A Common Climate–Yield Relationship for Wheat and Barley in Japan and the United Kingdom
Abstract
:1. Introduction
2. Materials and Methods
2.1. GYGA–Climate Zonation Scheme
2.2. Linkage of Climatic Zones to Crop Yields
2.2.1. Japan
2.2.2. The United Kingdom
2.3. Yield Data Collection
2.4. Statistical Analysis and Two Hypotheses
3. Results
3.1. Climate Zones and Field Types for Wheat and Barley Cultivation in Japan
3.2. Climate Zones in the United Kingdom and Comparison with Japan
3.3. Relationships between Climatic Factors and Yields
3.3.1. Japan
Factor | Upland | Paddy |
---|---|---|
GDD 2 | *** | *** |
AI 3 | *** | *** |
TS 4 | *** | ns |
GDD × AI | ** | *** |
GDD × TS | *** | * |
crop | *** | *** |
year | *** | *** |
3.3.2. The United Kingdom
3.4. Comparison of the Analyses
Factor | Dataset UKwheat | Dataset JPwheat | |
---|---|---|---|
Ya Values (t ha−1) | Ya Values (t ha−1) | CV of Ya Values (%) | |
GDD 3 | *** | *** | ns |
AI 4 | *** | *** | ** |
TS 5 | — | * | ns |
GDD × AI | ns | *** | ns |
GDD × TS | — | ** | * |
year | *** | *** | — |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Endo, E.; Leipe, C. The onset, dispersal and crop preferences of early agriculture in the Japanese archipelago as derived from seed impressions in pottery. Quatern Int. 2022, 623, 35–49. [Google Scholar] [CrossRef]
- Ministry of Agriculture Forestry and Fisheries (MAFF). Statistical Survey on Crops. Available online: https://www.maff.go.jp/j/tokei/kouhyou/sakumotu/sakkyou_kome/index.html#c (accessed on 11 January 2024).
- Iwama, K.; Ohara, M.; Araki, H.; Yamada, T.; Nakatsuji, H.; Kataoka, T.; Yamamoto, Y. Agriculture in Hokkaido; Hokkaido University: Sapporo, Japan, 2009. [Google Scholar]
- Nihei, T. Development of wheat production in Hokkaido. Geogr. Stud. 2013, 87, 1–13. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). FAOSTAT. Available online: https://www.fao.org/faostat/en/#data (accessed on 11 January 2024).
- Mizuochi, T. Prospects for development of high-yielding techniques of winter wheat in Hokkaido. Nogyo Gijyutsu 1988, 43, 337–342. [Google Scholar]
- Mirosavljevic, M.; Mikic, S.; Zupunski, V.; Spika, A.K.; Trkulja, D.; Ottosen, C.O.; Zhou, R.; Abdelhakim, L. Effects of high temperature during anthesis and grain filling on physiological characteristics of winter wheat cultivars. J. Agron. Crop Sci. 2021, 207, 823–832. [Google Scholar] [CrossRef]
- Shiga, H. Evaluation and estimation of yield variability in winter wheat using crop model. Jpn. J. Soil. Sci. Plant Nutr. 2003, 74, 835–838. [Google Scholar] [CrossRef]
- Berry, P.M.; Sterling, M.; Spink, J.H.; Baker, C.J.; Sylvester-Bradley, R.; Mooney, S.J.; Tams, A.R.; Ennos, A.R. Understanding and reducing lodging in cereals. Adv. Agron. 2004, 84, 217–271. [Google Scholar] [CrossRef]
- Song, Y.L.; Linderholm, H.W.; Wang, C.Y.; Tian, J.F.; Huo, Z.G.; Gao, P.; Song, Y.B.; Guo, A.H. The influence of excess precipitation on winter wheat under climate change in China from 1961 to 2017. Sci. Total Environ. 2019, 690, 189–196. [Google Scholar] [CrossRef]
- Zeeshan, M.; Arshad, W.; Khan, M.I.; Ali, S.; Nawaz, A.; Batool, A.; Tariq, M.; Akram, M.I.; Ali, M.A. Breeding for pre-harvest sprouting resistance in bread wheat under rainfed conditions. Front. Agric. Sci. Eng. 2018, 5, 253–261. [Google Scholar] [CrossRef]
- United States Department of Agriculture (USDA). Crop Calendar Charts. Available online: https://ipad.fas.usda.gov/ogamaps/cropcalendar.aspx (accessed on 11 January 2024).
