Satellite-Based Seasonal Fingerprinting of Methane Emissions from Canadian Dairy Farms Using Sentinel-5P
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Acquisition and Processing
2.1.1. Satellite Platform and Sensor Specification
2.1.2. Data Retrieval and Temporal Aggregation
2.2. Study Area Definition and Sampling Strategy
2.2.1. Spatial Domain Selection for Methane Emission Analysis
2.2.2. Dairy Region Delineation and Reference Region Selection
2.2.3. Spatial Clustering Using DBSCAN Algorithm
2.2.4. Regional Boundary Refinement Using Adaptive Bounding Boxes
2.3. Spatial Analytical Implementation
2.3.1. Zonal Statistics Computation
2.3.2. Spectral Reflectance Modelling and Correction of Atmospheric Methane
2.3.3. National and Provincial Scale Data Aggregation of Methane Metrics
2.4. Temporal Dynamics and Time-Series Analysis
2.4.1. Kalman Filtering for Time-Series Smoothing
2.4.2. Non-Parametric and Parametric Trend Estimation
2.4.3. Statistical Analysis of Methane Anomaly Time Series
2.4.4. Inter-Regional Convergence Analysis
2.4.5. Methane Anomaly Detection and Quantification
- represents the methane concentration in dairy region at time ;
- denotes the methane concentration in reference region at the same time; and
- and are the total number of dairy and reference regions, respectively.
- is the number of weeks according to which the methane anomaly exceeds the threshold; and
- is the total number of weeks in the year.
2.5. Seasonal Dynamics and Pattern Recognition
2.5.1. Seasonal Decomposition from Time-Series Data
2.5.2. Seasonal Peak Identification
2.5.3. Seasonal Amplitude Characterization
2.6. Source Attribution and Emission Signature Profiling
2.6.1. Seasonal Fingerprinting of Methane Emission Profiles
- is the normalized seasonal index for region r in season s; and
- .
- ; and
- denotes the dissimilarity between regions .
2.6.2. Hierarchical Clustering of Regional Emission Signatures
2.7. Cross-Validation with TCCON Ground-Based Observations
2.7.1. TCCON Data Acquisition and Processing
2.7.2. TROPOMI Data Selection and Regional Validation
2.7.3. Temporal Matching and Data Pairing
3. Results
3.1. Spatiotemporal Dynamics of Methane Concentrations at the National Level
3.1.1. Temporal Trends in National Methane Concentrations
3.1.2. Provincial Variations and Growth Rate Patterns
3.2. Regional Methane Concentration Comparison and Differential Frequency
3.2.1. Temporal Dynamics of Regional Methane Concentrations
3.2.2. Inter-Annual Methane Variability and Regional Methane Anomaly Patterns
3.3. Seasonal Methane Fingerprints for Dairy Regions
3.3.1. Annual Methane Concentration Patterns
3.3.2. Seasonal Amplitude and Variability Analysis
3.3.3. Phase Shift Analysis and Timing of Peak Emissions
3.3.4. Regional Fingerprint Derivation and Analysis
3.4. TROPOMI Methane Validation Using TCCON Ground-Based Observations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2022: Mitigation of Climate Change; Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2023; ISBN 978-92-9169-160-9. [Google Scholar] [CrossRef]
- Nisbet, E.G.; Manning, M.R.; Dlugokencky, E.J.; Fisher, R.E.; Lowry, D.; Michel, S.E.; Myhre, C.L.; Platt, S.M.; Allen, G.; Bousquet, P.; et al. Very Strong Atmospheric Methane Growth in the 4 Years 2014–2017: Implications for the Paris Agreement. Glob. Biogeochem. Cycles 2019, 33, 318–342. [Google Scholar] [CrossRef]
- Friedlingstein, P.; Jones, M.W.; O’Sullivan, M.; Andrew, R.M.; Bakker, D.C.E.; Hauck, J.; Le Quéré, C.; Peters, G.P.; Peters, W.; Pongratz, J.; et al. Global Carbon Budget 2021. Earth Syst. Sci. Data 2022, 14, 1917–2005. [Google Scholar] [CrossRef]
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F.N.; Leip, A. Food Systems are Responsible for a Third of Global Anthropogenic GHG Emissions. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef]
- Huang, D.; Guo, H. Diurnal and Seasonal Variations of Greenhouse Gas Emissions from a Naturally Ventilated Dairy Barn in a Cold Region. Atmos. Environ. 2018, 172, 74–82. [Google Scholar] [CrossRef]
- Statistics Canada. Canada’s 2021 Census of Agriculture: A Story About the Transformation of the Agriculture Industry and Adaptiveness of Canadian Farmers. 2022; pp. 1–12. Available online: https://www150.statcan.gc.ca/n1/daily-quotidien/220511/dq220511a-eng.htm (accessed on 11 January 2025).
