Heat Waves in Portugal During the 2001–2024 Period: An Overview
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Intellectual Property
Ethics Approval and Consent to Participate
References
- DGS-INSA. Heat Wave of August 2003, Its Effects over Mortality in the Portuguese Population; General Health Directorate (DGS) and National Health Institute Dr. Ricardo Jorge (INSA): Lisbon, Portuguese, 2004. [Google Scholar]
- UNISDR United Nations Office for Disaster Risk Reduction. Sendai Framework for Disaster Risk Reduction (UNISDR) 2015–2030. Sendai. 2015. Available online: https://www.unisdr.org/files/4291_sendaiframeworkfordrren.pdf (accessed on 1 January 2025).
- WMO, World Meteorological Organization. Early Warnings for All Executive Action Plan; WMO: Geneva, Switzerland, 2022. [Google Scholar]
- Brimicombe, C.; Gao, C.; Otto, I.M. Vulnerable to heat stress: Gaps in international standard metric thresholds. Int. J. Biometeorol. 2024, 68, 2495–2506. [Google Scholar] [CrossRef]
- Shaposhnikov, D.; Revich, B.; Bellander, T.; Bedada, G.B.; Bottai, M.; Kharkova, T.; Kvasha, E.; Lezina, E.; Lind, T.; Semutnikova, E.; et al. Mortality related to air pollution with the Moscow heat wave and wildfire of 2010. Epidemiology 2014, 25, 359–364. [Google Scholar] [CrossRef]
- Pascal, M.; Lagarrigue, R.; Tabai, A.; Bonmarin, I.; Camail, S.; Laaidi, K.; Tertre, A.L.; Denys, S. Evolving heat waves characteristics challenge heat warning systems and prevention plans. Int. J. Biometeorol. 2021, 65, 1683–1694. [Google Scholar] [CrossRef]
- Ceccherini, G.; Russo, S.; Ameztoy, I.; Marchese, A.F.; Carmona-Moreno, C. Heat waves in Africa 1981–2015, observations and reanalysis. Nat. Hazards Earth Syst. Sci. 2017, 17, 115–125. [Google Scholar] [CrossRef]
- Igun, E.; Xu, X.; Hu, Y.; Jia, G. Strong heatwaves with widespread urban-related hotspots over Africa in 2019. Atmos. Ocean. Sci. Lett. 2022, 15, 100195. [Google Scholar] [CrossRef]
- Kunda, J.J.; Gosling, S.N.; Foody, G.M. The effects of extreme heat on human health in tropical Africa. Int. J. Biometeorol. 2024, 68, 1015–1033. [Google Scholar] [CrossRef]
- NASA. Heatwaves and Fires Scorch Europe, Africa, and Asia; NASA Earth Observatory: Washington, DC, USA, 2022. Available online: https://earthobservatory.nasa.gov/images/150083/heatwaves-and-fires-scorch-europe-africa-and-asia (accessed on 1 January 2025).
- Richards, M.; Huang, M.; Strickland, M.J.; Newman, A.J.; Warren, J.L.; D’Souza, R.; Chang, H.H.; Darrow, L.A. Acute association between heatwaves and stillbirth in six US states. Environ. Health 2022, 21, 59. [Google Scholar] [CrossRef] [PubMed]
- WMO, World Meteorological Organization. Heatwave. Available online: www.wmo.int/topics/heatwave (accessed on 15 April 2025).
- IPCC; Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; et al. (Eds.) Climate Change 2021, The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 1 May 2025).
- ILO. Ensuring Safety and Health at Work in a Changing Climate, Global Report; International Labour Organization: Geneva, Switzerland, 2024; ISBN 9789220405079 (web PDF). 9789220405062 (print). [Google Scholar]
- UNDRR. Global Assessment Report on Disaster Risk Reduction: Our World at Risk: Transforming Governance for a Resilient Future. United Nations Office for Disaster Risk Reduction. 2022. Available online: www.undrr.org/GAR2022 (accessed on 1 January 2025).
- Nelson, G.C.; Vanos, J.; Havenith, G.; Jay, O.; Ebi, K.L.; Hijmans, R.J. Global reductions in manual agricultural work capacity due to climate change. Glob. Change Biol. 2024, 30, e17142. [Google Scholar] [CrossRef] [PubMed]
- MedECC. Climate and Environmental Change in the Mediterranean Basin: Current Situation and Risks for the Future. First Mediterranean Assessment Report; Cramer, W., Guiot, J., Marini, K., Eds.; MedECC—Mediterranean Experts on Climate and Environmental Change: Marseille, France, 2020; ISBN 978-2-9577416-0-1. [Google Scholar] [CrossRef]
- Raimundo, A.M.M.; Oliveira, A.V.M.; Quintela, D.A.A. Assessment of Heat Stress Indoors Residential Buildings During a Summer Heat Wave. In Proceedings of the VI International Congress on Risks: Risks and Territorial Conflicts. From Natural Disasters to Geopolitical Tensions 2023, Coimbra, Portugal, 23–26 May 2023. [Google Scholar]
- Stone, B.; Gronlund, C.J.; Mallen, E.; Hondula, D.; O’Neill, M.S.; Rajput, M.; Grijalva, S.; Lanza, K.; Harlan, S.; Larsen, L.; et al. How Blackouts during Heat Waves Amplify Mortality and Morbidity Risk. Environ. Sci. Technol. 2023, 57, 8245–8255. [Google Scholar] [CrossRef]
- Basarin, B.; Lukić, T.; Matzarakis, A. Review of Biometeorology of Heatwaves and Warm Extremes in Europe. Atmosphere 2020, 11, 1276. [Google Scholar] [CrossRef]
- UNDRR. Heatwaves: Addressing a sweltering risk in Asia-Pacific. 2022. Available online: https://www.undrr.org/publication/heatwaves-addressing-sweltering-risk-asia-pacific (accessed on 1 January 2025).
