Assessing the Impacts of Climate Change Scenarios on Soil-Adjusted Vegetation Index in North African Arid Montane Rangeland: Case of Toujane Region
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. SAVI
2.3. Data
2.4. MaxEnt Modeling
3. Results
3.1. Model Performance
3.2. Influencing Variables
3.3. Mapping Current and Future SAVI
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mikhaylov, A.; Moiseev, N.; Aleshin, K.; Burkhardt, T. Global climate change and greenhouse effect. Entrep. Sustain. Issues 2020, 7, 2897. [Google Scholar] [CrossRef]
- Trenberth, K.E. Climate change caused by human activities is happening and it already has major consequences. J. Energy Nat. Resour. Law 2018, 36, 463–481. [Google Scholar] [CrossRef]
- Vani, V.; Mandla, V.R. Comparative study of NDVI and SAVI vegetation indices in Anantapur district semi-arid areas. Int. J. Civ. Eng. Technol. 2017, 8, 559–566. [Google Scholar]
- Skendžić, S.; Zovko, M.; Lešić, V.; Pajač Živković, I.; Lemić, D. Detection and Evaluation of Environmental Stress in Winter Wheat Using Remote and Proximal Sensing Methods and Vegetation Indices. Diversity 2023, 15, 481. [Google Scholar] [CrossRef]
- Dülgeroğlu, C.; Aksoy, A. Assessing impacts of climate change on Campanula yaltirikii H. Duman (Campanulaceae), a critically endangered endemic species in Turkey. Turk. J. Bot. 2019, 43, 243–252. [Google Scholar] [CrossRef]
- Lemenkova, P.; Debeir, O. Computing Vegetation Indices from the Satellite Images Using GRASS GIS Scripts for Monitoring Mangrove Forests in the Coastal Landscapes of Niger Delta, Nigeria. J. Mar. Sci. Eng. 2023, 11, 871. [Google Scholar] [CrossRef]
- Harris, N.R.; Louhaichi, M.; Johnson, D.E. Laboratory Manual for Landscape Ecology, Spatial Analysis of Landscape Data, Lab 9. In Landscape Ecology and Analysis; Department of Rangeland Resources, Oregon State University: Corvallis, OR, USA, 2004. [Google Scholar]
- Almutairi, B.; El Battay, A.; Belaid, M.A.; Musa, N. Comparative Study of SAVI and NDVI Vegetation Indices in Sulaibiya Area (Kuwait) Using Worldview Satellite Imagery. Int. J. Geosci. Geomat. 2013, 1, 50–53. [Google Scholar]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Ahmad, F. Spectral vegetation indices performance evaluated for Cholistan Desert. J. Geogr. Reg. Plann. 2012, 5, 165–172. [Google Scholar]
- Zhao, S.; Pereira, P.; Wu, X.; Zhou, J.; Cao, J.; Zhang, W. Global karst vegetation regime and its response to climate change and human activities. Ecol. Indic. 2020, 113, 106208. [Google Scholar] [CrossRef]
- Ben Salem, F. Study of the Phytocenosis Dynamics in the Alfa Steppe (Stipa tenacissima L.) Under the Effects of Drought and Human Activities: Case of the Monts of Matmata. Ph.D. Thesis, University of Carthage, Carthage, Tunisia, 2012; 197p. [Google Scholar]
- Phillips, S.J.; Anderson, R.P.; Dudík, M.; Schapire, R.E.; Blair, M.E. Opening the black box: An open-source release of MaxEnt. Ecography 2017, 40, 887–893. [Google Scholar] [CrossRef]
- Anderson, R.P.; Lew, D.; Peterson, A.T. Evaluating predictive models of species distributions. Criteria for selecting optimal models. Ecol. Model. 2003, 162, 211–232. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudik, M.; Schapire, R.E. A maximum entropy approach to species distribution modeling. In Proceedings of the Twenty-First International Conference on Machine Learning, Banff, AB, Canada, 4–8 July 2004; pp. 655–662. [Google Scholar]
- Yan, H.; Feng, L.; Zhao, Y.; Feng, L.; Wu, D.; Zhu, C. Prediction of the spatial distribution of Alternanthera philoxeroides in China based on ArcGIS and MaxEnt. Glob. Ecol. Conserv. 2020, 21, e00856. [Google Scholar] [CrossRef]