- Schissel, C.; Allen, D.; Dieter, H. Methods for Spatial Extrapolation of Methane Measurements in Constructing Regional Estimates from Sample Populations. Environ. Sci. Technol. 2024, 58, 2739–2749. [Google Scholar] [CrossRef]
- Wolf, J.; Asrar, G.R.; West, T.O. Revised Methane Emissions Factors and Spatially Distributed Annual Carbon Fluxes for Global Livestock. Carbon Balance Manag. 2017, 12, 16. [Google Scholar] [CrossRef]
- Maasakkers, J.D.; Jacob, D.J.; Sulprizio, M.P.; Turner, A.J.; Weitz, M.; Wirth, T.; Hight, C.; DeFigueiredo, M.; Desai, M.; Schmeltz, R.; et al. Gridded National Inventory of US. Methane Emissions. Environ. Sci. Technol. 2016, 50, 13123–13133. [Google Scholar] [CrossRef]
- Soranno, P.A.; Wagner, T.; Collins, S.M.; Lapierre, J.; Lottig, N.R.; Oliver, S.K. Spatial and Temporal Variation of Ecosystem Properties at Macroscales. Ecol. Lett. 2019, 22, 1587–1598. [Google Scholar] [CrossRef]
- Chan, E.; Worthy, D.E.J.; Chan, D.; Ishizawa, M.; Moran, M.D.; Delcloo, A.; Vogel, F. Eight-Year Estimates of Methane Emissions from Oil and Gas Operations in Western Canada Are Nearly Twice Those Reported in Inventories. Environ. Sci. Technol. 2020, 54, 14899–14909. [Google Scholar] [CrossRef]
- Maasakkers, J.D.; Jacob, D.J.; Sulprizio, M.P.; Scarpelli, T.R.; Nesser, H.; Sheng, J.; Zhang, Y.; Lu, X.; Bloom, A.A.; Bowman, K.W.; et al. 2010–2015 North American Methane Emissions, Sectoral Contributions, and Trends: A High-Resolution Inversion of GOSAT Observations of Atmospheric Methane. Atmos. Chem. Phys. 2021, 21, 4339–4356. [Google Scholar] [CrossRef]
- Zhang, Y.; Jacob, D.J.; Lu, X.; Maasakkers, J.D.; Scarpelli, T.R.; Sheng, J.-X.; Shen, L.; Qu, Z.; Sulprizio, M.P.; Chang, J.; et al. Attribution of the Accelerating Increase in Atmospheric Methane During 2010–2018 by Inverse Analysis of GOSAT Observations. Atmos. Chem. Phys. 2021, 21, 3643–3666. [Google Scholar] [CrossRef]
- Jacob, D.J.; Varon, D.J.; Cusworth, D.H.; Dennison, P.E.; Frankenberg, C.; Gautam, R.; Guanter, L.; Kelley, J.; McKeever, J.; Ott, L.E.; et al. Quantifying Methane Emissions from the Global Scale Down to Point Sources Using Satellite Observations of Atmospheric Methane. Atmos. Chem. Phys. 2022, 22, 9617–9646. [Google Scholar] [CrossRef]
- East, J.D.; Jacob, D.J.; Balasus, N.; Bloom, A.A.; Bruhwiler, L.; Chen, Z.; Kaplan, J.O.; Mickley, L.J.; Mooring, T.A.; Penn, E.; et al. Interpreting the Seasonality of Atmospheric Methane. Geophys. Res. Lett. 2024, 51, e2024GL108494. [Google Scholar] [CrossRef]
- Canadian Dairy Commission. Fact Sheet—Supply Management. Available online: https://www.cdc-ccl.ca/en/node/890 (accessed on 21 January 2025).