- Chapman, C.L.; Schlader, Z.J. Extreme heat stress in older adults: A punch to the gut, kidneys or more? Exp. Physiol. 2024, 110, 11–12. [Google Scholar] [CrossRef] [PubMed]
- Brimicombe, C.; Runkle, J.D.; Tuholske, C.; Domeisen, D.I.V.; Gao, C.; Toftum, J.; Otto, I.M. Preventing heat-related deaths: The urgent need for a global early warning system for heat. PLoS Climate 2024, 3, e0000437. [Google Scholar] [CrossRef]
- Eggeling, J.; Gao, C.; An, D.; Cruz-Cano, R.; He, H.; Zhang, L.; Wang, Y.; Sapkota, A. Spatiotemporal link between El Nino Southern Oscillation (ENSO), extreme heat, and thermal stress in the Asia-Pacific region. Sci. Rep. 2024, 14, 7448. [Google Scholar] [CrossRef] [PubMed]
- Hanse, B.; Alam, S.M.; Krishnan, S.; Bhattacharjee, M.; Sinha, A.; Sundareswaran, L.; Kalita, J. Occupational heat stress its health impacts an overview of research status need for further research in Southeast Asia with special emphasis on mitigation strategies in North East India. Int. J. Biometeorol. 2024, 68, 2477–2493. [Google Scholar] [CrossRef]
- Boretti, A. Revisiting Masselot et al. (2023): Assessing the share of excess mortality linked to cold and hot weather in Europe. Int. J. Biometeorol. 2024, 68, 527–533. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, G.; Keppas, S.C.; Parliari, D.; Kontos, S.; Papadogiannaki, S.; Melas, D. Future Projections of Heat Waves and Associated mortality Risk in a Coastal Mediterranean City. Sustainability 2024, 16, 1072. [Google Scholar] [CrossRef]
- Bose-O’Reilly, S.; Daanen, H.; Deering, K.; Gerrett, N.; Huynen, M.M.T.E.; Lee, J.; Karrasch, S.; Matthies-Wiesler, F.; Mertes, H.; Schoierer, J.; et al. COVID-19 and heat waves: New challenges for healthcare systems. Environ. Res. 2021, 198, 111153. [Google Scholar] [CrossRef]
- Oliveira, A.V.M.; Nunes, T.S.; Yermakova, I.; Raimundo, A.M.; Gaspar, A.R.; Quintela, D.A. Heat Waves in Portugal during the 2001–2018 period. In Proceedings of the ICB 2021, 22nd International Congress of Biometeorology, International Society of Biometeorology, Virtual, 21–22 September 2021. [Google Scholar]
- Oliveira, A.V.M.; Raimundo, A.M.M.; Quintela, D.A.A. Heat Waves effects on people: Should we be concerned? In International Symposium on Occupational Safety and Hygiene: Proceedings Book of the SHO; CRC Press: Boca Raton, FL, USA, 2023; Volume 1, pp. 40–42. ISBN 978-989-54863-4-2. [Google Scholar]
- Oliveira, A.V.M.; Gao, C.; Eggeling, J.; Raimundo, A.M.M.; Quintela, D.A.A. Heat Waves in Portugal During the First 22 Years of the XXI Century: An Analysis. In Proceedings of the VI International Congress on Risks: Risks and Territorial Conflicts. From Natural Disasters to Geopolitical Tensions, Coimbra, Portugal, 23–26 May 2023. [Google Scholar]
- Di Napoli, C.; Pappenberger, F.; Cloke, H.L. Verification of Heat Stress Thresholds for a Health-Based Heat-Wave Definition. J. Appl. Meteorol. Climatol. 2019, 58, 1177–1194. [Google Scholar] [CrossRef]
- Kanti, F.S.; Alari, A.; Chaix, B.; Benmarhnia, T. Comparison of various heat waves definitions and the burden of heat-related mortality in France: Implications for existing early warning systems. Environ. Res. 2022, 215, 114359. [Google Scholar] [CrossRef]
- Boni, Z.; Bienkowska, Z.; Chwalczyk, F.; Jancewicz, B.; Marginean, I.; Serrano, P.Y. What is a heat (wave)? An interdisciplinary perspective. Clim. Change 2023, 176, 129. [Google Scholar] [CrossRef]
- Copernicus. Copernicus, Europe’s eyes on Earth, Climate Change Service. Programme of the European Union. Available online: https://climate.copernicus.eu/ (accessed on 10 April 2025).
- Chen, K.; Bi, J.; Chen, J.; Chen, X.; Huang, L.; Zhou, L. Influence of heat wave definitions to the added effect of heat waves on daily mortality in Nanjing, China. Sci. Total Environ. 2015, 506–507, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Perkins, S.E. A review on the scientific understanding of heatwaves—Their measurement, driving mechanisms, and changes at the global scale. Atmos. Res. 2015, 164–155, 242–267. [Google Scholar] [CrossRef]
- Brimicombe, C.; Porter, J.J.; Di Napoli, C.; Pappenberger, F.; Cornforth, R.; Petty, C.; Cloke, H.L. Heatwaves: An invisible risk in UK policy and research. Environ. Sci. Policy 2021, 116, 1–7. [Google Scholar] [CrossRef]
- IPMA. In 2001–2024 Annual Climatological Bulletins. Portuguese Institute for Sea and Atmosphere; IPMA: Lisbon, Portugal, 2025.