- Abolmaali, S.M.R.; Tarkesh, M.; Bashari, H. MaxEnt modeling for predicting suitable habitats and identifying the effects of climate change on a threatened species, Daphne mucronata, in central Iran. Ecol. Inform. 2018, 43, 116–123. [Google Scholar] [CrossRef]
- Duan, X.; Li, J.; Wu, S. MaxEnt Modeling to Estimate the Impact of Climate Factors on Distribution of Pinus densiflora. Forests 2022, 13, 402. [Google Scholar] [CrossRef]
- Yang, X.Q.; Kushwaha, S.P.S.; Saran, S.; Xu, J.; Roy, P.S. MaxEnt modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecol. Eng. 2013, 51, 83–87. [Google Scholar] [CrossRef]
- Wang, Y.S.; Xie, B.Y.; Wan, F.H.; Xiao, Q.M.; Dai, L.Y. The Potential Geographic Distribution of Radopholus similis in China. Agric. Sci. China 2007, 6, 1444–1449. [Google Scholar] [CrossRef]
- Coban, O.; Örücü, Ö.K.; Arslan, E. MaxEnt Modeling for Predicting the Current and Future Potential Geographical Distribution of Quercus libani Olivier. Sustainability 2020, 12, 2671. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Z.; Zhu, B.; Cheng, X.; Yang, L.; Gao, M.; Kong, R. MaxEnt Modeling Based on CMIP6 Models to Project Potential Suitable Zones for Cunninghamia lanceolata in China. Forests 2021, 12, 752. [Google Scholar] [CrossRef]
- Fielding, A.H.; Bell, J.F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 1997, 24, 38–49. [Google Scholar] [CrossRef]
- Swets, J.A. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef]
- Peavey, L. Predicting Pelagic Habitat with Presence-Only Data Using Maximum Entropy for Olive Ridley Sea Turtles in the Eastern Tropical Pacific. Master’s Thesis, Duke University, Durham, NC, USA, May 2010. [Google Scholar]
- Pearce, J.; Ferrier, S. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Model. 2000, 133, 225–245. [Google Scholar] [CrossRef]
- Elith, J.; Graham, C.H. Do they? How do they? Why do they differ? On finding reasons for differing performances of species distribution models. Ecography 2009, 32, 66–77. [Google Scholar] [CrossRef]
- Yost, A.C.; Petersen, S.L.; Gregg, M.; Miller, R. Predictive modeling and mapping sage grouse (Centrocercus urophasianus) nesting habitat using Maximum Entropy and a long-term dataset from Southern Oregon. Ecol. Inform. 2008, 3, 375–386. [Google Scholar] [CrossRef]
- Feng, X.; Park, D.S.; Liang, Y.; Pandey, R.; Papeş, M. Collinearity in ecological niche modeling: Confusions and challenges. Ecol. Evol. 2019, 9, 10365–10376. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Wang, Y.S.; Zhang, D.; Yu, W.; Chen, G.; Xie, T.; Liu, Z.; Ma, Z.; Du, J.; Chao, B. Mapping the potential of mangrove forest restoration based on species distribution models: A case study in China. Sci. Total Environ. 2020, 748, 142321. [Google Scholar] [CrossRef] [PubMed]
- De Marco, P.J.; Nóbrega, C.C. Evaluating collinearity effects on species distribution models: An approach based on virtual species simulation. PLoS ONE 2018, 13, e0202403. [Google Scholar] [CrossRef] [PubMed]
- Luna, S.; Peña-Peniche, A.; Mendoza-Alfaro, R. Species distribution model accuracy is strongly influenced by the choice of calibration area. Biodivers. Inform. 2024, 10, 18. [Google Scholar] [CrossRef]
- Capera-Aragones, P.; Tyson, R.C.; Foxall, E. The maximum entropy principle to predict forager spatial distributions: An alternate perspective for movement ecology. Theor. Ecol. 2023, 16, 21–34. [Google Scholar] [CrossRef]
- Schilling, J.; Freier, K.P.; Hertig, E.; Scheffran, J. Climate change, vulnerability and adaptation in North Africa with focus on Morocco. Agric. Ecosyst. Environ. 2012, 156, 12–26. [Google Scholar] [CrossRef]
- Zhong, W.; Xue, J.; Li, X.; Xu, H.; Ouyang, J. A Holocene climatic record denoted by geochemical indicators from Barkol Lake in the northeastern Xinjiang, NW China. Geochem. Int. 2010, 48, 792–800. [Google Scholar] [CrossRef]