- Hasekamp, O.; Lorente, A.; Hu, H.; Butz, A.; de Brugh, J.; Landgraf, J. Algorithm Theoretical Baseline Document for Sentinel-5 Precursor Methane Retrieval; Netherlands Institute for Space Research: Leiden, The Netherlands, 2021; p. 67. [Google Scholar]
- Statistics Canada. Census Profile. In 2021 Census of Population; Statistics Canada: Ottawa, ON, Canada, 2023. [Google Scholar]
- Simandan, D. Competition, Contingency, and Destabilization in Urban Assemblages and Actor-Networks. Urban Geogr. 2018, 39, 655–666. [Google Scholar] [CrossRef]
- Bi, H.; Neethirajan, S. Mapping Methane—The Impact of Dairy Farm Practices on Emissions Through Satellite Data and Machine Learning. Climate 2024, 12, 223. [Google Scholar] [CrossRef]
- Li, S.; Wang, C.; Gao, P.; Zhao, B.; Jin, C.; Zhao, L.; He, B.; Xue, Y. High-Spatial-Resolution Methane Emissions Calculation Using TROPOMI Data by a Divergence Method. Atmosphere 2023, 14, 388. [Google Scholar] [CrossRef]
- Pithan, F.; Mauritsen, T. Arctic Amplification Dominated by Temperature Feedbacks in Contemporary Climate Models. Nat. Geosci. 2014, 7, 181–184. [Google Scholar] [CrossRef]
- Becker, S.; Ehrlich, A.; Schäfer, M.; Wendisch, M. Quantifying the Impact of Solar Zenith Angle, Cloud Optical Thickness, and Surface Albedo on the Solar Radiative Effect of Arctic Low-Level Clouds over Open Ocean and Sea Ice. EGUsphere 2025, 1–18. [Google Scholar] [CrossRef]
- McIlhattan, E.A.; Kay, J.E.; L’Ecuyer, T.S. Arctic Clouds and Precipitation in the Community Earth System Model Version 2. JGR Atmos. 2020, 125, e2020JD032521. [Google Scholar] [CrossRef]
- Dowd, E.; Wilson, C.; Chipperfield, M.P.; Gloor, E.; Manning, A.; Doherty, R. Decreasing Seasonal Cycle Amplitude of Methane in the Northern High Latitudes Being Driven by Lower-Latitude Changes in Emissions and Transport. Atmos. Chem. Phys. 2023, 23, 7363–7382. [Google Scholar] [CrossRef]
- Häme, T.; Sirro, L.; Kilpi, J.; Seitsonen, L.; Andersson, K.; Melkas, T. A Hierarchical Clustering Method for Land Cover Change Detection and Identification. Remote Sens. 2020, 12, 1751. [Google Scholar] [CrossRef]
- Zou, Y.; Greenberg, J.A. A Spatialized Classification Approach for Land Cover Mapping Using Hyperspatial Imagery. Remote Sens. Environ. 2019, 232, 111248. [Google Scholar] [CrossRef]
- Agriculture and Agri-Food Canada. Number of Farms with Dairy Cows and Dairy Heifers. Available online: https://agriculture.canada.ca/en/sector/animal-industry/canadian-dairy-information-centre/dairy-statistics-and-market-information/farm-statistics/number-farms-dairy-cows-and-dairy-heifers (accessed on 30 January 2025).
- IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2019. [Google Scholar]
- Moon, J.; Shim, C.; Seo, J.; Han, J. Evaluation of Korean Methane Emission Sources with Satellite Retrievals by Spatial Correlation Analysis. Environ. Monit. Assess. 2024, 196, 296. [Google Scholar] [CrossRef]
- Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD), Portland, OR, USA, 2–4 August 1996; Volume 96, pp. 226–231. [Google Scholar]
- Chen, B.Y.; Luo, Y.-B.; Zhang, Y.; Jia, T.; Chen, H.-P.; Gong, J.; Li, Q. Efficient and Scalable DBSCAN Framework for Clustering Continuous Trajectories in Road Networks. Int. J. Geogr. Inf. Sci. 2023, 37, 1693–1727. [Google Scholar] [CrossRef]
- Park, J.Y.; Ryu, D.J.; Nam, K.W.; Jang, I.; Jang, M.; Lee, Y. DeepDBSCAN: Deep Density-Based Clustering for Geo-Tagged Photos. IJGI 2021, 10, 548. [Google Scholar] [CrossRef]
- Boeing, G. Clustering to Reduce Spatial Data Set Size. arXiv 2018, arXiv:1803.08101. [Google Scholar] [CrossRef]
- Varon, D.J.; Jervis, D.; McKeever, J.; Spence, I.; Gains, D.; Jacob, D.J. High-Frequency Monitoring of Anomalous Methane Point Sources with Multispectral Sentinel-2 Satellite Observations. Atmos. Meas. Tech. 2021, 14, 2771–2785. [Google Scholar] [CrossRef]
- Jongaramrungruang, S.; Matheou, G.; Thorpe, A.K.; Zeng, Z.-C.; Frankenberg, C. Remote Sensing of Methane Plumes: Instrument Tradeoff Analysis for Detecting and Quantifying Local Sources at Global Scale. Atmos. Meas. Tech. 2021, 14, 7999–8017. [Google Scholar] [CrossRef]
- Welch, G.; Bishop, G. An Introduction to the Kalman Filter; University of North Carolina at Chapel Hill: Chapel Hill, NC, USA, 1995. [Google Scholar]
- Grewal, M.S.; Andrews, A.P. Kalman Filtering: Theory and Practice with MATLAB, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Steiner, M.; Cantarello, L.; Henne, S.; Brunner, D. Flow-Dependent Observation Errors for Greenhouse Gas Inversions in an Ensemble Kalman Smoother. Atmos. Chem. Phys. 2024, 24, 12447–12463. [Google Scholar] [CrossRef]
- Hamed, K.H.; Ramachandra Rao, A. A Modified Mann-Kendall Trend Test for Autocorrelated Data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Barro, R.J. Convergence. J. Polit. Econ. 1992, 100, 223–251. [Google Scholar] [CrossRef]
- NCEI. Meteorological Versus Astronomical Seasons. Available online: https://www.ncei.noaa.gov/news/meteorological-versus-astronomical-seasons (accessed on 1 March 2025).