- Garcia, C.P.; Nogueira, P.; Falcão, J.M. Heat Wave of June of 1981, Effects on Mortality. Rev. Port. Saúde Pública 1999, 1, 67–77. (In Portuguese) [Google Scholar]
- Calado, R.; Nogueira, P.J.; Catarino, J.; Paixão, E.J.; Botelho, J.; Carreira, M.; Falcão, J.M. The august 2003 heat wave and its effects on the mortality of the Portuguese population. Rev. Port. Saúde Pública 2004, 22, 7–20. (In Portuguese) [Google Scholar]
- Paixão, E.J.; Nogueira, P.J. Effects of a Heat Wave on Mortality. Rev. Port. Saúde Pública 2003, 21, 41–54. (In Portuguese) [Google Scholar]
- WMO-WHO. Heatwaves and Health: Guidance on Warning-System Development; World Meteorological Organization and World Health Organization, McGregor, G.R., Bessemoulin, P., Ebi, K.L., Menne, B., Eds.; WMO Report n° 1142; WMO: Geneva, Switzerland, 2015. [Google Scholar]
- Turco, M.; Palazzi, E.; von Hardenberg, J.; Provenzale, A. Observed climate change hotspots. Geophys. Res. Lett. 2015, 42, 3521–3528. [Google Scholar] [CrossRef]
- Cardoso, R.M.; Lima, D.C.A.; Soares, P.M.M. How persistent and hazardous will extreme temperature events become in a warming Portugal? Weather Clim. Extrem. 2023, 41, 100600. [Google Scholar] [CrossRef]
- Tong, S.; FitzGerald, G.; Wang, X.Y.; Aitken, P.; Tippett, V.; Chen, D.; Wang, X.; Guo, Y. Exploration of the health risk-based definition for heatwave: A multi-city study. Environ. Res. 2015, 142, 696–702. [Google Scholar] [CrossRef]
- Zuo, J.; Pullen, S.; Palmer, J.; Bennettes, H.; Chileshe, N. Impacts of heat waves and corresponding measures: A review. J. Clean. Prod. 2015, 92, 1–12. [Google Scholar] [CrossRef]
- Xu, Z.; FitzGerald, G.; Guo, Y.; Jalaludin, B.; Tong, S. Impact of heatwave on mortality under different heatwave definitions: A systematic review and meta-analysis. Environ Int. 2016, 89–90, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, S.; Han, J.; Zhou, L.; Liu, Y.; Yang, L.; Zhang, J.; Zhang, Y. Impact of heat waves on nonaccidental deaths in Jinan, China, and associated risk factors. Int. J. Biometeorol. 2016, 60, 1367–1375. [Google Scholar] [CrossRef]
- Pogačar, T.; Žnidaršič, Z.; Bogataj, L.K.; Flouris, A.D.; Poulianiti, K.; Črepinšek, Z. Heat Waves Occurrence and Outdoor Workers’ Self-assessment of Heat Stress in Slovenia and Greece. Int. J. Environ. Res. Public Health 2019, 16, 597. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.H.; Lee, K.S.; Bae, H.J.; Kim, D.; Yoo, H.; Park, S.; Hong, Y.C. Estimation of heat-related deaths during heat wave episodes in South Korea (2006–2017). Int. J. Biometeorol. 2019, 63, 1621–1629. [Google Scholar] [CrossRef]
- Tran, D.N.; Doan, V.Q.; Nguyen, V.T.; Khan, A.; Thai, P.K.; Cunrui, H.; Chu, C.; Schak, E.; Phung, D. Spatial patterns of health vulnerability to heatwaves in Vietnam. Int. J. Biometeorol. 2020, 64, 863–872. [Google Scholar] [CrossRef]
- Koppe, C.; Kovats, S.; Jendritzky, G.; Menne, B. Heat-Waves: Risks and Responses, Health and Global Environmental Change; Series n° 2. World Health Organization: Geneva, Switzerland, 2004; Available online: https://www.who.int/publications/i/item/heat-waves-risks-and-responses (accessed on 1 January 2025).
