future Climate Change on Crop Yield
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mapfumo, E.; Chanasyk, D.S.; Puurveen, D.; Elton, S.; Acharya, S. Historic climate change trends and impacts on crop yields in key agricultural areas of the Prairie Provinces in Canada: A literature review. Can. J. Plant Sci. 2015, 95, 1041–1056. [Google Scholar] [CrossRef]
- Garofalo, P.; Ventrella, D.; Kersebaum, K.C.; Gobin, A.; Trnka, M.; Giglio, L.; Dubrovský, M.; Castellini, M. Water footprint of winter wheat under climate change: Trends and uncertainties associated to the ensemble of crop models. Sci. Total Environ. 2019, 658, 1186–1208. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Gedney, N.; Cox, P.M.; Betts, R.A.; Boucher, O.; Huntingford, C.; Stott, P.A. Detection of a direct carbon dioxide effect in continental river runoff records. Nature 2006, 439, 835–838. [Google Scholar] [CrossRef] [PubMed]
- Morison, J.I. Intercellular CO2 concentration and stomatal response to CO2. In Stomatal Function; Zeiger, E., Farquhar, G.D., Cowan, I.R., Eds.; Stanford University Press: Stanford, CA, USA, 1987; pp. 229–252. [Google Scholar]
- Wand, S.J.E.; Midgley, G.F.; Jones, M.H.; Curtis, P.S. Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: A meta-analytic test of current theories and perceptions. Glob. Chang. Biol. 1999, 5, 723–741. [Google Scholar] [CrossRef]
- Piao, S.; Fang, J.; Zhou, L.; Ciais, P.; Zhu, B. Variations in satellite-derived phenology in China’s temperate vegetation. Glob. Chang. Biol. 2006, 12, 672–685. [Google Scholar] [CrossRef]
- Walther, G.-R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.C.; Fromentin, J.-M.; Hoegh-Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389–395. [Google Scholar] [CrossRef]
- Qian, B.; Gameda, S.; Zhang, X.; De Jong, R. Changing growing season observed in Canada. Clim. Change 2012, 112, 339–353. [Google Scholar] [CrossRef]
- Vincent, L.A.; Zhang, X.; Mekis, E.; Wan, H.; Bush, E.J. Changes in Canada’s climate: Trends in indices based on daily temperature and precipitation data. Atmos.-Ocean 2018, 56, 332–349. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Impacts, Adaptation and Vulnerability. In Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Asseng, S.; Martre, P.; Maiorano, A.; Rötter, R.P.; O’Leary, G.J.; Fitzgerald, G.J.; Girousse, C.; Motzo, R.; Giunta, F.; Babar, M.A.; et al. Climate change impact and adaptation for wheat protein. Glob. Chang. Biol. 2019, 25, 155–173. [Google Scholar] [CrossRef] [PubMed]
- Kheir, A.M.S.; El Baroudy, A.; Aiad, M.A.; Zoghdan, M.G.; Abd El-Aziz, M.A.; Ali, M.G.M.; Fullen, M.A. Impacts of rising temperature, carbon dioxide concentration and sea level on wheat production in North Nile delta. Sci. Total Environ. 2019, 651, 3161–3173. [Google Scholar] [CrossRef]
- Adekanmbi, T.; Wang, X.; Basheer, S.; Nawaz, R.A.; Pang, T.; Hu, Y.; Liu, S. Assessing future climate change impacts on potato yields—A case study for Prince Edward Island, Canada. Foods 2023, 12, 1176. [Google Scholar] [CrossRef]