- Nielsen, U.N.; Ball, B.A. Impacts of altered precipitation regimes on soil communities and biogeochemistry in arid and semi-arid ecosystems. Glob. Change Biol. 2015, 21, 1407–1421. [Google Scholar] [CrossRef]
- Lassueur, T.; Joost, S.; Randin, C.F. Very high-resolution digital elevation models: Do they improve models of plant species distribution? Ecol. Model. 2006, 198, 139–153. [Google Scholar] [CrossRef]
- Buri, A.; Cianfrani, C.; Pinto-Figueroa, E.; Yashiro, E.; Spangenberg, J.E.; Adatte, T.; Verrecchia, E.; Guisan, A.; Pradervand, J.N. Soil factors improve predictions of plant species distribution in a mountain environment. Prog. Phys. Geogr. 2017, 41, 703–722. [Google Scholar] [CrossRef]
- Dubuis, A.; Rossier, L.; Pottier, J.; Pellissier, L.; Vittoz, P.; Guisan, A. Predicting current and future spatial community patterns of plant functional traits. Ecography 2013, 36, 1158–1168. [Google Scholar] [CrossRef]
- Pradervand, J.N.; Dubuis, A.; Pellissier, L.; Guisan, A.; Randin, C. Very high-resolution environmental predictors in species distribution models: Moving beyond topography? Prog. Phys. Geogr. 2014, 38, 79–96. [Google Scholar] [CrossRef]
- Walther, G.R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.; Fromentin, J.M.; Guldberg, O.H.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Ouled Belgacem, A.; Ben Salem, F.; Gamoun, M.; Chibani, R.; Louhaichi, M. Revival of traditional best practices for rangeland restoration under climate change in the dry areas: A case study from Southern Tunisia. Int. J. Clim. Change Strateg. Manag. 2019, 11, 643–659. [Google Scholar] [CrossRef]
- Msadek, J.; Tlili, A.; Moumni, M.; Louhaichi, M.; Tarhouni, M. Impact of Grazing Regimes, Landscape Aspect, and Elevation on Plant Life Form Types in Managed Arid Montane Rangelands. Rangel. Ecol. Manag. 2022, 83, 10–19. [Google Scholar] [CrossRef]
Data Source | Variable | Description | Unit |
---|---|---|---|
Worldclim (Bioclimatic data) | bio1 | Mean annual temperature | °C |
bio2 | Mean diurnal range | °C | |
bio3 | Isothermality | - | |
bio4 | Temperature seasonality | °C | |
bio5 | Max temperature of the warmest month | °C | |
bio6 | Minimum temperature of the coldest month | °C | |
bio7 | Temperature annual range | °C | |
bio8 | The mean temperature of the wettest quarter | °C | |
bio9 | The mean temperature of the driest quarter | °C | |
bio10 | The mean temperature of the warmest quarter | °C | |
bio11 | The mean temperature of the coldest quarter | °C | |
bio12 | Annual precipitation | mm | |
bio13 | Precipitation of the wettest month | mm | |
bio14 | Precipitation of the driest month | mm | |
bio15 | Precipitation seasonality | mm | |
bio16 | Precipitation of the wettest quarter | mm | |
bio17 | Precipitation of the driest quarter | mm | |
bio18 | Precipitation of the warmest quarter | mm | |
bio19 | Precipitation of the coldest quarter | mm | |
Soilgrids (Soil data) | Bulk dens | Bulk density | |
Cation | Depth: 0–5 | ||
Clay content | Depth: 0–5 | ||
Coarse | Depth: 0–5 | ||
Nitrogen | Depth: 0–5 | ||
Organic carbon dens | Organic carbon density | ||
pH water | Depth: 0–5 | ||
Sand | Depth: 0–5 | ||
Silt | Depth: 0–5 | ||
Soil Classes_WRB | Depth: 0–5 | ||
Soil organic carbon | Depth: 0–5 | ||
Soil organic carbon stock | Depth: 0–3 | ||
Worldclim (Topographic data) | Elevation | Elevation | m |
Slope | Slope | degree | |
Aspect | Aspect | degree |
High SAVI | Medium SAVI | Low SAVI | |||
---|---|---|---|---|---|
Current | 0–0.25 | 16,291.77 (51.26%) | 462.16 (1.45%) | 11,458.22 (36.05%) | |
0.25–0.50 | 7139.46 (22.29%) | 4723.24 (14.86%) | 10,187.88 (32.05%) | ||