- Vandentorren, S.; Bretin, P.; Zeghnoun, A.; Mandereau-Bruno, L.; Croisier, A.; Cochet, C.; Ribéron, J.; Siberan, I.; Declercq, B.; Ledrans, M. August 2003 Heat Wave in France: Risk Factors for Death of Elderly People Living at Home. Eur. J. Public Health 2006, 16, 583–591. [Google Scholar] [CrossRef]
- Vellei, M.; Ramallo-González, A.P.; Coley, D.; Lee, J.; Gabe-Thomas, E.; Lovett, T.; Natarajan, S. Overheating in vulnerable and non-vulnerable households. Build. Res. Inf. 2017, 45, 102–118. [Google Scholar] [CrossRef]
- Zhang, Y.; Nitschke, M.; Krackowizer, A.; Dear, K.; Pisaniello, D.; Weinstein, P.; Tucker, G.; Shakib, S.; Bi, P. Risk factors for deaths during the 2009 heat wave in Adelaide, Australia: A matched case-control study. Int. J. Biometeorol. 2017, 61, 35–47. [Google Scholar] [CrossRef]
- Mayrhuber, E.A.-S.; Dückers, M.L.A.; Wallner, P.; Arnberger, A.; Allex, B.; Wiesböck, L.; Wanka, A.; Kolland, F.; Eder, R.; Hutter, H.-P.; et al. Vulnerability to heatwaves and implications for public health interventions—A scoping review. Environ. Res. 2018, 166, 42–54. [Google Scholar] [CrossRef]
- Nicholls, L.; Strengers, Y. Heatwaves, cooling and young children at home: Integrating energy and health objectives. Energy Res. Soc. Sci. 2018, 39, 1–9. [Google Scholar] [CrossRef]
- Can, G.; Sahin, Ü.; Sayılı, U.; Dubé, M.; Kara, B.; Acar, H.C.; Barıs Inan, B.; Sayman, Ö.A.; Lebel, G.; Bustinza, R.; et al. Excess Mortality in Istanbul during Extreme Heat Waves between 2013 and 2017. Int. J. Environ. Res. Public Health 2019, 16, 4348. [Google Scholar] [CrossRef] [PubMed]
- Kownacki, K.L.; Gao, C.; Kuklane, K.; Wierzbicka, A. Heat Stress in Indoor Environments of Scandinavian Urban Areas: A Literature Review. Int. J. Environ. Res. Public Health 2019, 16, 560. [Google Scholar] [CrossRef]
- Calleja-Agius, J.; England, K.; Calleja, N. The effect of global warming on mortality. Early Hum. Dev. 2021, 155, 105222. [Google Scholar] [CrossRef]
- Foster, J.; Smallcombe, J.W.; Hodder, S.; Jay, O.; Flouris, A.; Nybo, L.; Havenith, G. An advanced empirical model for quantifying the impact of heat and climate change on human physical work capacity. Int J Biometeorol. 2021, 65, 1215–1229. [Google Scholar] [CrossRef]
- Ballester, J.; Quijal-Zamorano, M.; Turrubiates, R.F.M.; Pegenaute, F.; Herrmann, F.R.; Robine, J.M.; Basagana, X.; Tonne, C.; Antó, J.M.; Achebak, H. Heat-related mortality in Europe during the summer of 2022. Nat. Med. 2023, 29, 1857–1866. [Google Scholar] [CrossRef] [PubMed]
- Masselot, P.; Mistry, M.; Vanoli, J.; Schneider, R.; Iungman, T.; Garcia-Leon, D.; Ciscar, J.C.; Feyen, L.; Orru, H.; Urban, A.; et al. Excess mortality attributed to heat and cold: A health impact assessment study in 854 cities in Europe. Lancet Planet Health 2023, 7, e271–e281. [Google Scholar] [CrossRef]
- Moran, D.S.; DeGroot, D.W.; Potter, A.W.; Charkoudian, N. Beating the heat: Military training and operations in the era of global warming. J. Appl. Physiol. 2023, 135, 60–67. [Google Scholar] [CrossRef]
- Sheng, M.; Reiner, M.; Sun, K.; Hong, T. Assessing thermal resilience of an assisted living facility during heat waves and cold snaps with power outages. Build. Environ. 2023, 230, 110001. [Google Scholar] [CrossRef]
- Xu, Z.; Watzek, J.T.; Phung, D.; Oberai, M.; Rutherford, S.; Bach, A.J.E. Heat, heatwaves, and ambulance service use: A systematic review and meta-analysis of epidemiological evidence. Int. J. Biometeorol. 2023, 67, 1523–1542. [Google Scholar] [CrossRef]
- Zhang, G.; Han, L.; Yao, J.; Yang, J.; Xu, Z.; Cai, X.; Huang, J.; Pei, L. Assessing future heat stress across China: Combined effects of heat and relative humidity on mortality. Front. Public Health 2023, 11, 1282497. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, X.; Zhou, T.; Zhang, W.; Hu, S.; Clark, R. Understanding and Attribution of Extreme Heat and Drought Events in 2022, Current Situation and future Challenges. Adv. Atmos. Sci. 2023, 40, 1941–1951. [Google Scholar] [CrossRef]
- Copernicus-WMO (2025) Copernicus Climate Change Service and World Meteorological Organization, European State of the Climate. 2024. Available online: https://climate.copernicus.eu/esotc/2024 (accessed on 16 April 2025).