- Trisna, B.A.; Park, S.; Lee, J. Significant Impact of the COVID-19 Pandemic on Methane Emissions Evaluated by Comprehensive Statistical Analysis of Satellite Data. Sci. Rep. 2024, 14, 22475. [Google Scholar] [CrossRef]
- Karoff, C.; Vara-Vela, A.L. Data Driven Analysis of Atmospheric Methane Concentrations as Function of Geographic, Land Cover Type and Season. Front. Earth Sci. 2023, 11, 1119977. [Google Scholar] [CrossRef]
- Roth, F.; Sun, X.; Geibel, M.C.; Prytherch, J.; Brüchert, V.; Bonaglia, S.; Broman, E.; Nascimento, F.; Norkko, A.; Humborg, C. High Spatiotemporal Variability of Methane Concentrations Challenges Estimates of Emissions Across Vegetated Coastal Ecosystems. Glob. Change Biol. 2022, 28, 4308–4322. [Google Scholar] [CrossRef] [PubMed]
- DelSole, T.; Tippett, M.K. Comparing Climate Time Series—Part 2: A Multivariate Test. Adv. Stat. Clim. Meteorol. Oceanogr. 2021, 7, 73–85. [Google Scholar] [CrossRef]
- Anderson, M.J. Distance-Based Tests for Homogeneity of Multivariate Dispersions. Biometrics 2006, 62, 245–253. [Google Scholar] [CrossRef]
- Morelli, C.; Maranzano, P.; Otto, P. Spatiotemporal Clustering of GHGs Emissions in Europe: Exploring the Role of Spatial Component. arXiv 2025. [Google Scholar] [CrossRef]
- Kang, Y.; Wu, K.; Gao, S.; Ng, I.; Rao, J.; Ye, S.; Zhang, F.; Fei, T. STICC: A Multivariate Spatial Clustering Method for Repeated Geographic Pattern Discovery with Consideration of Spatial Contiguity. Int. J. Geogr. Inf. Sci. 2022, 36, 1518–1549. [Google Scholar] [CrossRef]
- Wunch, D.; Toon, G.C.; Blavier, J.-F.L.; Washenfelder, R.A.; Notholt, J.; Connor, B.J.; Griffith, D.W.T.; Sherlock, V.; Wennberg, P.O. The Total Carbon Column Observing Network. Phil. Trans. R. Soc. A 2011, 369, 2087–2112. [Google Scholar] [CrossRef]
- Sha, M.K.; Langerock, B.; Blavier, J.-F.L.; Blumenstock, T.; Borsdorff, T.; Buschmann, M.; Dehn, A.; De Mazière, M.; Deutscher, N.M.; Feist, D.G.; et al. Validation of Methane and Carbon Monoxide from Sentinel-5 Precursor Using TCCON and NDACC-IRWG Stations. Atmos. Meas. Tech. 2021, 14, 6249–6304. [Google Scholar] [CrossRef]
- Wunch, D.; Mendonca, J.; Colebatch, O.; Allen, N.T.; Blavier, J.-F.; Kunz, K.; Roche, S.; Hedelius, J.; Neufeld, G.; Springett, S.; et al. TCCON Data from East Trout Lake, SK (CA), Release GGG2020.R0; California Institute of Techonolgy: Pasadena, CA, USA, 2025. [Google Scholar] [CrossRef]
- Borsdorff, T.; Aan De Brugh, J.; Hu, H.; Hasekamp, O.; Sussmann, R.; Rettinger, M.; Hase, F.; Gross, J.; Schneider, M.; Garcia, O.; et al. Mapping Carbon Monoxide Pollution from Space Down to City Scales with Daily Global Coverage. Atmos. Meas. Tech. 2018, 11, 5507–5518. [Google Scholar] [CrossRef]
- Virolainen, Y.A.; Nerobelov, G.M.; Polyakov, A.V.; Akishina, S.V. Comparison of Satellite and Ground-Based Measurements of Tropospheric Ozone. In Proceedings of the 29th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, Moscow, Russia, 26–30 June 2023; Romanovskii, O.A., Ed.; SPIE: Moscow, Russia, 2023; p. 65. [Google Scholar]
- Saunois, M.; Stavert, A.R.; Poulter, B.; Bousquet, P.; Canadell, J.G.; Jackson, R.B.; Raymond, P.A.; Dlugokencky, E.J.; Houweling, S.; Patra, P.K.; et al. The Global Methane Budget 2000–2017. Earth Syst. Sci. Data 2020, 12, 1561–1623. [Google Scholar] [CrossRef]