- Köppen, W. Das geographische System der Klimate. In Handbuch der Klimatologie; Köppen, W., Geiger, R., Eds.; Gebrüder Borntraeger: Berlin, Germany, 1936; pp. 1–44. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Koppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Britannica. Köppen Climate Classification. Available online: https://www.britannica.com/science/Koppen-climate-classification/World-distribution-of-major-climatic-types (accessed on 11 January 2024).
- Miyamoto, M. A reexamination on Koeppen climate classification in northern Tohoku and Hokkaido. Geogr. Stud. 2009, 84, 111–117. [Google Scholar] [CrossRef]
- GYGA. Global Yield Gap Atlas. Available online: https://www.yieldgap.org/ (accessed on 11 January 2024).
- van Wart, J.; van Bussel, L.G.J.; Wolf, J.; Licker, R.; Grassini, P.; Nelson, A.; Boogaard, H.; Gerber, J.; Mueller, N.D.; Claessens, L.; et al. Use of agro-climatic zones to upscale simulated crop yield potential. Field Crops Res. 2013, 143, 44–55. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). Report on the Agro-Ecological Zones Project; FAO: Rome, Italy, 1978. [Google Scholar]
- Licker, R.; Johnston, M.; Foley, J.A.; Barford, C.; Kucharik, C.J.; Monfreda, C.; Ramankutty, N. Mind the gap: How do climate and agricultural management explain the ‘yield gap’ of croplands around the world? Glob. Ecol. Biogeogr. 2010, 19, 769–782. [Google Scholar] [CrossRef]
- Department of Agriculture Hokkaido Government. Technological Protocols for Agricultural Production in Hokkaido, 5th ed.; Department of Agriculture Hokkaido Government: Sapporo, Japan, 2019. [Google Scholar]
- van Ittersum, M.K.; Cassman, K.G.; Grassini, P.; Wolf, J.; Tittonell, P.; Hochman, Z. Yield gap analysis with local to global relevance—A review. Field Crops Res. 2013, 143, 4–17. [Google Scholar] [CrossRef]
- Edreira, J.I.R.; Andrade, J.F.; Cassman, K.G.; van Ittersum, M.K.; van Loon, M.P.; Grassini, P. Spatial frameworks for robust estimation of yield gaps. Nat. Food 2021, 2, 773–779. [Google Scholar] [CrossRef] [PubMed]
- van Bussel, L.G.J.; Grassini, P.; Van Wart, J.; Wolf, J.; Claessens, L.; Yang, H.S.; Boogaard, H.; de Groot, H.; Saito, K.; Cassman, K.G.; et al. From field to atlas: Upscaling of location-specific yield gap estimates. Field Crops Res. 2015, 177, 98–108. [Google Scholar] [CrossRef]
- Ishikawa, S.; Nakashima, T.; Iizumi, T.; Hare, M.C. Evaluating irrigated rice yields in Japan within the Climate Zonation Scheme of the Global Yield Gap Atlas. J. Agric. Sci.-Camb. 2020, 158, 718–729. [Google Scholar] [CrossRef]
- Ramankutty, N.; Evan, A.T.; Monfreda, C.; Foley, J.A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles 2008, 22, GB1003. [Google Scholar] [CrossRef]
- Saito, K.; van Oort, P.; Dieng, I.; Johnson, J.M.; Niang, A.; Ahouanton, K.; Alognon, A.D.; Tanaka, A.; Senthilkumar, K.; Vandamme, E.; et al. Yield gap analysis towards meeting future rice demand. In Achieving Sustainable Cultivation of Rice; Sasaki, T., Ed.; Burleigh Dodds Science Publishing: London, UK, 2017; Volume 2, pp. 157–182. [Google Scholar]
- Hochman, Z.; Gobbett, D.; Horan, H.; Garcia, J.N. Data rich yield gap analysis of wheat in Australia. Field Crops Res. 2016, 197, 97–106. [Google Scholar] [CrossRef]
- Ministry of Internal Affairs and Communications (MIC). Regional Administration and Municipal Mergers. Available online: https://www.soumu.go.jp/kouiki/kouiki.html (accessed on 11 January 2024).