- Kovats, S.; Wolf, T.; Menne, B. Heatwave of August 2003 in Europe: Provisional estimates of the impact on mortality. Eurosurveillance Wkly. 2004, 8, 2409. [Google Scholar] [CrossRef]
- Le Tertre, A.; Lefranc, A.; Eilstein, D.; Declercq, C.; Medina, S.; Blanchard, M. Impact of the 2003 heatwave on all-cause mortality in 9 French cities. Epidemiology 2006, 17, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Robine, J.M.; Cheung, S.L.K.; Le Roy, S.; Van Oyen, H.; Griffiths, C.; Michel, J.P.; Herrmann, F.R. Death toll exceeded 70,000 in Europe during the summer of 2003. Comptes Rendus Biol. 2008, 331, 171–178. [Google Scholar] [CrossRef]
- Royé, D.; Ínigues, C. Heat-attributable Mortality in the Summer of 2022 in Spain. Epidemiology 2023, 34, e5–e6. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014, Synthesis Report. Contribution of Working Groups I 2021, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2021. [Google Scholar]
- IPCC. Global Warming of 1.5 °C; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- van Schönthaler, P.K.; von Andrian-Werburg, S. Monitoring Report 2019 on the German Strategy for Adaptation to Climate Change—Report of the Interministerial Working Group on Adaptation Strategy of the Federal Government; Umweltbundesamt: Dessau-Rosslau, Germany, 2019. [Google Scholar]
- Tobias, A.; Ínigues, C.; Royé, D. From Research to the Development of an Innovative Application for monitoring Heat-Related Mortality in Spain. Environ. Health 2023, 1, 416–419. [Google Scholar] [CrossRef]
- United Nations. Demographic Yearbook of 2022. In Demographic Yearbook, Seventy-Third Issue; United Nations: New York, NY, USA, 2023; ISBN 978-92-1-300083-0. [Google Scholar]
- Oudin, Å.D.; Schifano, P.; Asta, F.; Lallo, A.; Michelozzi, P.; Rocklöv, J.; Forsberg, B. The effect of heat waves on mortality in susceptible groups: A cohort study of a Mediterranean and a northern European City. Environ. Health 2015, 2025, 14–30. [Google Scholar]
- Ho, J.Y.; Shi, Y.; Lau, K.K.L.; Ng, E.Y.Y.; Ren, C.; Goggins, W.B. Urban heat island effect-related mortality under extreme heat and non-extreme heat scenarios: A 2010-2019 case study in Hong Kong. Sci. Total Environ. 2023, 858, 159791. [Google Scholar] [CrossRef]
- Błażejczyk, K.; Twardosz, R.; Wałach, P.; Czarnecka, K.; Błażejczyk, A. Heat strain and mortality effects of prolonged central European heat wave—An example of June 2019 in Poland. Int. J. Biometeorol. 2022, 66, 149–161. [Google Scholar] [CrossRef]
- United Nations. World Population Prospects 2024, Summary of Results; United Nations: New York, NY, USA, 2024; ISBN 978-92-1-003169-1. [Google Scholar]
HW | Ref. Code | Period | Tamin [°C] | District, Day | Tamáx [°C] | District, Day |
---|---|---|---|---|---|---|
1 | 7+8: 2003 | 29 July–14 August | NA | NA | 47.3 | Beja, 1 August |
2 | 5+6: 2005 | 30 May–11 June | 0.6 | Guarda, 16 May | 42.0 | Santarém, 17 June |
3 | 6: 2005 | 15–22 June | 6.0 | Vila Real, 8 June | 42.0 | Santarém, 17 June |
4 | 5+6: 2006 | 24 May–8 June | 1.8 | Bragança, 23 May | 39.1 | Coimbra, 29 May |
5 | 7: 2006 | 7–18 July | 4.6 | Viana do Castelo, 22 July | 43.1 | Beja, 11 July |
6 | 8: 2006 | 2–13 August | 6.0 | Viana do Castelo, 15 August | 42.3 | Coimbra, 6 August |
7 | 8+9: 2006 | 27 August–9 September | 1.4 | Viana do Castelo, 16 September | 43.8 | Santarém, 4 September |
8 | 3: 2009 | 8–28 March | −3.3 | Guarda, 30 March | 29.9 | Setúbal, 27 March |
9 | 5: 2009 | 2–8 May | 0.4 | Guarda, 15 May | 37.6 | Santarém, 31 May |
10 | 5+6: 2009 | 27 May–3 June | 0.4 | Guarda, 15 May | 41.3 | Beja, 22 June |
11 | 6: 2009 | 10–22 June | 3.9 | Guarda, 9 June | 41.3 | Beja, 22 June |
12 | 8: 2009 | 11–19 August | 6.0 | Guarda, 25 August | 41.6 | Beja, 31 August |
13 | 9: 2009 | 6–28 September | 4.3 | Guarda, 17 September | 36.6 | Évora, 9 September |
14 | 10: 2009 | 10–18 October | 0.4 | Bragança, 19 October | 31.6 | Évora, 13 October |
15 | 5: 2010 | 17–23 May | −2.1 | Guarda, 5 May | 32.1 | Porto, 22 May |
16 | 7: 2010 | 3–11 July | 7.7 | Bragança, 15 July | 43.0 | Santarém, 6 July |
17 | 7: 2010 | 24–31 July | 7.7 | Bragança, 15 July | 43.0 | Santarém, 6 July |