- Alcibahy, M.; Gafoor, F.A.; Mustafa, F.; El Fadel, M.; Al Hashemi, H.; Al Hammadi, A.; Al Shehhi, M.R. Improved Estimation of Carbon Dioxide and Methane Using Machine Learning with Satellite Observations over the Arabian Peninsula. Sci. Rep. 2025, 15, 766. [Google Scholar] [CrossRef]
- Ciais, P.; Bastos, A.; Chevallier, F.; Lauerwald, R.; Poulter, B.; Canadell, J.G.; Hugelius, G.; Jackson, R.B.; Jain, A.; Jones, M.; et al. Definitions and Methods to Estimate Regional Land Carbon Fluxes for the Second Phase of the REgional Carbon Cycle Assessment and Processes Project (RECCAP-2). Geosci. Model Dev. 2022, 15, 1289–1316. [Google Scholar] [CrossRef]
- Zhang, Z.; Zimmermann, N.E.; Calle, L.; Hurtt, G.; Chatterjee, A.; Poulter, B. Enhanced Response of Global Wetland Methane Emissions to the 2015–2016 El Niño-Southern Oscillation Event. Environ. Res. Lett. 2018, 13, 074009. [Google Scholar] [CrossRef]
- Min, B.-R.; Lee, S.; Jung, H.; Miller, D.N.; Chen, R. Enteric Methane Emissions and Animal Performance in Dairy and Beef Cattle Production: Strategies, Opportunities, and Impact of Reducing Emissions. Animals 2022, 12, 948. [Google Scholar] [CrossRef]
- Ehret, T.; De Truchis, A.; Mazzolini, M.; Morel, J.-M.; Facciolo, G. Automatic Methane Plume Quantification Using Sentinel-2 Time Series. In Proceedings of the IGARSS 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; IEEE: Kuala Lumpur, Malaysia, 2022; pp. 1955–1958. [Google Scholar]
- Environment and Climate Change Canada. National Inventory Report 1990–2021: Greenhouse Gas Sources and Sinks in Canada; Canada’s Submission to the United Nations Framework Convention on Climate Change; Environment and Climate Change Canada: Gatineau, QC, Canada, 2023.
- Lorente, A.; Borsdorff, T.; Butz, A.; Hasekamp, O.; Aan De Brugh, J.; Schneider, A.; Wu, L.; Hase, F.; Kivi, R.; Wunch, D.; et al. Methane Retrieved from TROPOMI: Improvement of the Data Product and Validation of the First 2 Years of Measurements. Atmos. Meas. Tech. 2021, 14, 665–684. [Google Scholar] [CrossRef]
- Wang, Y.; Song, W.; Wang, Q.; Yang, F.; Yan, Z. Predicting Enteric Methane Emissions from Dairy and Beef Cattle Using Nutrient Composition and Intake Variables. Animals 2024, 14, 3452. [Google Scholar] [CrossRef]
- Li, C.; Brouchkov, A.V.; Cheverev, V.G.; Sokolov, A.V.; Zhou, B. Influence of the Thickness of Freezing of the Soil Surface and Snow Cover on Methane Emissions during Freezing of Seasonal Permafrost. Atmosphere 2024, 15, 1231. [Google Scholar] [CrossRef]
- Bohn, T.J.; Melton, J.R.; Ito, A.; Kleinen, T.; Spahni, R.; Stocker, B.D.; Zhang, B.; Zhu, X.; Schroeder, R.; Glagolev, M.V.; et al. WETCHIMP-WSL: Intercomparison of Wetland Methane Emissions Models over West Siberia. Biogeosciences 2015, 12, 3321–3349. [Google Scholar] [CrossRef]
- Aguirre-Villegas, H.A.; Larson, R.A. Evaluating Greenhouse Gas Emissions from Dairy Manure Management Practices Using Survey Data and Lifecycle Tools. J. Clean. Prod. 2017, 143, 169–179. [Google Scholar] [CrossRef]
- Genedy, R.A.; Ogejo, J.A. Using Machine Learning Techniques to Predict Liquid Dairy Manure Temperature During Storage. Comput. Electron. Agric. 2021, 187, 106234. [Google Scholar] [CrossRef]
- Bloom, A.A.; Bowman, K.W.; Liu, J.; Konings, A.G.; Worden, J.R.; Parazoo, N.C.; Meyer, V.; Reager, J.T.; Worden, H.M.; Jiang, Z.; et al. Lagged Effects Regulate the Inter-Annual Variability of the Tropical Carbon Balance. Biogeosciences 2020, 17, 6393–6422. [Google Scholar] [CrossRef]
