Influences of Climate Factors and Tree Characteristics on Carbon Storage in Longan Orchards, Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Longan Tree Sampling
2.3. Calculations of Above-Ground Biomass and Carbon Storage
2.4. Climate Factors and Statistical Analysis
3. Results
3.1. Longan Characteristics and Biomass Contents
3.2. Longan Carbon Storage
3.3. Climate Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saha, C.; Mahood, H.; Nayan, S.S.N.; Siddique, M.R.H.; Rubaiot Abdullah, S.M.; Zahirul Islam, S.M.; Iqbal, M.Z.; Akhter, M. Allometric biomass models for the most abundant fruit tree species of Bangladesh: A Non-destructive ap-proach. Environ. Chall. 2021, 3, 100047. [Google Scholar] [CrossRef]
- Mahmood, H.; Siddique, M.R.H.; Islam, S.M.Z.; Abdullah, S.M.R.; Matieu, H.; Iqbal, M.Z.; Akhter, M. Applicability of semi-destructive method to derive allometric model for estimating aboveground biomass and carbon storage in the Hill zone of Bangladesh. J. For. Res. 2020, 31, 1235–1245. [Google Scholar] [CrossRef]
- Dao, A.; Bationo, B.A.; Traore, S.; Bognounou, F.; Thiombian, A. Using allometric models to estimate aboveground biomass and predict carbon storages of mango (Mangifera indica L.) parklands in the Sudanian zone of Burkina Faso. Environ. Chall. 2021, 3, 100051. [Google Scholar] [CrossRef]
- Wu, T.; Wang, Y.; Yu, C.; Chiarawip, R.; Zhang, X.; Han, Z.; Wu, L. Carbon Sequestration by Fruit Trees—Chinese Apple orchards as an example. PLoS ONE 2012, 7, e38883. [Google Scholar] [CrossRef]
- Liguori, G.; Gugliuzza, G.; Inglese, P. Evaluating carbon fluxes in orange orchards in relation to planting density. J. Agric. Sci. 2009, 147, 637–645. [Google Scholar] [CrossRef]
- Nguyen-Duy, N.; Talsma, T.; Nguyen, K.T.; Nguyen, T.Q.; Laderach, P. Carbon Assessment for Cocoa (Theobroma cacao L.) Cropping Systems in Lampung, Indonesia; Research Report; International Center for Tropical Agriculture, Asia Regional Office (CIAT): Hanoi, Vietnam, 2018; p. 32. [Google Scholar]
- Mehta, L.C.; Singh, J.; Chauhan, P.S.; Singh, B.; Manhas, R.K. Biomass accumulation and carbon atorage in six-year-old Citrus Reticulata Blanco plantation. Indian. For. 2016, 142, 563–568. [Google Scholar]
- Wu, B.; Zhang, Y.; Wang, Y.; Lin, X.; Wu, Y.; Wang, J.; Wu, S.; He, Y. Urbanization promotes carbon storage or not? The evidence during the rapid process of China. J. Environ. Manag. 2024, 359, 121061. [Google Scholar] [CrossRef]
- Kalita, R.M.; Das, A.K.; Seleshi, G.W.; Nath, A.J. Ecosystem carbon storages in different aged tea agroforestry systems: Implications for regional ecosystem management. Trop. Ecol. 2020, 61, 203–214. [Google Scholar] [CrossRef]
- Segura, M. Allometric Models for Tree Volume and Total Aboveground Biomass in a Tropical Humid Forest in Costa Rica1. Biotropica 2005, 37, 2–8. [Google Scholar] [CrossRef]
- Hammad, H.M.; Mauman, H.M.F.; Abbas, F.; Ahmad, A.; Bakhar, H.F.; Saeed, S.; Shah, G.M.; Ahmad, A.; Cerda, A. Carbon sequestration potential and soil characteristics of various land use systems in arid region. J. Environ. Manag. 2020, 264, 110254. [Google Scholar] [CrossRef]
- TGO. Thailand Voluntary Emission Reduction Program. 2015. [Internet]. Available online: https://ghgreduction.tgo.or.th/en/ (accessed on 25 July 2023).