18 | 8: 2010 | 3–11 August | 8.2 | Guarda, 14 August | 42.3 | Beja, 11 August |
19 | 4: 2011 | 5–9 April | 2.9 | Guarda, 3 April | 34.6 | Viseu, 9 april |
20 | 5: 2011 | 9–19 May | 3.5 | Guarda, 4 May | 35.8 | Viseu, 25 May |
21 | 5: 2011 | 20–30 May | 3.5 | Guarda, 4 May | 35.8 | Viseu, 25 May |
22 | 9+10: 2011 | 26 September–6/7 October | 0.4 | Guarda, 25 October | 36.6 | Évora, 15 October |
23 | 10: 2011 | 9–21 October | 0.4 | Guarda, 25 October | 36.6 | Évora, 15 October |
24 | 3: 2012 | 8–15 March | −3.8 | Guarda, 21 March | 28.7 | Coimbra, 27 March |
25 | 3+4: 2012 | 23 March–2 April | −3.8 | Guarda, 21 March | 28.7 | Coimbra, 27 March |
26 | 5: 2012 | 9–17 May | −0.4 | Guarda, 1 May | 38.8 | Beja, 17 May |
27 | 8+9: 2012 | 31 August–7 September | 3.9 | Guarda, 26 September | 44.3 | Portalegre, 11 August |
28 | 9: 2012 | 14–20 September | 3.9 | Guarda, 26 September | 36.4 | Coimbra, 7 September |
29 | 6: 2013 | 22–30 June | 2.8 | Guarda, 8 June | 41.5 | Setúbal, 24 and Viana do Castelo, 30 June |
30 | 7: 2013 | 3–13 July | 5.6 | Bragança, 29 July | 44.0 | Santarém, 7 July |
31 | 8: 2013 | 9–15 August | 6.0 | Bragança, 3 August | 43.4 | Coimbra, 10 August |
32 | 8+9: 2013 | 26 August–3 September | 4.6 | Vila Real, 8 September | 43.4 | Coimbra, 10 August |
33 | 4: 2014 | 5–17 April | −0.5 | Guarda, 25 April | 31.9 | Viseu, 18 April |
34 | 4+5: 2014 | 28 April–18 May | −0.5 | Guarda, 25 April | 34.8 | Santarém, 16 May |
35 | 6: 2014 | 11–17 June | 1.4 | Vila Real, 10 June | 41.3 | Setúbal, 15 June |
36 | 10: 2014 | 17–27 October | 3.0 | Vila Real, 11 October | 35.6 | Faro, 23 October |
37 | 3+4: 2015 | 27 March–7 April | −4.3 | Bragança, 15 March | 32.9 | Setúbal, 2 April |
38 | 5: 2015 | 9–15 May | −0.6 | Viana do Castelo, 6 May | 40.0 | Beja, 14 May |
39 | 5: 2015 | 21–31 May | −0.6 | Viana do Castelo, 6 May | 40.0 | Beja, 14 May |
40 | 6: 2015 | 3–10 June | 3.1 | Viana do Castelo, 2 June | 43.2 | Beja, 29 June |
41 | 6: 2015 | 25–30 June | 3.1 | Viana do Castelo, 2 June | 43.2 | Beja, 29 June |
42 | 7: 2015 | 5–10 and 13–18 July | 5.9 | Vila Real, 2 July | 42.1 | Bragança, 16 July |
43 | 11: 2015 | 6–14 November | −5.0 | Viana do Castelo, 30 November | 28.5 | Évora, 8 November |
44 | 7: 2016 | 14–19 July | 6.2 | Vila Real, 13 July | 43.3 | Santarém, 26 July |
45 | 7: 2016 | 23–30 July | 6.2 | Vila Real, 13 July | 43.3 | Santarém, 26 July |
46 | 8: 2016 | 5–13 August | 6.7 | Bragança, 18 August | 44.8 | Évora, 8 August |
47 | 8+9: 2016 | 30 August–7 September | 3.2 | Viana do Castelo, 9 September | 45.0 | Coimbra, 7 September |
48 | 10+11: 2016 | 26 October–2 November | −3.8 | Bragança, 8 November | 34.0 | Évora, 6 October |
49 | 4: 2017 | 2–4; 2–13; 15–24; 2–13 April | −3.3 | Vila Real, 27 april | 32.9 | Faro, 18 April |
50 | 5: 2017 | 20–27 May | −1.2 | Guarda, 1 May | 37.9 | Viseu, 24 May |
51 | 6: 2017 | 7–24 June | 0.9 | Viana do Castelo, 5 June | 44.9 | Setúbal, 17 June |
52 | 7: 2017 | 12–17 July | 3.5 | Guarda, 1 July | 46.2 | Beja, 13 July |
53 | 10: 2017 | 1–16 Outubro | −0.3 | Viana do Castelo, 23 October | 38.5 | Santarém, 6 October |
54 | 10: 2017 | 23–30 October | −0.3 | Viana do Castelo, 23 October | 38.5 | Santarém, 6 October |
55 | 11: 2017 | 16–24 November | −5.6 | Bragança, 30 November | 26.2 | Évora, 20 November |
56 | 6: 2018 | 15–25 June | 3.2 | Guarda, 1 June; Viana do Castelo, 16 June | 40.9 | Santarém, 18 June |
57 | 8: 2018 | 1–6 August | 6.2 | Viana do Castelo, 8 August | 46.8 | Santarém, 4 August |
58 | 9: 2018 | 10–17 September | 3.9 | Viana do Castelo, 20 September | 41.6 | Coimbra, 1 September |
59 | 9+10: 2018 | 18 September–6 October | −3.1 | Guarda, 28 October | 41.6 | Coimbra, 1 September |
60 | 10: 2018 | 1–6 October | −3.1 | Guarda, 28 October | 35.6 | Setúbal, 2 October |
61 | 2: 2019 | 21–28 February | −5.0 | Guarda, 3 and 4 February | 25.8 | Viseu, 26 February |
62 | 3: 2019 | 22–31 March | −3.3 | Bragança, 14 and 15 March | 27.8 | Viana do Castelo, 24 March |
63 | 5+6: 2019 | 22 May–3 June | −1.0 | Viana do Castelo, 19 May | 38.7 | Portalegre, 29 June |
64 | 8+9: 2019 | 29 August–6 September | 3.0 | Vila Real, 28 September | 40.7 | Santarém, 4 September |
