The Range of Projected Change in Vapour Pressure Deficit Through 2100: A Seasonal and Regional Analysis of the CMIP6 Ensemble
Abstract
1. Introduction
2. Methods
2.1. Analysis
2.2. Model Selection
2.3. VPD Calculation
3. Results
3.1. VPD Difference by Regions
3.2. RH and Temperature Change by Region
3.3. Range of VPD Change Across Models
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wei, J.; Arnault, J.; Rummler, T.; Fersch, B.; Zhang, Z.; Olschewski, P.; Laux, P.; Dong, N.; Yang, Q.; Xing, Z.; et al. Acceleration of the Hydrological Cycle under Global Warming for the Poyang Lake Basin in Southeast China: An Age-Weighted Regional Water Tagging Approach. J. Hydrometeorol. 2024, 25, 1627–1647. [Google Scholar] [CrossRef]
- Wang, Y.; Meili, N.; Fatichi, S. Evidence and Controls of the Acceleration of the Hydrological Cycle Over Land. Water Resour. Res. 2023, 59, e2022WR033970. [Google Scholar] [CrossRef]
- Dai, A. Hydroclimatic trends during 1950–2018 over global land. Clim. Dyn. 2021, 56, 4027–4049. [Google Scholar] [CrossRef]
- Bolan, S.; Padhye, L.P.; Jasemizad, T.; Govarthanan, M.; Karmegam, N.; Wijesekara, H.; Amarasiri, D.; Hou, D.; Zhou, P.; Biswal, B.K.; et al. Impacts of climate change on the fate of contaminants through extreme weather events. Sci. Total. Environ. 2024, 909, 168388. [Google Scholar] [CrossRef]
- Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Chang. 2013, 3, 52–58. [Google Scholar] [CrossRef]
- Thompson, J.E.; Paluch, A.S. Revisiting the Clausius/Clapeyron Equation and the Cause of Linearity. Thermo 2023, 3, 412–423. [Google Scholar] [CrossRef]
- Rao, K.; Williams, A.P.; Diffenbaugh, N.S.; Yebra, M.; Konings, A.G. Plant-water sensitivity regulates wildfire vulnerability. Nat. Ecol. Evol. 2022, 6, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Novick, K.A.; Ficklin, D.L.; Grossiord, C.; Konings, A.G.; Martínez-Vilalta, J.; Sadok, W.; Trugman, A.T.; Williams, A.P.; Wright, A.J.; Abatzoglou, J.T.; et al. The Impacts of Rising Vapour Pressure Deficit in Natural and Managed Ecosystems. Plant Cell Environ. 2024, 47, 3561–3589. [Google Scholar] [CrossRef]
- Wen, R.; Qin, M.; Jiang, P.; Yang, F.; Liu, B.; Zhu, M.; Fang, Y.; Tian, Y.; Shang, B. Vegetation and Evapotranspiration Responses to Increased Atmospheric Vapor Pressure Deficit across the Global Forest. Atmosphere 2024, 15, 408. [Google Scholar] [CrossRef]
- Kala, C.P. Environmental and socioeconomic impacts of forest fires: A call for multilateral cooperation and management interventions. Nat. Hazards Res. 2023, 3, 286–294. [Google Scholar] [CrossRef]
- Wasserman, T.N.; Mueller, S.E. Climate influences on future fire severity: A synthesis of climate-fire interactions and impacts on fire regimes, high-severity fire, and forests in the western United States. Fire Ecol. 2023, 19, 43. [Google Scholar] [CrossRef]
- Clarke, H.; Nolan, R.H.; Dios, V.R.D.; Bradstock, R.; Griebel, A.; Khanal, S.; Boer, M.M. Forest fire threatens global carbon sinks and population centres under rising atmospheric water demand. Nat. Commun. 2022, 13, 7161. [Google Scholar] [CrossRef] [PubMed]