- Zare, M.; Azam, S.; Sauchyn, D. Simulation of climate change impacts on crop yield in the Saskatchewan Grain Belt using an improved SWAT model. Agriculture 2023, 13, 2102. [Google Scholar] [CrossRef]
- Cabas, J.; Weersink, A.; Olale, E. Crop yield response to economic, site and climatic variables. Clim. Change 2010, 101, 599–616. [Google Scholar] [CrossRef]
- Guo, R.; Lin, Z.; Mo, X.; Yang, C. Responses of crop yield and water use efficiency to climate change in the North China Plain. Agric. Water Manag. 2010, 97, 1185–1194. [Google Scholar] [CrossRef]
- Challinor, A.J.; Watson, J.; Lobell, D.B.; Howden, S.M.; Smith, D.R.; Chhetri, N. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 2014, 4, 287–291. [Google Scholar] [CrossRef]
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie, J.T. The DSSAT cropping system model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- Sen, S. Impact of spatial soil variability on rainfed maize yield in Kansas under a changing climate. Agronomy 2023, 13, 1436. [Google Scholar] [CrossRef]
- Ngwira, A.R.; Aune, J.B.; Thierfelder, C. DSSAT modelling of conservation agriculture maize response to climate change in Malawi. Soil Tillage Res. 2014, 143, 85–94. [Google Scholar] [CrossRef]
- Tooley, B.; Fraser, E.D.G.; Staver, A.C. Predicting the response of a potato-grain production system to climate change for a humid continental climate using DSSAT. Agric. Syst. 2021, 192, 103174. [Google Scholar] [CrossRef]
- Qu, C.-H.; Li, X. xiang.; Ju, H.; Liu, Q. The impacts of climate change on wheat yield in the Huang-Huai-Hai Plain of China using DSSAT-CERES-Wheat model under different climate scenarios. J. Integr. Agric. 2019, 18, 1379–1391. [Google Scholar] [CrossRef]
- Gardi, M.W.; Assefa, T.T.; Tsegaye, D.; Tesfaye, K. Simulating the effect of climate change on barley yield in Ethiopia with the DSSAT-CERES-Barley model. Agronomy 2021, 11, 2253. [Google Scholar] [CrossRef]
- Harvey, C.; Rakotobe, Z.; Rao, N.; Dave, R.; Razafimahatratra, H.; Rabarijohn, R.; Rajaofara, H.; Mackinnon, J. Projections of spring wheat growth in Alaska: Opportunity and adaptations in a changing climate. Clim. Change 2021, 169, 19. [Google Scholar] [CrossRef]
- Bonsal, B.R.; Zhang, X.; Hogg, W.D. Canadian Prairie growing season precipitation variability and associated atmospheric circulation. Clim. Res. 1999, 11, 191–208. [Google Scholar] [CrossRef]
- Bonsal, B.R.; Wheaton, E.E. Atmospheric circulation comparisons between the 2001 and 2002 and the 1961 and 1988 Canadian Prairie droughts. Atmos.-Ocean 2005, 43, 163–172. [Google Scholar] [CrossRef]
- Jacques, J.-M.S.; Huang, Y.A.; Zhao, Y.; Lapp, S.L.; Sauchyn, D.J. Detection and attribution of variability and trends in streamflow records from the Canadian Prairie Provinces. Can. Water Resour. J. 2014, 39, 270–284. [Google Scholar] [CrossRef]
- Noorisameleh, Z.; Gough, W.A.; Mirza, M.M.Q. Spatial Variability of Summer Droughts and Heatwaves in Southern Canada. In Advances in Science, Technology & Innovation; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Yusa, A.; Berry, P.; Cheng, J.J.; Ogden, N.; Bonsal, B.; Stewart, R.; Waldick, R. Climate change, drought and human health in Canada. Int. J. Environ. Res. Public Health 2015, 12, 8359–8412. [Google Scholar] [CrossRef]