- Bansal, S.; Post Van Der Burg, M.; Fern, R.R.; Jones, J.W.; Lo, R.; McKenna, O.P.; Tangen, B.A.; Zhang, Z.; Gleason, R.A. Large Increases in Methane Emissions Expected from North America’s Largest Wetland Complex. Sci. Adv. 2023, 9, eade1112. [Google Scholar] [CrossRef] [PubMed]
- Ishizawa, M.; Chan, D.; Worthy, D.; Chan, E.; Vogel, F.; Melton, J.R.; Arora, V.K. Estimation of Canada’s Methane Emissions: Inverse Modelling Analysis Using the Environment and Climate Change Canada (ECCC) Measurement Network. Atmos. Chem. Phys. 2024, 24, 10013–10038. [Google Scholar] [CrossRef]
- Shen, L.; Zavala-Araiza, D.; Gautam, R.; Omara, M.; Scarpelli, T.; Sheng, J.; Sulprizio, M.P.; Zhuang, J.; Zhang, Y.; Qu, Z.; et al. Unravelling a Large Methane Emission Discrepancy in Mexico Using Satellite Observations. Remote Sens. Environ. 2021, 260, 112461. [Google Scholar] [CrossRef]
- Islam, M.; Kim, S.-H.; Son, A.-R.; Ramos, S.C.; Jeong, C.-D.; Yu, Z.; Kang, S.H.; Cho, Y.-I.; Lee, S.-S.; Cho, K.-K.; et al. Seasonal Influence on Rumen Microbiota, Rumen Fermentation, and Enteric Methane Emissions of Holstein and Jersey Steers Under the Same Total Mixed Ration. Animals 2021, 11, 1184. [Google Scholar] [CrossRef]
- Fouli, Y.; Hurlbert, M.; Kröbel, R. Greenhouse Gas Emissions from Canadian Agriculture: Estimates and Measurements; The School of Public Policy Publications, University of Calgary: Calgary, AB, Canada, 2021; Volume 14. [Google Scholar] [CrossRef]
- Pandey, S.; Gautam, R.; Houweling, S.; Van Der Gon, H.D.; Sadavarte, P.; Borsdorff, T.; Hasekamp, O.; Landgraf, J.; Tol, P.; Van Kempen, T.; et al. Satellite Observations Reveal Extreme Methane Leakage from a Natural Gas Well Blowout. Proc. Natl. Acad. Sci. USA 2019, 116, 26376–26381. [Google Scholar] [CrossRef]
- Lobell, D.B.; Villoria, N.B. Reduced Benefits of Climate-Smart Agricultural Policies from Land-Use Spillovers. Nat. Sustain. 2023, 6, 941–948. [Google Scholar] [CrossRef]
- Seymour, S.P.; Xie, D.; Kang, M. Highly Uncertain Methane Leakage from Oil and Gas Wells in Canada Despite Measurement and Reporting. Energy Fuels 2024, 38, 13078–13088. [Google Scholar] [CrossRef]
Year | National Average (ppb) | Annual Change (%) | Avg. Minimum (ppb) | Avg. Maximum (ppb) | Avg. Range (ppb) | Avg. SD (ppb) |
---|---|---|---|---|---|---|
2019 | 1819.79 | - | 1745.84 | 1901.43 | 155.59 | 18.03 |
2020 | 1841.02 | +1.17 | 1748.72 | 1911.1 | 162.37 | 19.48 |
2021 | 1863.45 | +1.22 | 1768.38 | 1928.02 | 159.64 | 15.42 |
2022 | 1882.24 | +1.01 | 1768.9 | 1945.1 | 176.2 | 13.76 |
2023 | 1875.3 | −0.37 | 1723.39 | 1933.08 | 209.69 | 14.67 |
2024 | 1889.6 | +0.76 | 1692.91 | 1945.69 | 252.78 | 15.67 |
2019–2024 | +69.81 | +3.83 | - | - | - | - |
% Change | - | - | −3.03% | +2.33% | +62.47% | −13.09% |
Province | Mean 2019 (ppb) | Mean 2024 (ppb) | Absolute Change (ppb) | Percentage Change (%) |
---|---|---|---|---|
British Columbia | 1789.43 | 1868.7 | +79.27 | +4.43 |
New Brunswick | 1818.23 | 1896.87 | +78.64 | +4.32 |
Alberta | 1805.91 | 1883.14 | +77.22 | +4.28 |
Ontario | 1813.64 | 1888.81 | +75.17 | +4.14 |
Nova Scotia | 1830.6 | 1899.19 | +68.58 | +3.75 |
Manitoba | 1816.88 | 1885.09 | +68.21 | +3.75 |