- Krawchuk, M.A.; Moritz, M.A. Constraints on global fire activity vary across a resource gradient. Ecology 2011, 92, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.; Resco de Dios, V.R.; Sil, Â.; Cunill Camprubí, A.; Fernandes, P.M. VPD-based models of dead fine fuel moisture provide best estimates in a global dataset. Agric. For. Meteorol. 2024, 346, 109868. [Google Scholar] [CrossRef]
- Burton, J.E.; Penman, T.D.; Filkov, A.I.; Cawson, J.G. Multi-scale investigation of factors influencing moisture thresholds for litter bed flammability. Agric. For. Meteorol. 2023, 337, 109514. [Google Scholar] [CrossRef]
- O, S.; Hou, X.; Orth, R. Observational evidence of wildfire-promoting soil moisture anomalies. Sci. Rep. 2020, 10, 11008. [Google Scholar] [CrossRef]
- Zhou, S.; Williams, A.P.; Berg, A.M.; Cook, B.I.; Zhang, Y.; Hagemann, S.; Lorenz, R.; Seneviratne, S.I.; Gentine, P. Land-atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity. Proc. Natl. Acad. Sci. USA 2019, 116, 18848–18853. [Google Scholar] [CrossRef]
- Cawson, J.G.; Collins, L.; Parks, S.A.; Nolan, R.H.; Penman, T.D. Atmospheric dryness removes barriers to the development of large forest fires. Agric. For. Meteorol. 2024, 350, 109990. [Google Scholar] [CrossRef]
- Zhao, F.; Liu, Y. Important meteorological predictors for long-range wildfires in China. For. Ecol. Manag. 2021, 499, 119638. [Google Scholar] [CrossRef]
- López, J.; Way, D.A.; Sadok, W. Systemic effects of rising atmospheric vapor pressure deficit on plant physiology and productivity. Glob. Chang. Biol. 2021, 27, 1704–1720. [Google Scholar] [CrossRef]
- Yuan, W.; Zheng, Y.; Piao, S.; Ciais, P.; Lombardozzi, D.; Wang, Y.; Ryu, Y.; Chen, G.; Dong, W.; Hu, Z.; et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 2019, 5, eaax1396. [Google Scholar] [CrossRef] [PubMed]
- Scharwies, J.D.; Dinneny, J.R. Water transport, perception, and response in plants. J. Plant Res. 2019, 132, 311–324. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Sharkey, T.D. Stomatal conductance and photosynthesis. Annu. Rev. Plant Biol. 1982, 33, 317–345. [Google Scholar]
- Schönbeck, L.C.; Schuler, P.; Lehmann, M.M.; Mas, E.; Mekarni, L.; Pivovaroff, A.L.; Turberg, P.; Grossiord, C. Increasing temperature and vapour pressure deficit lead to hydraulic damages in the absence of soil drought. Plant Cell Environ. 2022, 45, 3275–3289. [Google Scholar] [CrossRef] [PubMed]
- Novick, K.A.; Miniat, C.F.; Vose, J.M. Drought limitations to leaf-level gas exchange: Results from a model linking stomatal optimization and cohesion–tension theory. Plant Cell Environ. 2016, 39, 583–596. [Google Scholar] [CrossRef]
- Hoffman, A.L.; Kemanian, A.R.; Forest, C.E. Analysis of climate signals in the crop yield record of sub-Saharan Africa. Glob. Chang. Biol. 2018, 24, 143–157. [Google Scholar] [CrossRef]
- Ghazi, B.; Przybylak, R.; Pospieszyńska, A. Projection of climate change impacts on extreme temperature and precipitation in Central Poland. Sci. Rep. 2023, 13, 18772. [Google Scholar] [CrossRef]
- Scafetta, N. Impacts and risks of “realistic” global warming projections for the 21st century. Geosci. Front. 2024, 15, 101774. [Google Scholar] [CrossRef]
- Shekhar, A.; Buchmann, N.; Humphrey, V.; Gharun, M. More than three-fold increase in compound soil and air dryness across Europe by the end of 21st century. Weather. Clim. Extrem. 2024, 44, 100666. [Google Scholar] [CrossRef]