- TGO. Thailand Voluntary Emission Reduction Program Reference Manual: Forestry and Agriculture Sector. 2016. Available online: http://www.tgo.or.th/2020/index.php/th/post/ (accessed on 8 September 2023).
- Yulistyarini, T.; Hadiah, J.T. Carbon storage potential of Indonesian local fruit trees, some collections of Purwodadi Botanic Garden. IOP Conf. Ser. Earth Environ. Sci. 2022, 976, 12057. [Google Scholar] [CrossRef]
- Janiola, M.D.C.; Marin, R.A. Carbon sequestration potential of fruit tree plantations in Southern Philippines. J. Bio. Environ. Sci. 2016, 8, 164–174. [Google Scholar]
- Kuyah, S.; Muturi, C.; Wakaba, N.; Cyamweshi, A.R.; Kiprotich, P.; Mukuralinda, L. Allometric equations and carbon sequestration potential of mango (Mangifera indica) and avocado (Persea americana) in Kenya. Tree For. People 2024, 15, 100467. [Google Scholar] [CrossRef]
- Nak, S.K.; Sarkar, P.K.; Das, B.; Singh, A.K.; Bhatt, B.P. Biomass production and carbon storages estimate in mango orchards of hot and sub-humid climate in eastern region, India. Carbon. Manag. 2019, 10, 477–487. [Google Scholar] [CrossRef]
- Zsogon, A.; Peres, L.E.P.; Xiao, Y.; Yan, J.; Fernie, S.R. Enhancing crop diversity for food security in the face of climate uncertainty. Plant J. 2022, 109, 402–414. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, U.K.; Nath, A.J.; Lalnunpuii, K. Biomass estimation models, biomass storage and ecosystem carbon storage in sweet orange orchards: Implications for land use management. Acta Ecol. Sin. 2021, 41, 57–63. [Google Scholar] [CrossRef]
- Sapit, D.; Narithorn, J.; Patthra, P.; Jenjira, C.; Pattama, S.; Suwachana, S.; Aphisit, O.; Busakorn, P. Related Factor Project Evaluation with Carbon Storage Potential in Agricultural Practices; Final Report; Kasetsart University: Bangkok, Thailand, 2020. [Google Scholar]
- Motaharfard, E.; Mahdavi, A.; Iranmanesh, Y.; Jafarzadeh, A.A.; Manhas, R.K. Effect of land Uses on aboveground biomass and carbon pools in Zagros Forests, Iran. Ecopersia 2019, 7, 105–114. [Google Scholar]
- Kraisitnitikul, P.; Thepnuan, D.; Chansuebsri, S.; Yabueng, N.; Wiriya, W.; Saksakulkrai, S.; Shi, Z.; Chantara, S. Contrasting compositions of PM2.5 in Northern Thailand during La Niña (2017) and El Niño (2019) years. J. Environ. Sci. 2024, 135, 585–599. [Google Scholar] [CrossRef]
- Amnuaylojaroen, T.; Inkom, J. Long range transport of Southeast Asia PM2.5 pollutions to northern Thailand during high bi-omass burning episode. Sustainability 2020, 12, 10049. [Google Scholar] [CrossRef]
- Amnuaylojaroen, T.; Kaewkanchanawong, P.; Panpeng, P. Distribution and meteorological control of PM2.5 and Its effect on visibility in Northern Thailand. Atmosphere 2020, 14, 538. [Google Scholar] [CrossRef]
- Administrative of the Governor of the Lamphun Province. Topography and Climate. 2023. Available online: https://www.lamphun.go.th/public/th (accessed on 25 July 2023).