- Chipanshi, A.; Berry, M.; Zhang, Y.; Qian, B.; Steier, G. Agroclimatic Indices across the Canadian Prairies under a Changing Climate and Their Implications for Agriculture. Int. J. Climatol. 2022, 42, 2351–2367. [Google Scholar] [CrossRef]
- Liu, J.G.; Huffman, T.; Qian, B.D.; Shang, J.L.; Li, Q.M.; Dong, T.F.; Davidson, A.; Jing, Q. Crop yield estimation in the Canadian Prairies using Terra/MODIS-derived crop metrics. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2685–2697. [Google Scholar] [CrossRef]
- Jego, G.; Pattey, E.; Liu, J. Spring barley yield and potential northward expansion under climate change in Canada. Field Crops Res. 2023, 294, 108864. [Google Scholar] [CrossRef]
- Ritchie, J.T.; Singh, U.; Godwin, D.; Bowen, W.T. Cereal growth, development, and yield. In Understanding Options for Agricultural Production; Tsuji, G.Y., Hoogenboom, G., Thornton, P.K., Eds.; Kluwer Academic: Dordrecht, The Netherlands, 1998; pp. 79–98. [Google Scholar]
- Priestley, C.H.B.; Taylor, R.J. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Doorenbos, J.; Pruitt, W.O. Crop Water Requirements; FAO Irrigation and Drainage Paper No. 24 (rev.); FAO: Rome, Italy, 1977. [Google Scholar]
- Hunt, L.A.; Boot, K.J. Data for model operation, calibration and evaluation. In Understanding Options for Agricultural Production; Tsuji, G.Y., Hoogenboom, G., Thornton, P.K., Eds.; Kluwer Academic: Dordrecht, The Netherlands, 1998; pp. 9–39. [Google Scholar]
- Hunt, L.A.; Pararajasingham, S.; Jones, J.W.; Hoogenboom, G.; Imamura, D.T.; Ogoshi, R.M. GENCALC—Software to facilitate the use of crop models for analyzing field experiments. Agron. J. 1993, 85, 1090–1094. [Google Scholar] [CrossRef]
- Jing, Q.; Qian, B.; Shang, J.; Huffman, T.; Liu, J.; Pattey, E.; Drury, C.F.; Tremblay, N. Assessing the options to improve regional wheat yield in eastern Canada using the CSM–CERES–Wheat model. Agron. J. 2017, 109, 510–523. [Google Scholar] [CrossRef]
- Jing, Q.; Shang, J.; Huffman, T.; Qian, B.; Pattey, E.; Liu, J.; Dong, T.; Drury, C.F.; Tremblay, N. Using the CSM–CERES–Maize model to assess the gap between actual and potential yields of grain maize. J. Agric. Sci. 2016, 155, 239–260. [Google Scholar] [CrossRef]
- Jing, Q.; Huffman, T.; Shang, J.; Liu, J.; Pattey, E.; Drury, C.F.; Qian, B.; Tremblay, N. Evaluation of the CSM-CROPGRO-Canola model for simulating canola growth and yield at West Nipissing in eastern Canada. Agron. J. 2016, 108, 575–584. [Google Scholar] [CrossRef]
- Willmott, C.J. Some comments on the evaluation of model performance. Bull. Am. Meteorol. Soc. 1982, 63, 1309–1313. [Google Scholar] [CrossRef]
- Loague, K.M.; Freeze, R.A. A comparison of rainfall-runoff modelling techniques on small upland catchments. Water Resour. Res. 1985, 21, 229–248. [Google Scholar] [CrossRef]