Quebec | 1820.48 | 1887.02 | +66.54 | +3.66 |
Saskatchewan | 1823.98 | 1889.43 | +65.46 | +3.59 |
Newfoundland and Labrador | 1821.64 | 1884.4 | +62.76 | +3.45 |
Prince Edward Island | 1857.07 | 1913.33 | +56.26 | +3.03 |
National Average | 1819.79 | 1889.6 | +69.81 | +3.83 |
Metric | Dairy Region (ppb) | Non-Dairy Region (ppb) | Anomaly (ppb) |
---|---|---|---|
Mean | 1861.03 | 1843.64 | 17.39 |
SD | 21.45 | 26.63 | 8.24 |
Minimum | 1823.04 | 1794.87 | −4.46 |
Maximum | 1904.53 | 1901.36 | 36.39 |
Year | Dairy Regions Average (ppb) | Non-Dairy Regions Average (ppb) | Gap Reduction (ppb) | Convergence Rate (%) |
---|---|---|---|---|
Baseline–2019 | 1831.22 | 1806.80 | - | - |
2019–2020 | 1844.37 | 1823.06 | 3.11 | 12.74 |
2020–2021 | 1856.32 | 1836.82 | 1.81 | 8.49 |
2021–2022 | 1873.20 | 1855.39 | 1.69 | 8.67 |
2022–2023 | 1878.38 | 1867.57 | 7.00 | 39.30 |
2023–2024 | 1882.76 | 1872.32 | 0.37 | 3.42 |
Total Change | 51.54 | 65.52 | 13.98 | 57.25 |
Year | Total Weeks | Significant Anomalies | Percentage |
---|---|---|---|
2019 | 52 | 47 | 90.38 |
2020 | 53 | 39 | 73.58 |
2021 | 52 | 32 | 61.54 |
2022 | 52 | 37 | 71.15 |
2023 | 52 | 9 | 17.31 |
2024 | 53 | 12 | 22.64 |
Statistical Test | Statistical Value | Significance |
---|---|---|
Linear Regression Slope (ppb/week) | −0.04962773 | p < 0.001 |
Linear Regression Slope (ppb/year) | −2.58950421 | p < 0.001 |
Linear Regression R2 coefficient | 0.312 | - |
Mann–Kendall Z-statistic | −10.53 | p < 0.001 |
Estimated Total Change (Absolute in ppb) | −15.12 | Decreased |
Estimated Total Change (Relative in %) | −61.45 | |
95% Confidence Interval (Annual Slope, ppb/year) | [−3.03, −2.14] | - |
Dairy Region | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | Average |
---|---|---|---|---|---|---|---|
Ontario: Southern | 1857.31 | 1864.08 | 1876.56 | 1886.67 | 1891.64 | 1899.79 | 1879.34 |
Saskatchewan: Central | 1842.84 | 1863.80 | 1872.31 | 1877.26 | 1882.06 | 1885.81 | 1870.68 |
Alberta: Southern | 1844.85 | 1857.14 | 1870.29 | 1877.17 | 1882.51 | 1885.12 | 1869.51 |
BC: Fraser Valley | 1842.36 | 1856.04 | 1864.36 | 1879.81 | 1886.15 | 1883.21 | 1868.66 |
Prince Edward Island: Central | 1846.41 | 1848.94 | 1860.99 | 1882.81 | 1883.73 | 1892.35 | 1869.21 |
Alberta: Central | 1828.88 | 1852.76 | 1864.42 | 1871.40 | 1874.53 | 1881.99 | 1862.33 |
Manitoba: Eastern | 1833.88 | 1843.30 | 1860.67 | 1869.16 | 1879.50 | 1887.51 | 1862.34 |
Ontario: Eastern | 1831.39 | 1842.01 | 1852.13 | 1871.90 | 1878.49 | 1890.75 | 1861.11 |
Manitoba: Interlake | 1830.15 | 1846.16 | 1858.30 | 1870.93 | 1878.39 | 1880.80 | 1860.79 |
Quebec: St. Lawrence | 1830.06 | 1843.79 | 1850.97 | 1871.99 | 1877.62 | 1886.33 | 1860.13 |
Quebec: East Township | 1824.83 | 1836.31 | 1848.91 | 1869.52 | 1875.14 | 1881.18 | 1855.98 |
Nova Scotia: Valley | 1822.00 | 1829.88 | 1842.69 | 1872.58 | 1875.21 | 1884.50 | 1854.48 |
New Brunswick Central | 1818.04 | 1825.77 | 1834.08 | 1865.82 | 1866.37 | 1878.46 | 1848.09 |
BC: Vancouver Island | 1803.41 | 1811.13 | 1831.78 | 1857.73 | 1866.03 | 1840.91 | 1835.17 |
Dairy Region | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | Average |
---|---|---|---|---|---|---|---|
BC: Vancouver Island | 61.12 | 51.38 | 13.86 | 86.63 | 156.60 | 9.60 | 63.20 |
Quebec: St. Lawrence Valley | 40.21 | 74.56 | 62.19 | 66.96 | 44.84 | 65.56 | 59.06 |