- Ficklin, D.L.; Novick, K.A. Historic and projected changes in vapor pressure deficit suggest a continental-scale drying of the United States atmosphere. J. Geophys. Res. Atmos. 2017, 122, 2061–2079. [Google Scholar] [CrossRef]
- Fang, Z.; Zhang, W.; Brandt, M.; Abdi, A.M.; Fensholt, R. Globally increasing Atmospheric Aridity over the 21st Century. Earth’s Future 2022, 10, e2022EF003019. [Google Scholar] [CrossRef]
- Li, S.; Wang, G.; Chai, Y.; Miao, L.; Hagan, D.F.T.; Sun, S.; Huang, J.; Su, B.; Jiang, T.; Chen, T.; et al. Increasing vapor pressure deficit accelerates land drying. J. Hydrol. 2023, 625, 130062. [Google Scholar] [CrossRef]
- Hawkins, E.; Sutton, R. The potential to narrow uncertainty in projections of regional precipitation change. Clim. Dyn. 2011, 37, 407–418. [Google Scholar] [CrossRef]
- Evin, G.; Ribes, A.; Corre, L. Assessing CMIP6 uncertainties at global warming levels. Clim. Dyn. 2024, 62, 8057–8072. [Google Scholar] [CrossRef]
- Knutti, R.; Sedláček, J. Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Clim. Chang. 2013, 3, 369–373. [Google Scholar] [CrossRef]
- Kotlarski, S.; Szabó, P.; Herrera, S.; Räty, O.; Keuler, K.; Soares, P.M.; Cardoso, R.M.; Bosshard, T.; Pagé, C.; Boberg, F.; et al. Observational uncertainty and regional climate model evaluation: A pan-European perspective. Int. J. Climatol. 2019, 39, 3730–3749. [Google Scholar] [CrossRef]
- Gibson, P.B.; Waliser, D.E.; Lee, H.; Tian, B.; Massoud, E. Climate Model Evaluation in the Presence of Observational Uncertainty: Precipitation Indices over the Contiguous United States. J. Hydrometeorol. 2019, 20, 1339–1357. [Google Scholar] [CrossRef]
- Pathak, R.; Dasari, H.P.; Ashok, K.; Hoteit, I. Effects of multi-observations uncertainty and models similarity on climate change projections. npj Clim. Atmos. Sci. 2023, 6, 144. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Iturbide, M.; Gutiérrez, J.M.; Alves, L.M.; Bedia, J.; Cerezo-Mota, R.; Cimadevilla, E.; Cofiño, A.S.; Di Luca, A.; Faria, S.H.; Gorodetskaya, I.V.; et al. An update of IPCC climate reference regions for subcontinental analysis of climate model data: Definition and aggregated datasets. Earth Syst. Sci. Data 2020, 12, 2959–2970. [Google Scholar] [CrossRef]
- Strandberg, G.; Lind, P. The importance of horizontal model resolution on simulated precipitation in Europe—From global to regional models. Weather. Clim. Dyn. 2021, 2, 181–204. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO: Rome, Italy, 1998. [Google Scholar]
- Corak, N.; Thornton, P.; Lowman, L. A high resolution, gridded product for vapor pressure deficit using Daymet. Sci. Data 2025, 12, 256. [Google Scholar] [CrossRef]
- UCAR; NCAR; CISL; TDD. The NCAR Command Language [Software]; Version 6.6.2; UCAR: Boulder, CO, USA, 2019. [Google Scholar] [CrossRef]
- Fu, R.; Yin, L.; Li, W.; Arias, P.A.; Dickinson, R.E.; Huang, L.; Chakraborty, S.; Fernandes, K.; Liebmann, B.; Fisher, R.; et al. Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection. Proc. Natl. Acad. Sci. USA 2013, 110, 18110–18115. [Google Scholar] [CrossRef] [PubMed]
- Chung, E.S.; Ha, K.J.; Timmermann, A.; Stuecker, M.F.; Bodai, T.; Lee, S.K. Cold-Season Arctic Amplification Driven by Arctic Ocean-Mediated Seasonal Energy Transfer. Earth’s Future 2021, 9, e2020EF001898. [Google Scholar] [CrossRef]