- Yang, J.M.; Yang, J.Y.; Liu, S.; Hoogenboom, G. An evaluation of the statistical methods for testing the performance of crop models with observed data. Agric. Syst. 2014, 127, 81–89. [Google Scholar] [CrossRef]
- Liu, S.; Yang, J.Y.; Zhang, X.Y.; Drury, C.F.; Reynolds, W.D.; Hoogenboom, G. Modelling crop yield, soil water content and soil temperature for a soybean–maize rotation under conventional and conservation tillage systems in Northeast China. Agric. Water Manag. 2013, 123, 32–44. [Google Scholar] [CrossRef]
- Liu, S.; Yang, J.Y.; Drury, C.F.; Liu, H.L.; Reynolds, W.D. Simulating maize (Zea mays L.) growth and yield, soil nitrogen concentration, and soil water content for a long-term cropping experiment in Ontario, Canada. Can. J. Soil Sci. 2014, 94, 435–452. [Google Scholar] [CrossRef]
- Liu, S.; Yang, J.Y.; Yang, X.M.; Drury, C.F.; Jiang, R.; Reynolds, W.D. Simulating maize yield at county scale in southern Ontario using the decision support system for agrotechnology transfer model. Can. J. Soil Sci. 2021, 101, 734–748. [Google Scholar] [CrossRef]
- Olmstead, A.L.; Rhode, P.W. Adapting North American wheat production to climatic challenges, 1839–2009. Proc. Natl. Acad. Sci. USA 2011, 108, 480–485. [Google Scholar] [CrossRef] [PubMed]
- Pugh, T.A.M.; Müller, C.; Elliott, J.; Deryng, D.; Folberth, C.; Olin, S.; Schmid, E.; Arneth, A. Climate analogues suggest limited potential for intensification of production on current croplands under climate change. Nat. Commun. 2016, 7, 12608. [Google Scholar] [CrossRef]
- Su, B.; Huang, J.L.; Fischer, T.; Wang, Y.J.; Kundzewicz, Z.W.; Zhai, J.Q.; Sun, H.M.; Wang, A.Q.; Zeng, X.F.; Wang, G.J.; et al. Drought losses in China might double between the 1.5 °C and 2.0 °C warming. Proc. Natl. Acad. Sci. USA 2018, 115, 10600–10605. [Google Scholar] [CrossRef]
- Qian, B.; Zhang, X.; Chen, K.; Feng, Y.; O’Brien, T. Observed long-term trends for agroclimatic conditions in Canada. J. Appl. Meteorol. Climatol. 2010, 49, 604–618. [Google Scholar] [CrossRef]
- Thrasher, B.; Wang, W.; Michaelis, A.; Melton, F.; Lee, T.; Nemani, R. NASA global daily downscaled projections, CMIP6. Sci. Data 2022, 9, 262. [Google Scholar] [CrossRef]
- Murali, G.; Iwamura, T.; Meiri, S.; Roll, U. Future temperature extremes threaten land vertebrates. Nature 2023, 615, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Min, S.K.; Zhang, X.; Sillmann, J.; Sandstad, M. Evaluation of the CMIP6 multi-model ensemble for climate extreme indices. Weather Clim. Extrem. 2020, 29, 100269. [Google Scholar] [CrossRef]
- Eyring, V.; Cox, P.M.; Flato, G.M.; Gleckler, P.J.; Abramowitz, G.; Caldwell, P.; Collins, W.D.; Gier, B.K.; Hall, A.D.; Hofman, F.M.; et al. Taking climate model evaluation to the next level. Nat. Clim. Change 2019, 9, 102–110. [Google Scholar] [CrossRef]
- Maurer, E.; Hidalgo, H. Utility of daily vs. monthly large-scale climate data: An intercomparison of two statistical downscaling methods. Hydrol. Earth Syst. Sci. Discuss. 2008, 4, 3413–3440. [Google Scholar] [CrossRef]
- Thrasher, B.; Maurer, E.P.; McKellar, C.; Duffy, P.B. Technical note: Bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrol. Earth Syst. Sci. 2012, 16, 3309–3314. [Google Scholar] [CrossRef]