65 | 2: 2020 | 14–25 February | −2.9 | Bragança, 19 February | 26.9 | Coimbra, 23 February |
66 | 5: 2020 | 13–31 May | 3.3 | Bragança, 10 May | 37.3 | Viseu, 28 May |
67 | 6: 2020 | 4–13 June | 3.1 | Bragança, 19 June | 41.0 | Setúbal and Évora, 22 June |
68 | 6: 2020 | 9–18 June | 3.1 | Bragança, 19 June | 41.0 | Setúbal and Évora, 22 June |
69 | 6:2020 | 25–31 June | 3.1 | Bragança, 19 June | 41.0 | Setúbal and Évora, 22 June |
70 | 8: 2020 | 4–10 August | 3.9 | Bragança, 30 August | 41.1 | Viseu, 6 August |
71 | 9: 2020 | 2–13 September | 3.2 | Viana do Castelo, 30 September | 41.6 | Santarém, 6 September |
72 | 8: 2021 | 10–17 August | 5.6 | Viana do Castelo, 20 August | 44.3 | Évora, 14 August |
73 | 10: 2021 | 10–15 October | 0.2 | Bragança, 24 and 28 October | 34.2 | Évora, 7 October |
74 | 12: 2021+1: 2022 | 26 December–3 January | −7.5 | Bragança, 30 January | 26.4 | Beja, 31 December |
75 | 5: 2022 | 3–14 May | 0.5 | Viana do Castelo, 1 May | 38.2 | Viseu, 28 May |
76 | 6: 2022 | 9–17 June | 1.5 | Viana do Castelo, 26 June | 42.3 | Viseu, 13 June |
77 | 7: 2022 | 2–18 July | 5.7 | Viana do Castelo, 1 July | 47.0 | Viseu, 14 July |
78 | 7+8: 2022 | 29 July–14 August | 5.7 | Viana do Castelo, 1 July | 47.0 | Viseu, 14 July |
79 | 8: 2022 | 20–29 August | 6.4 | Bragança, 31 August | 44.0 | Viseu, 1 August |
80 | 10: 2022 | 2–8 October | 1.6 | Guarda, 31 October | 34.8 | Santarém, 4 October |
81 | 4: 2023 | 2–11 April | −2.9 | Bragança, 13 April | 36.9 | Évora, 27 April |
82 | 4: 2023 | 15–21 Arpil | −2.9 | Bragança, 13 April | 36.9 | Évora, 27 April |
83 | 4+5: 2023 | 23 April–9 May | −2.9 | Bragança, 13 April | 36.9 | Évora, 27 April |
84 | 6: 2023 | 23–28 June | 5.9 | Viana do Castelo, 11 June | 42.7 | Évora, 25 June |
85 | 8: 2023 | 5–11 August | 5.8 | Guarda, 27 August | 46.4 | Santarém, 7 August |
86 | 8: 2023 | 18–25 August | 5.8 | Guarda, 27 August | 46.4 | Santarém, 7 August |
87 | 9+10: 2023 | 24 September–13 October | 1.7 | Viana do Castelo, 23 September | 38.5 | Santarém and Évora, 30 September |
88 | 1+2: 2024 | 21 January–1,3,4 and 5 February | −4.9 | Bragança, 20 Juanuary | 26.3 | Faro, 25 January |
89 | 2: 2024 | 12–20 and 16–21 February | −3.2 | Guarda, 27 February | 25.9 | Santarém, 20 February |
90 | 3: 2024 | 14–24 March | −3.5 | Guarda, 26 March | 31.5 | Viana do Castelo, 22 March |
91 | 4: 2024 | 10–24 April | −2.0 | Guarda, 9 April | 33.6 | Viseu, 14 April |
92 | 5: 2024 | 7–12 May | −0.8 | Guarda, 1 May | 39.5 | Beja, 31 May |
93 | 5+6: 2024 | 27 May–7 June | −0.8 | Guarda, 1 May | 39.8 | Santarém, 24 June |
94 | 7: 2024 | 23–28 July | 5.4 | Bragança, 7 July | 45.5 | Santarém, 23 July |
95 | 8: 2024 | 15–21 August | 5.8 | Bragança, 28 August | 45.6 | Viseu, 10 August |
Reference | Ref. | Type of Study | Human Vulnerability | Human Death | Human Health | Human Hot Stress | Human Productivity | Social Issues | Buildings’ Overheating | Energy Consumption | Water Consumption | Agricultural Production | Livestock Production | Florest | Wild Animals | Other Impacts |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Koppe et al., 2004 | [53] | Data analysis | ● | ● | ● | ● | ||||||||||
Vandentorren et al., 2006 | [54] | Inquiries & Data analysis | ● | ● | ||||||||||||
Shaposhnikov et al., 2014 | [5] | Data analysis | ● | ● | ||||||||||||
Chen et al., 2015 | [36] | Data analysis | ● | ● | ||||||||||||
Tong et al., 2015 | [46] | Data analysis | ● | ● | ||||||||||||
WMO-WHO, 2015 | [43] | Systematic review | ● | ● | ● | ● | ● | ● | ||||||||
Zuo et al., 2015 | [47] | Systematic review | ● | ● | ● | ● | ● | ● | ● | |||||||
Zhang et al., 2016 | [49] | Data analysis | ● | ● | ||||||||||||
Vellei et al., 2017 | [55] | Field measurement | ● | ● | ||||||||||||
Zhang et al., 2017 | [56] | Inquiries | ● | ● | ||||||||||||
Mayrhuber et al., 2018 | [57] | Systematic review | ● | ● | ||||||||||||
Nicholls and Strengers, 2018 | [58] | Experienced knowledge | ● | ● | ||||||||||||
Can et al., 2019 | [59] | Data analysis | ● | ● | ||||||||||||
Di-Napoli et al., 2019 | [32] | Data analysis | ● | ● | ||||||||||||
Kownacki et al., 2019 | [60] | Systematic review | ● | ● | ● | ● | ● | ● | ||||||||