- Soil Resources Survey and Research Division, Land Development Department, Ministry of Agriculture and Cooperatives. 2025. Available online: http://www1.ldd.go.th/ldd_en/ (accessed on 14 March 2025).
- Ogawa, H.; Yoda, K.; Kira, T. A preliminary survey on the vegetation of Thailand. Nat. Life SE Asia 1965, 1, 21–157. [Google Scholar]
- Duangsathaporn, K.; Sangram, N.; Omule, Y.; Prasomsin, P.; Palakit, K.; Lumyai, P. formulating equations for estimating forest stand carbon storage for various tree species groups in Northern Thailand. Forests 2023, 14, 1584. [Google Scholar] [CrossRef]
- Singkran, N. Carbon sink capacity of public parks and carbon sequestration efficiency improvements in a dense urban land-scape. Environ. Monit. Assess. 2022, 194, 750. [Google Scholar] [CrossRef]
- Amoatey, P.; Sulaiman, H. Quantifying carbon storage potential of urban plantations and landscapes in Muscat, Oman. En-viron. Dev. Sustain. 2020, 22, 7969–7987. [Google Scholar] [CrossRef]
- Haghdoost, N.; Akbarinia, M.; Hosseini, S.M. Land-use change and carbon storages: A case study, Noor County, Iran. J. For. Res. 2013, 24, 461–469. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Chapter 4 Forest land. In IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies (IGES): Kanagawa, Japan, 2006; pp. 1–83. [Google Scholar]
- Girma, A.; Soromessa, T.; Bekele, T. Forest carbon storages in woody plants of Mount Zequalla Monastery and it’s variation along altitudinal gradient: Implication of managing forests for climate change mitigation. Sci. Technol. Arts Res. J. 2014, 3, 132–140. [Google Scholar] [CrossRef]
- Ounkerd, K.; Sunthornhao, P.; Puangchit, L. Valuation of carbon storage in trees at Khao Wong community forest, Chaiya-phum province. TJM. 2016, 34, 29–38. (In Thai) [Google Scholar]
- Thai Meteorological Department, of Digital Economy and Society. 2024. Available online: https://www.tmd.go.th/ (accessed on 14 December 2024).
- Iglesias, D.J.; Quinones, A.; Font, A.; Martínez-Alcántara, B.; Forner-Giner, M.A.; Legaz, F.; Primo-Millo, E. Carbon balance of citrus plantations in Eastern Spain. Agric. Ecosyst. Environ. 2013, 171, 103–111. [Google Scholar] [CrossRef]
- Dhiman, N.; Chandel, J.S.; Verma, P. Effect of planting density on growth, yield and fruit quality of apple cv. Jeromine. J. Hill Agric. 2018, 9, 289–291. [Google Scholar] [CrossRef]
- Davivongs, W.; Rifwidodo, S.D. Bangkok’s existing mixed fruit orchards are tree diversity hotspots for city greening. Urban. Ecosyst. 2023, 26, 991–1005. [Google Scholar] [CrossRef]
- Panumonwatee, G.; Pampasit, S. Carbon Storage Evaluation of restoring in degraded areas by corn cultivation using 3 forests, 4 benefits, Nan Province. ARST 2023, 22, 2773–9376. (In Thai) [Google Scholar]
- Puangchit, L.; Pranchai, O. Carbon Sequestration Potential of Monoculture and Mixed Fruit. Orchards in Eastern Thailand. Final Report for Biodiversity-Based Economy Development Office (Public Organization). 2018. Available online: https://explore.nrct.go.th/search_detail/result/9327 (accessed on 1 October 2024). (In Thai).