0.50–0.75 | 6451.05 (20.30%) | 25,283.06 (79.54%) | 5907.87 (18.59%) | ||
0.75–1 | 1902.79 (5.99%) | 1316.63 (4.14%) | 4231.12 (13.31%) | ||
SSP245 | 2021–2040 | 0–0.25 | 13,946.35 (43.88%) | 477.48 (1.5%) | 823.32 (2.59%) |
0.25–0.50 | 7851.96 (24.70%) | 3903.54 (12.28%) | 11,964.67 (37.64%) | ||
0.50–0.75 | 7203.66 (22.66%) | 26,329.46 (82.84%) | 14,866.20 (46.77%) | ||
0.75–1 | 2783.13 (8.76%) | 1074.60 (3.38%) | 4130.90 (13.00%) | ||
2041–2060 | 0–0.25 | 13,410.42 (42.19%) | 11,643.30 (36.63%) | 11,643.30 (36.63%) | |
0.25–0.50 | 8489.03 (26.71%) | 9867.60 (31.04%) | 9867.60 (31.04%) | ||
0.50–0.75 | 6874.03 (21.63%) | 5956.67 (18.74%) | 5956.67 (18.74%) | ||
0.75–1 | 3011.60 (9.47%) | 4317.51 (13.58%) | 4317.51 (13.583%) | ||
2061–2080 | 0–0.25 | 14,155.72 (44.54%) | 243.41 (0.77%) | 752.54 (2.37%) | |
0.25–0.50 | 8838.81 (27.81%) | 4102.35 (12.91%) | 10,584.10 (33.30%) | ||
0.50–0.75 | 6347.84 (19.97%) | 25,609.10 (80.57%) | 16,082.00 (50.60%) | ||
0.75–1 | 2442.72 (7.69%) | 1830.23 (5.76%) | 4366.44 (13.74%) | ||
2081–2100 | 0–0.25 | 13,472.67 (42.39%) | 287.23 (0.90%) | 4383.81 (13.79%) | |
0.25–0.50 | 7466.52 (23.49%) | 2960.03 (9.31%) | 12,806.68 40.29%) | ||
0.50–0.75 | 7749.47 (24.38%) | 27,755.12 (87.32%) | 10,122.13 (31.85%) | ||
0.75–1 | 3096.43 (9.74%) | 782.70 (2.46%) | 4472.46 (14.07%) | ||
SSP585 | 2021–2040 | 0–0.25 | 16,695.83 (52.53%) | 504.30 (1.59%) | 11,719.18 (36.87%) |
0.25–0.50 | 8278.84 (26.05%) | 4656.26 (14.64%) | 10,214.67 (32.14%) | ||
0.50–0.75 | 4659.83 (14.66%) | 25,140.17 (79.09%) | 5638.79 (17.74%) | ||
0.75–1 | 2150.59 (6.77%) | 1484.35 (4.67%) | 4212.45 (13.25%) | ||
2041–2060 | 0–0.25 | 15,078.11 47.44%) | 364.33 (1.15%) | 886.70 (2.79%) | |
0.25–0.50 | 8277.85 (26.04%) | 4531.16 (14.26%) | 10,217.54 (32.15%) | ||
0.50–0.75 | 5570.68 (17.53%) | 25,366.85 (79.81%) | 17,221.52 (54.18%) | ||
0.75–1 | 2858.44 (8.99%) | 1522.74 (4.79%) | 3459.33 (10.88%) | ||
2061–2080 | 0–0.25 | 15,115.50 (47.56%) | 1192.77 (3.75%) | 822.58 (2.59%) | |
0.25–0.50 | 6742.67 (21.21%) | 4335.45 (13.64%) | 9860.72 (31.03%) | ||
0.50–0.75 | 7434.82 (23.39%) | 24,694.66 (77.69%) | 17,540.17 (55.18%) | ||
0.75–1 | 2492.09 (7.84%) | 1562.20 (4.91%) | 3561.61 (11.21%) | ||
2081–2100 | 0–0.25 | 15,634.44 (49.19%) | 209.79 (0.66%) | 772.12 (2.43%) | |
0.25–0.50 | 7828.24 (24.63%) | 5493.22 (17.28%) | 8063.18 (25.37%) | ||
0.50–0.75 | 5698.01 (17.93%) | 23,936.25 (75.31%) | 20,006.79 (62.94%) | ||
0.75–1 | 2624.41 (8.26%) | 2145.83 (6.75%) | 2943.00 (9.26%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Msadek, J.; Tlili, A.; Chouikhi, F.; Ragkos, A.; Tarhouni, M. Assessing the Impacts of Climate Change Scenarios on Soil-Adjusted Vegetation Index in North African Arid Montane Rangeland: Case of Toujane Region. Climate 2025, 13, 59. https://doi.org/10.3390/cli13030059
Msadek J, Tlili A, Chouikhi F, Ragkos A, Tarhouni M. Assessing the Impacts of Climate Change Scenarios on Soil-Adjusted Vegetation Index in North African Arid Montane Rangeland: Case of Toujane Region. Climate. 2025; 13(3):59. https://doi.org/10.3390/cli13030059
Chicago/Turabian StyleMsadek, Jamila, Abderrazak Tlili, Farah Chouikhi, Athanasios Ragkos, and Mohamed Tarhouni. 2025. "Assessing the Impacts of Climate Change Scenarios on Soil-Adjusted Vegetation Index in North African Arid Montane Rangeland: Case of Toujane Region" Climate 13, no. 3: 59. https://doi.org/10.3390/cli13030059
APA StyleMsadek, J., Tlili, A., Chouikhi, F., Ragkos, A., & Tarhouni, M. (2025). Assessing the Impacts of Climate Change Scenarios on Soil-Adjusted Vegetation Index in North African Arid Montane Rangeland: Case of Toujane Region. Climate, 13(3), 59. https://doi.org/10.3390/cli13030059