- GOV.UK. Static Assets. Available online: https://docs.publishing.service.gov.uk/manual/assets.html (accessed on 11 January 2024).
- Sylvester-Bradley, R.; Bingham, I.; Kindred, D.; Topp, K.; Watson, C. GYGA Data United Kingdom. Available online: https://www.yieldgap.org/United-Kingdom (accessed on 11 January 2024).
- Fukuda, H.; Dyck, J.H.; Stout, J. Rice Sector Policies in Japan; US Department of Agriculture, Economic Research Service: Washington, DC, USA, 2003. [Google Scholar]
- Nakashima, T.; Ishikawa, S. Exploring farmers’ expectation toward farm-gate price of rice in Japan by positive mathematical programming. Sustainability 2023, 15, 621. [Google Scholar] [CrossRef]
- Ministry of Agriculture Forestry and Fisheries (MAFF). Characteristic Tables of Recommended Cultivars of Irrigated and Upland Rice, Wheat, Barley and Soybean 2019. Available online: https://www.library-archive.maff.go.jp/index/200508430_0001?p=1 (accessed on 11 January 2024).
- Obara, H.; Maejima, Y.; Kohyama, K.; Ohkura, T.; Takata, Y. Outline of the comprehensive soil classification system of Japan—First approximation. Jarq.-Jpn. Agr. Res. Q. 2015, 49, 217–226. [Google Scholar] [CrossRef]
- Araus, J.L.; Slafer, G.A.; Reynolds, M.P.; Royo, C. Plant breeding and drought in C3 cereals: What should we breed for? Ann. Bot. 2002, 89, 925–940. [Google Scholar] [CrossRef] [PubMed]
- Mphande, W.; Farrell, A.D.; Kettlewell, P.S. Commercial uses of antitranspirants in crop production: A review. Outlook Agr. 2023, 52, 3–10. [Google Scholar] [CrossRef]
- Wasson, A.P.; Richards, R.A.; Chatrath, R.; Misra, S.C.; Prasad, S.V.S.; Rebetzke, G.J.; Kirkegaard, J.A.; Christopher, J.; Watt, M. Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. J. Exp. Bot. 2012, 63, 3485–3498. [Google Scholar] [CrossRef] [PubMed]
- Hamachi, Y.; Yoshida, T. Multiple-regression analysis of malting barley yield and climatic conditions in Kyushu region. Jpn. J. Crop Sci. 1989, 58, 1–6. [Google Scholar] [CrossRef]
- Byrne, T.; Grant, J.; Kock-Appelgren, P.; Förster, L.; Michel, T.; Miricescu, A.; Thomas, W.T.B.; Graciet, E.; Spink, J.; Ng, C.K.Y.; et al. Improving phenotyping in winter barley cultivars towards waterlogging tolerance by combining field trials under natural conditions with controlled growth condition experiments. Eur. J. Agron. 2022, 133, 126432. [Google Scholar] [CrossRef]
- Nakazono, K.; Ohno, H.; Yoshida, H.; Nakagawa, H. Effects of meteorological factors during grain development on pre-harvest sprouting in wheat. Jpn. J. Crop Sci. 2013, 82, 183–191. [Google Scholar] [CrossRef]
- Fu, J.; Jian, Y.W.; Wang, X.H.; Li, L.; Ciais, P.; Zscheischler, J.; Wang, Y.; Tang, Y.H.; Müller, C.; Webber, H.; et al. Extreme rainfall reduces one-twelfth of China’s rice yield over the last two decades. Nat. Food 2023, 4, 416–426. [Google Scholar] [CrossRef]
- Nóia Júnior, R.D.; Deswarte, J.C.; Cohan, J.P.; Martre, P.; van der Velde, M.; Lecerf, R.; Webber, H.; Ewert, F.; Ruane, A.C.; Slafer, G.A.; et al. The extreme 2016 wheat yield failure in France. Glob. Change Biol. 2023, 29, 3130–3146. [Google Scholar] [CrossRef] [PubMed]
- Scheitlin, K. The maritime influence on diurnal temperature range in the Chesapeake Bay area. Earth Interact. 2013, 17, 1–21. [Google Scholar] [CrossRef]