Quebec: Eastern Township | 20.65 | 54.06 | 64.86 | 62.79 | 51.74 | 56.08 | 51.70 |
New Brunswick: Central | 55.04 | 38.71 | 84.89 | 79.43 | 63.39 | 57.23 | 63.11 |
Nova Scotia Annapolis Valley | 32.63 | 45.12 | 55.88 | 93.40 | 46.33 | 54.91 | 54.71 |
Manitoba: Interlake | 39.72 | 56.59 | 48.42 | 65.75 | 61.52 | 59.38 | 55.23 |
Ontario: Southern | 30.55 | 48.22 | 45.33 | 42.99 | 34.87 | 47.76 | 41.62 |
Manitoba: Eastern | 45.59 | 46.95 | 47.84 | 53.03 | 51.62 | 67.97 | 52.17 |
Alberta: Central | 75.99 | 41.71 | 39.15 | 56.78 | 51.32 | 63.32 | 54.71 |
Saskatchewan: Central | 43.49 | 29.38 | 35.74 | 63.22 | 37.36 | 66.04 | 45.87 |
PEI: Central | 52.31 | 37.72 | 75.55 | 69.11 | 29.37 | 44.96 | 51.50 |
BC: Fraser Valley | 37.34 | 24.81 | 35.66 | 82.82 | 49.12 | 35.09 | 44.14 |
Alberta: Southern | 45.08 | 35.40 | 43.87 | 57.32 | 47.06 | 58.14 | 47.81 |
Ontario: Eastern | 22.49 | 41.47 | 52.32 | 65.89 | 19.19 | 43.14 | 40.75 |
Dairy Region | Winter/Annual | Spring/Annual | Summer/Annual | Fall/Annual |
---|---|---|---|---|
BC: Fraser Valley | 0.9993 | 0.9993 | 0.9976 | 1.0038 |
BC: Vancouver Island | 1.0048 | 0.9988 | 0.9976 | 0.9988 |
Alberta: Central | 1.0045 | 0.9969 | 0.9959 | 1.0027 |
Alberta: Southern | 1.0037 | 0.9964 | 0.9961 | 1.0038 |
Saskatchewan: Central | 1.0044 | 0.9964 | 0.9964 | 1.0028 |
Manitoba: Interlake | 1.0055 | 0.9954 | 0.9962 | 1.0028 |
Manitoba: Eastern | 1.0043 | 0.9950 | 0.9969 | 1.0038 |
Ontario: Southern | 1.0005 | 0.9968 | 0.9981 | 1.0046 |
Ontario: Eastern | 1.0024 | 0.9962 | 0.9974 | 1.0040 |
Quebec: St. Lawrence Valley | 1.0063 | 0.9950 | 0.9961 | 1.0026 |
Quebec: Eastern Township | 1.0032 | 0.9955 | 0.9970 | 1.0043 |
New Brunswick: Central | 1.0046 | 0.9944 | 0.9972 | 1.0038 |
Nova Scotia Annapolis Valley | 1.0033 | 0.9966 | 0.9968 | 1.0033 |
Prince Edward Island: Central | 1.0026 | 0.9949 | 0.9972 | 1.0053 |
Year | TCCON Mean (ppb) | TROPOMI Mean (ppb) | Bias (ppb) | Correlation (r) | MAE (ppb) |
---|---|---|---|---|---|
2019 | 1827.11 | 1839.09 | 11.99 | −0.70 | 16.25 |
2020 | 1851.27 | 1862.12 | 10.85 | 0.52 | 13.14 |
2021 | 1863.91 | 1870.27 | 6.36 | 0.61 | 9.84 |
2022 | 1868.86 | 1865.40 | −3.46 | 0.22 | 9.89 |
2023 | 1888.36 | 1880.32 | −8.04 | 0.78 | 9.84 |
2024 | 1895.29 | 1886.47 | −8.83 | 0.84 | 9.78 |
Overall | 1865.80 | 1867.28 | 1.48 | 0.84 | 11.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prajesh, P.J.; Ragunath, K.; Gordon, M.; Neethirajan, S. Satellite-Based Seasonal Fingerprinting of Methane Emissions from Canadian Dairy Farms Using Sentinel-5P. Climate 2025, 13, 135. https://doi.org/10.3390/cli13070135
Prajesh PJ, Ragunath K, Gordon M, Neethirajan S. Satellite-Based Seasonal Fingerprinting of Methane Emissions from Canadian Dairy Farms Using Sentinel-5P. Climate. 2025; 13(7):135. https://doi.org/10.3390/cli13070135
Chicago/Turabian StylePrajesh, Padmanabhan Jagannathan, Kaliaperumal Ragunath, Miriam Gordon, and Suresh Neethirajan. 2025. "Satellite-Based Seasonal Fingerprinting of Methane Emissions from Canadian Dairy Farms Using Sentinel-5P" Climate 13, no. 7: 135. https://doi.org/10.3390/cli13070135
APA StylePrajesh, P. J., Ragunath, K., Gordon, M., & Neethirajan, S. (2025). Satellite-Based Seasonal Fingerprinting of Methane Emissions from Canadian Dairy Farms Using Sentinel-5P. Climate, 13(7), 135. https://doi.org/10.3390/cli13070135