- Ganeshamurthy, A.N.; Rupa, T.R.; Alivelu, K.; Reddy, A.B. A biomass estimation model for nondestructive estimation of guava tree biomass. Res. Sq. 2022, 1–15. [Google Scholar] [CrossRef]
- Yulizah, N.; Rahajoe, J.S.; Jakalalana, S.; Oksari, A.A.; Yuliani, N. The estimated carbon stored in underutilized fruit trees (UFTs) collection of Cibodas and Cibinong Botanic Gardens. IOP Conf. Ser. Earth Environ. Sci. 2023, 1271, 12034. [Google Scholar] [CrossRef]
- Yulia, I.T.; Permatasari, D.P.; Igustita, I.; Berlin, G.E.; Safira, R.N.; Sukiyarto, S.; Nazar, I.A.; Himawan, W.; Sunarto, S.; Pradhan, P.; et al. Assessing the suitability of tree species for urban green space in a tropical university campus in Surakarta, Indonesia. Biodiversitas 2023, 24, 1713–1723. [Google Scholar] [CrossRef]
- Chavan, B.; Rasal, G. Total Sequestered Carbon storage of Mangifera indica. J. Earth Environ. Sci. 2012, 2, 36–49. [Google Scholar]
- Tisnadjaja, D.; Saliman, E.; Silvia, S.; Silimanjuntak, P. Study of burahol (Stelechocarpus burahol (Blume) Hook & Thomson) as an antioxidative compounds containing fruit. Biodiversitas 2006, 7, 199–202. [Google Scholar]
- Murali, V.; Gowthami, P.; Prashanth, K.A.; Gajanand, P. Carbon sequestration potential of different mango cultivars in the tropical hot and semi-arid climate of Deccan Plateau, India. Pharma Innov. J. 2022, 11, 441–445. [Google Scholar]
- Rahman, M.M. International Journal of Advanced Multidisciplinary Research and Studies. Int. J. Adv. Multidisc. Res. Stud. 2022, 2, 908–912. [Google Scholar]
- Rathore, A.C.; Mehta, H.; Sharma, N.K. Performance of litchi (Litchi chinensis Sonn.) based agri-horticultural land uses in rainfed condition on degraded lands in North Western Himalayas India. Agroforest Syst. 2020, 94, 2225–2236. [Google Scholar] [CrossRef]
- Wambede, M.N.; Akello, G.; Rodrigo-Comino, J.; Lugumira, J.S.; Barasa, B.; Amwonya, D.; Mulabbi, A. Carbon Sequestration of Fruit Trees under Contrasting Management Regimes. Indones. J. Geogr. 2022, 5, 420–427. Available online: https://jurnal.ugm.ac.id/ijg (accessed on 14 January 2025). [CrossRef]
- Yasin, G.; Farrakh Nawaz, M.; Zubair, M.; Qadir, I.; Saleem, A.R.; Ijaz, M.; Gul, S.; Amjad Bashir, M.; Rehim, A.; Rahman, S.U. Assessing the Contribution of Citrus Orchards in Climate Change Mitigation through Carbon Sequestration in Sargodha District, Pakistan. Sustainability 2021, 13, 12412. [Google Scholar] [CrossRef]
- Lucas, L.E.; Senciales-González, J.M.; Rodrigo-Comino, J. Analysing the evidence of the effects of climate change, air pollutants, and occupational factors in the appearance of Cataracts. Environments 2024, 11, 87. [Google Scholar] [CrossRef]
- Scandellari, F.; Caruso, G.; Liguori, G.; Meggio, F.; Palese, A.M.; Zanotelli, D.; Celano, G.; Gucci, R.; Inglese, P.; Pitacco, A.; et al. A survey of carbon sequestration potential of orchards and vineyards in Italy. Eur. J. Hortic. Sci. 2016, 81, 106–114. [Google Scholar] [CrossRef]
- Talukder, M.S.; Miah, M.M.U.; Miah, M.G.; Haque, M.M.; Rahman, M.M.; Islam, M.M. Fruit tree-based agroforestry systems and their carbon sequestration potentials in different ecosystem of Bangladesh. J. Agrofor. Environ. 2019, 13, 43–48. [Google Scholar]
- Lukac, M. Opportunities for carbon sequestration in intensive soft fruit production systems. Acta Hort. Regiotec. 2022, 25, 107–114. [Google Scholar] [CrossRef]
- Johnson, J.M.-F.; Franzluebbers, A.J.; Weyers, S.L.; Reicosky, D.C. Agricultural opportunities to mitigate greenhouse gas emissions. Environ. Pollut. 2007, 150, 107–124. [Google Scholar] [CrossRef]
- Soil Department, Ministry of Agriculture and Cooperatives. Land Use Planning for Lamphun Province 2020. Available online: http://www1.ldd.go.th/ldd_en/ (accessed on 1 October 2024).