- Peng, X.; Zhang, T.; Frauenfeld, O.W.; Wang, K.; Mu, C. An integrated index of cryospheric change in the Northern Hemisphere. Glob. Planet. Chang. 2022, 218, 103984. [Google Scholar] [CrossRef]
- Zelinka, M.D.; Myers, T.A.; McCoy, D.T.; Po-Chedley, S.; Caldwell, P.M.; Ceppi, P.; Klein, S.A.; Taylor, K.E. Causes of Higher Climate Sensitivity in CMIP6 Models. Geophys. Res. Lett. 2020, 47, e2019GL085782. [Google Scholar] [CrossRef]
- Swart, N.C.; Cole, J.N.S.; Kharin, V.V.; Lazare, M.; Scinocca, J.F.; Gillett, N.P.; Anstey, J.; Arora, V.; Christian, J.R.; Hanna, S.; et al. The Canadian Earth System Model version 5 (CanESM5.0.3). Geosci. Model Dev. 2019, 12, 4823–4873. [Google Scholar] [CrossRef]
- Borowiak, A.; King, A.D.; Brown, J.R.; Jones, C.D.; Ziehn, T.; Meinshausen, M.; Cassidy, L. Projected Global Temperature Changes After Net Zero Are Small But Significant. Geophys. Res. Lett. 2024, 51, e2024GL108654. [Google Scholar] [CrossRef]
- Mauritsen, T.; Tsushima, Y.; Meyssignac, B.; Loeb, N.G.; Hakuba, M.; Pilewskie, P.; Cole, J.; Suzuki, K.; Ackerman, T.P.; Allan, R.P.; et al. Earth’s Energy Imbalance More Than Doubled in Recent Decades. AGU Adv. 2025, 6, e2024AV001636. [Google Scholar] [CrossRef]
- Mueller, S.E.; Thode, A.E.; Margolis, E.Q.; Yocom, L.L.; Young, J.D.; Iniguez, J.M. Climate relationships with increasing wildfire in the southwestern US from 1984 to 2015. For. Ecol. Manag. 2020, 460, 117861. [Google Scholar] [CrossRef]
- Nolan, R.H.; Bowman, D.M.J.S.; Clarke, H.; Haynes, K.; Ooi, M.K.J.; Price, O.F.; Williamson, G.J.; Whittaker, J.; Bedward, M.; Boer, M.M.; et al. What Do the Australian Black Summer Fires Signify for the Global Fire Crisis? Fire 2021, 4, 97. [Google Scholar] [CrossRef]
- Ngcamu, B.S.; Chari, F. Drought Influences on Food Insecurity in Africa: A Systematic Literature Review. Int. J. Environ. Res. Public Health 2020, 17, 5897. [Google Scholar] [CrossRef]
List of Selected Models | ||||
---|---|---|---|---|
ACCESS-CM2 | ACCESS-ESM1-5 | AWI-CM-1-1-MR | BCC-CSM2-MR | CanESM5 |
CanESM5-1 | CESM2-WACCM | CMCC-CM2-SR5 | CMCC-ESM2 | MIROC6 |
MPI-ESM1-2-HR | MRI-ESM2-0 | NorESM2-LM | NorESM2-MM | TaiESM1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Yao, M.; Chen, Y.; Jiang, L.; Xing, B.; Clarke, H. The Range of Projected Change in Vapour Pressure Deficit Through 2100: A Seasonal and Regional Analysis of the CMIP6 Ensemble. Climate 2025, 13, 143. https://doi.org/10.3390/cli13070143
Xu J, Yao M, Chen Y, Jiang L, Xing B, Clarke H. The Range of Projected Change in Vapour Pressure Deficit Through 2100: A Seasonal and Regional Analysis of the CMIP6 Ensemble. Climate. 2025; 13(7):143. https://doi.org/10.3390/cli13070143
Chicago/Turabian StyleXu, Jiulong, Mingyang Yao, Yunjie Chen, Liuyue Jiang, Binghong Xing, and Hamish Clarke. 2025. "The Range of Projected Change in Vapour Pressure Deficit Through 2100: A Seasonal and Regional Analysis of the CMIP6 Ensemble" Climate 13, no. 7: 143. https://doi.org/10.3390/cli13070143
APA StyleXu, J., Yao, M., Chen, Y., Jiang, L., Xing, B., & Clarke, H. (2025). The Range of Projected Change in Vapour Pressure Deficit Through 2100: A Seasonal and Regional Analysis of the CMIP6 Ensemble. Climate, 13(7), 143. https://doi.org/10.3390/cli13070143