Lim et al., 2019 | [51] | Data analysis | ● | ● | ||||||||||||
Pogacar et al., 2019 | [50] | Data analysis & Inquiries | ● | ● | ||||||||||||
Basarin et al., 2020 | [20] | Systematic review | ● | ● | ||||||||||||
Calleja-Agius et al., 2021 | [61] | Systematic review | ● | ● | ||||||||||||
Foster et al., 2021 | [62] | Laboratory measurement | ● | ● | ||||||||||||
Pascal et al., 2021 | [6] | Data analysis | ● | ● | ● | ● | ||||||||||
UNDRR, 2022a | [15] | Data analysis | ● | ● | ● | ● | ● | ● | ● | |||||||
Ballester et al., 2023 | [63] | Data analysis | ● | ● | ||||||||||||
Masselot et al., 2023 | [64] | Data analysis | ● | ● | ||||||||||||
Moran et al., 2023 | [65] | Data analysis | ● | ● | ||||||||||||
Raimundo et al., 2023 | [18] | Numerical simulation | ● | ● | ● | |||||||||||
Sheng et al., 2023 | [66] | Numerical simulation | ● | ● | ||||||||||||
Stone et al., 2023 | [19] | Numerical simulation | ● | ● | ● | |||||||||||
Xu et al., 2023 | [67] | Systematic review | ● | ● | ||||||||||||
Zhang et al., 2023b | [68] | Data analysis | ● | ● | ● | |||||||||||
Zhang et al., 2023a | [69] | Systematic review | ● | ● | ● | ● | ||||||||||
Kunda, IJB-68, 2024 | [9] | Systematic review | ● | ● | ● | |||||||||||
Copernicus-WMO, 2025 | [70] | Data analysis | ● | ● | ● | ● |
Observed Deaths (OD) | Expected Deaths (ED) | Excess of Deaths (EoD) | OD/ED | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
W* | M* | T* | W* | M* | T* | W* | M* | T* | W* | M* | T* | |
Aveiro | 147.0 | 159.0 | 306.0 | 127.9 | 131.3 | 258.9 | 19.1 | 27.7 | 47.1 | 1.15 | 1.21 | 1.18 |
Beja | 90.0 | 87.0 | 177.0 | 55.8 | 58.6 | 114.3 | 34.2 | 28.4 | 62.7 | 1.61 | 1.48 | 1.55 |
Braga | 193.0 | 204.0 | 397.0 | 128.7 | 130.8 | 259.1 | 64.3 | 73.2 | 137.9 | 1.50 | 1.56 | 1.53 |
Bragança | 74.0 | 49.0 | 123.0 | 45.0 | 54.1 | 98.7 | 29.0 | −5.1 | 24.3 | 1.64 | 0.91 | 1.25 |
C. Branco | 152.0 | 94.0 | 246.0 | 68.7 | 68.2 | 136.5 | 83.3 | 25.8 | 109.5 | 2.21 | 1.38 | 1.80 |
Coimbra | 175.0 | 125.0 | 300.0 | 115.8 | 106.1 | 221.8 | 59.2 | 18.9 | 78.2 | 1.51 | 1.18 | 1.35 |
Évora | 107.0 | 80.0 | 187.0 | 53.8 | 47.9 | 101.6 | 53.2 | 32.1 | 85.4 | 1.99 | 1.67 | 1.84 |
Faro | 169.0 | 166.0 | 335.0 | 100.8 | 125.1 | 225.4 | 68.2 | 40.9 | 109.6 | 1.68 | 1.33 | 1.49 |
Guarda | 132.0 | 80.0 | 212.0 | 61.3 | 53.3 | 114.4 | 70.7 | 26.7 | 97.6 | 2.15 | 1.50 | 1.85 |
Leira | 129.0 | 126.0 | 255.0 | 91.8 | 107.9 | 198.9 | 37.2 | 18.1 | 56.1 | 1.41 | 1.17 | 1.28 |
Lisboa | 761.0 | 598.0 | 1359.0 | 479.4 | 484.7 | 963.1 | 281.6 | 113.3 | 395.9 | 1.59 | 1.23 | 1.41 |
Portalegre | 101.0 | 75.0 | 176.0 | 44.5 | 48.8 | 93.3 | 56.5 | 26.2 | 82.7 | 2.27 | 1.54 | 1.89 |
Porto | 414.0 | 379.0 | 793.0 | 275.7 | 334.2 | 609.8 | 138.3 | 44.8 | 183.2 | 1.50 | 1.13 | 1.30 |
Santarém | 212.0 | 187.0 | 399.0 | 125.5 | 126.6 | 252.1 | 86.5 | 60.4 | 146.9 | 1.69 | 1.48 | 1.58 |
Setúbal | 278.0 | 226.0 | 504.0 | 159.4 | 175.0 | 334.3 | 118.6 | 51.0 | 169.7 | 1.74 | 1.29 | 1.51 |
V. Castelo | 98.0 | 78.0 | 176.0 | 59.2 | 73.4 | 131.9 | 38.8 | 4.6 | 44.1 | 1.66 | 1.06 | 1.33 |
Vila Real | 76.0 | 83.0 | 159.0 | 55.6 | 73.1 | 127.8 | 20.4 | 9.9 | 31.2 | 1.37 | 1.14 | 1.24 |
Viseu | 182.0 | 166.0 | 348.0 | 100.3 | 100.2 | 200.3 | 81.7 | 65.8 | 147.7 | 1.81 | 1.66 | 1.74 |
TOTAL | 3490.0 | 2962.0 | 6452.0 | 2149.2 | 2299.3 | 4442.2 | 1340.8 | 662.7 | 2009.8 | 1.62 | 1.29 | 1.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, A.V.M.; Raimundo, A.M.; Gaspar, A.R.; Quintela, D.A. Heat Waves in Portugal During the 2001–2024 Period: An Overview. Climate 2025, 13, 108. https://doi.org/10.3390/cli13060108
Oliveira AVM, Raimundo AM, Gaspar AR, Quintela DA. Heat Waves in Portugal During the 2001–2024 Period: An Overview. Climate. 2025; 13(6):108. https://doi.org/10.3390/cli13060108
Chicago/Turabian StyleOliveira, A. Virgílio M., António M. Raimundo, Adélio R. Gaspar, and Divo A. Quintela. 2025. "Heat Waves in Portugal During the 2001–2024 Period: An Overview" Climate 13, no. 6: 108. https://doi.org/10.3390/cli13060108
APA StyleOliveira, A. V. M., Raimundo, A. M., Gaspar, A. R., & Quintela, D. A. (2025). Heat Waves in Portugal During the 2001–2024 Period: An Overview. Climate, 13(6), 108. https://doi.org/10.3390/cli13060108