- Espe, M.B.; Cassman, K.G.; Yang, H.S.; Guilpart, N.; Grassini, P.; van Wart, J.; Anders, M.; Beighley, D.; Harrell, D.; Linscombe, S.; et al. Yield gap analysis of US rice production systems shows opportunities for improvement. Field Crops Res. 2016, 196, 276–283. [Google Scholar] [CrossRef]
- Morita, S.; Shiratsuchi, H.; Takanashi, J.; Fujita, K. Effect of high temperature on ripening in rice plants—Comparison of the effects of high night temperatures and high day temperatures. Jpn. J. Crop Sci. 2002, 71, 102–109. [Google Scholar] [CrossRef]
- García, G.A.; Dreccer, M.F.; Miralles, D.J.; Serrago, R.A. High night temperatures during grain number determination reduce wheat and barley grain yield: A field study. Glob. Change Biol. 2015, 21, 4153–4164. [Google Scholar] [CrossRef]
- Russell, K.; Van Sanford, D.A. Breeding wheat for resilience to increasing nighttime temperatures. Agronomy 2020, 10, 531. [Google Scholar] [CrossRef]
- Araki, H. Studies on the tillering of winter wheat in Hokkaido IV. Varietal difference in the effect of tillering time on ear formation and yield. Jpn. J. Crop Sci. 2016, 85, 218–222. [Google Scholar] [CrossRef]
- Iriki, N. Wintering potential and quality of wheat in the cold and snowy region of Hokkaido. Kagaku Seibutsu 2001, 39, 97–101. [Google Scholar] [CrossRef]
- Cammarano, D.; Hawes, C.; Squire, G.; Holland, J.; Rivington, M.; Murgia, T.; Roggero, P.P.; Fontana, F.; Casa, R.; Ronga, D. Rainfall and temperature impacts on barley (Hordeum vulgare L.) yield and malting quality in Scotland. Field Crops Res. 2019, 241, 107559. [Google Scholar] [CrossRef]
- Boogaard, H.; Wolf, J.; Supit, I.; Niemeyer, S.; van Ittersum, M. A regional implementation of WOFOST for calculating yield gaps of autumn-sown wheat across the European Union. Field Crops Res. 2013, 143, 130–142. [Google Scholar] [CrossRef]
Dataset | Crop | Field | Period | Unit Assigned to CZ 5 | n | Data Source | |||
---|---|---|---|---|---|---|---|---|---|
Wheat | T-Barley 2 | S-Barley 3 | N-Barley 4 | ||||||
Dataset JP | ✓ | ✓ | ✓ | ✓ | Upland | 2010–2020 | Municipality | 5245 | [2] |
✓ | ✓ | ✓ | ✓ | Paddy | 8348 | ||||
Dataset JPwheat | ✓ | Upland | 2010–2020 | Municipality | 3748 | [2] | |||
Dataset UK | ✓ | ✓ | ✓ | Upland | 2005–2020 | Region | 352 | [30] | |
Dataset UKwheat | ✓ | Upland | 2005–2015 | Experimental station | 143 | [17] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishikawa, S.; Nakashima, T.; Hare, M.C.; Kettlewell, P.S. A Common Climate–Yield Relationship for Wheat and Barley in Japan and the United Kingdom. Climate 2024, 12, 125. https://doi.org/10.3390/cli12080125
Ishikawa S, Nakashima T, Hare MC, Kettlewell PS. A Common Climate–Yield Relationship for Wheat and Barley in Japan and the United Kingdom. Climate. 2024; 12(8):125. https://doi.org/10.3390/cli12080125
Chicago/Turabian StyleIshikawa, Shoko, Takahiro Nakashima, Martin C. Hare, and Peter S. Kettlewell. 2024. "A Common Climate–Yield Relationship for Wheat and Barley in Japan and the United Kingdom" Climate 12, no. 8: 125. https://doi.org/10.3390/cli12080125
APA StyleIshikawa, S., Nakashima, T., Hare, M. C., & Kettlewell, P. S. (2024). A Common Climate–Yield Relationship for Wheat and Barley in Japan and the United Kingdom. Climate, 12(8), 125. https://doi.org/10.3390/cli12080125