- Williams, D.R.; Phalan, B.; Feniuk, C.; Green, R.R.; Balmford, A. Carbon storage and land-use strategies in agricultural landscapes across three Continent. Curr. Biol. 2018, 28, 15. [Google Scholar] [CrossRef]
Orchard | Tree No. | Age (Year) | D0 (cm) | Height (m) | AGB (kg) | BLG (kg) | Biomass (kg) | CO2 (kg) | CO2 (Mg C/ha) |
---|---|---|---|---|---|---|---|---|---|
Orchard 1 | |||||||||
Average | 99.0 | 4.5 | 283.55 | 76.5 | 180.0 | 1038.6 | 1.0 | ||
SD | 14.40 | 1.32 | 204.49 | 55.21 | 129.85 | 750.09 | 0.75 | ||
Total | 319 | 30 | 36,035.1 | 1645.8 | 103,213.4 | 27,867.6 | 65,540.5 | 378,079.6 | 378.0 |
Orchard2 | |||||||||
Average | 86.6 | 4.7 | 235.64 | 63.62 | 149.6 | 863.2 | 0.8 | ||
SD | 7.04 | 1.09 | 107.46 | 29.02 | 68.24 | 394.89 | 0.39 | ||
Total | 227 | 10 | 21,495.0 | 1178.0 | 58439.4 | 15,778.6 | 37,109.0 | 21,4075.3 | 214.0 |
Climate | Orchard 1 | Orchard 2 | t | p | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Avg. | Min. | Max. | SD | Avg. | Min. | Max. | SD | |||
Temperature (°C) | 27.70 | 26.70 | 29.00 | 0.61 | 27.91 | 27.20 | 29.30 | 0.48 | −1.142 | 0.261 |
Rainfall (mm) | 96.60 | 53.52 | 148.95 | 21.23 | 130.41 | 84.09 | 205.11 | 23.25 | −5880 | <0.001 |
Relative humidity (%) | 72.49 | 68.42 | 77.42 | 2.27 | 72.68 | 69.50 | 75.42 | 1.48 | −0.383 | 0.703 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boongla, Y.; Outong, W.; Chetiyanukornkul, T.; Changphuek, S. Influences of Climate Factors and Tree Characteristics on Carbon Storage in Longan Orchards, Thailand. Climate 2025, 13, 101. https://doi.org/10.3390/cli13050101
Boongla Y, Outong W, Chetiyanukornkul T, Changphuek S. Influences of Climate Factors and Tree Characteristics on Carbon Storage in Longan Orchards, Thailand. Climate. 2025; 13(5):101. https://doi.org/10.3390/cli13050101
Chicago/Turabian StyleBoongla, Yaowatat, Wanlapa Outong, Thaneeya Chetiyanukornkul, and Supachai Changphuek. 2025. "Influences of Climate Factors and Tree Characteristics on Carbon Storage in Longan Orchards, Thailand" Climate 13, no. 5: 101. https://doi.org/10.3390/cli13050101
APA StyleBoongla, Y., Outong, W., Chetiyanukornkul, T., & Changphuek, S. (2025). Influences of Climate Factors and Tree Characteristics on Carbon Storage in Longan Orchards, Thailand. Climate, 13(5), 101. https://doi.org/10.3390/cli13050101