- Wood, A.W.; Maurer, E.P.; Kumar, A.; Lettenmaier, D. Long-range experimental hydrologic forecasting for the eastern United States. J. Geophys. Res. 2002, 107, 4429. [Google Scholar] [CrossRef]
- Smith, W.N.; Grant, B.B.; Desjardins, R.L.; Kroebel, R.; Li, C.; Qian, B.; Worth, D.E.; McConkey, B.G.; Drury, C.F. Assessing the effects of climate change on crop production and GHG emissions in Canada. Agric. Ecosyst. Environ. 2013, 179, 139–150. [Google Scholar] [CrossRef]
- Wang, H.; He, Y.; Qian, B.D. Short communication: Climate change and biofuel wheat: A case study of southern Saskatchewan. Can. J. Plant Sci. 2012, 92, 421–425. [Google Scholar] [CrossRef]
- Qian, B.; De Jong, R.; Huffman, T.; Wang, H.; Yang, J. Projecting yield changes of spring wheat under future climate scenarios on the Canadian Prairies. Theor. Appl. Climatol. 2016, 123, 651–669. [Google Scholar] [CrossRef]
- Qian, B.; Zhang, X.; Smith, W.; Grant, B.; Jing, Q.; Cannon, A.J.; Neilsen, D.; McConkey, B.; Li, G.; Bonsal, B. Climate change impacts on Canadian yields of spring wheat, canola and maize for global warming levels of 1.5 °C, 2.0 °C, 2.5 °C and 3.0 °C. Environ. Res. Lett. 2019, 14, 074005. [Google Scholar] [CrossRef]
- Thompson, A.M.; Brown, R.A.; Rosenberg, N.J.; Izaurralde, R.C.; Benson, V. Climate change impacts for the conterminous USA: An integrated assessment Part 3. Dryland production of grain and forage crops. Clim. Change 2005, 69, 43–65. [Google Scholar] [CrossRef]
- Ko, J.; Ahuja, L.R.; Saseendran, S.; Green, T.R.; Ma, L.; Nielsen, D.C.; Walthall, C.L. Climate change impacts on dryland cropping systems in the Central Great Plains, USA. Clim. Change 2012, 111, 445–472. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Iglesias, A. The use of crop models for international climate change impact assessment. In Understanding Options for Agricultural Production; Tsuji, G.Y., Hoogenboom, G., Thornton, P.K., Eds.; Springer: Dordrecht, The Netherlands, 1998; pp. 267–292. [Google Scholar]
- Kutcher, H.R.; Warland, J.S.; Brandt, S.A. Temperature and precipitation effects on canola yields in Saskatchewan, Canada. Agric. For. Meteorol. 2010, 150, 161–165. [Google Scholar] [CrossRef]
Indicator | Meaning | Unit |
---|---|---|
TX30 | Days with max temp > 30 °C | Days |
TN18 | Days with min temp > 18 °C | Days |
TXc30 | Hot days in ≥3-day spells | Days |
TNc18 | Hot nights in ≥3-night spells | Days |
TXLc30 | Longest hot day spell | Days |
TNLc18 | Longest hot night spell | Days |
HDN | Days with both TX > 30 °C and TN > 18 °C | Days |
NFFD | Days between last spring and first fall frost | Days |
KFF | Degrees below 18 °C (heating season) | °C-day |
HDD | Degrees above 18 °C (cooling season) | °C-day |
Prep1 | Days with precipitation > 1 mm | Days |
≥10 mm Days | Days with precipitation ≥ 10 mm | Days |
P1D | Max 1-day precipitation | mm |
P5D | Max 5-day precipitation | mm |
P10D | Max 10-day precipitation | mm |
GSL | Length of crop growing season | Days |
CHU | Accumulated Crop Heat Units | Heat units |
EGDD | Accumulated effective GDD (base 10 °C) | °C-day |
No. | Model | Institution | Country |
---|---|---|---|
1 | ACCESS-ESM1-5 | CSIRO | Australia |
2 | BCC-CSM2-MR | Beijing Climate Center | China |
3 | CanESM5 | CCCma | Canada |
4 | CNRM-CM6-1 | CNRM | France |
5 | CMCC-CM2-SR5 | CMCC | Italy |
6 | EC-Earth3 | EC-Earth Consortium | Sweden |
7 | FGOALS-g3 | CAS | China |
8 | GFDL-CM4 | NOAA GFDL | USA |
9 | GFDL-ESM4 | NOAA GFDL | USA |
10 | GISS-E2-1-G | NASA GISS | USA |
11 | HadGEM3-GC31-LL | Met Office Hadley Centre | UK |
12 | INM-CM5-0 | INM | Russia |
13 | IPSL-CM6A-LR | IPSL | France |
14 | KACE-1-0-G | KMA | South Korea |
15 | KIOST-ESM | KIOST | South Korea |
16 | MIROC6 | JAMSTEC | Japan |
17 | MIROC-ES2L | JAMSTEC | Japan |
18 | MPI-ESM1-2-LR | Max Planck Institute | Germany |
19 | MRI-ESM2-0 | MRI | Japan |
20 | NorESM2-LM | Norwegian Climate Centre | Norway |
21 | UKESM1-0-LL | Met Office Hadley Centre | UK |
Agroclimatic Indices | 2015–2040 | 2041–2070 | 2071–2100 |
---|---|---|---|
TX30 (days) | 11 | 30 | 55 |
TN18 (days) | 4 | 16 | 41 |
TXc30 (days) | 2 | 3 | 4 |
TNc18 (days) | 0 | 2 | 4 |
TXLc30 (days) | 3 | 11 | 27 |
TNLc18 (days) | 1 | 4 | 13 |
HDN (days) | 1 | 6 | 24 |
NFFD (days) | 13 | 26 | 49 |
KFF (°C-day) | 3 | 8 | 11 |
HDD (°C-day) | −182 | −357 | −529 |
Prep1 (days) | 1 | 0 | −3 |
Very wet days (days) | 1 | 0 | 0 |
P1D (mm/day) | 2 | 2 | 3 |
P5D (mm/5 d) | 3 | 3 | 3 |
P10D (mm/10 d) | 4 | 3 | 4 |
GSL (days) | 13 | 28 | 44 |
CHU | 229 | 485 | 792 |
EGDD (°C-day) | 124 | 298 | 541 |
Crop | Period | Year | Yield (kg ha−1) | Statistical Performance | |||
---|---|---|---|---|---|---|---|
Observation | Simulation | d | EF | nRMSE | |||
Wheat CERES | Calibration | 1992–2010 | 2089 | 2316 | 0.73 | 0.17 | 20.15 |
Validation | 2011–2022 | 2548 | 2573 | 0.85 | 0.3 | 18.5 | |
Barley | Calibration | 2000–2011 | 3009 | 3358 | 0.77 | 0.25 | 19.9 |
Validation | 2012–2019 | 3504 | 3546 | 0.85 | 0.57 | 7.2 | |
Canola | Calibration | 1992–2010 | 1980 | 2098 | 0.8 | 0.03 | 13.6 |
Validation | 2011–2022 | 2564 | 2309 | 0.81 | 0.1 | 14.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zare, M.; Sauchyn, D.; Noorisameleh, Z. Barley, Canola and Spring Wheat Yield Throughout the Canadian Prairies Under the Effect of Climate Change. Climate 2025, 13, 179. https://doi.org/10.3390/cli13090179
Zare M, Sauchyn D, Noorisameleh Z. Barley, Canola and Spring Wheat Yield Throughout the Canadian Prairies Under the Effect of Climate Change. Climate. 2025; 13(9):179. https://doi.org/10.3390/cli13090179
Chicago/Turabian StyleZare, Mohammad, David Sauchyn, and Zahra Noorisameleh. 2025. "Barley, Canola and Spring Wheat Yield Throughout the Canadian Prairies Under the Effect of Climate Change" Climate 13, no. 9: 179. https://doi.org/10.3390/cli13090179
APA StyleZare, M., Sauchyn, D., & Noorisameleh, Z. (2025). Barley, Canola and Spring Wheat Yield Throughout the Canadian Prairies Under the Effect of Climate Change. Climate, 13(9), 179. https://doi.org/10.3390/cli13090179