Land-Use Optimization and Allocation for Saltwater Intrusion Regions: A Case Study in Soc Trang Province, Vietnam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Land-Use Optimization and Allocation
2.3.1. Optimization Objective Functions
- i ∈ [1, n], and n is the number of land mapping units; j ∈ [1, m], and m is the number of LUTs.
- Xij: area of LUTj in land unit i. Pij: profit of LUTj in land mapping unit i (unit: million VND/ha).
- Sij: land suitability of LUTj in land unit i (values).
- Lj: the number of working days of LUTj per hectare.
- Ej: environmental benefit coefficient of LUTj, which is the farmer’s assessment of the environmental benefits of LUTs.
- Rj: risk coefficient of LUTj, which is the LUTj productivity risk indicator. The smaller the risk value is the greater the contribution to the goal function.
- Wi: the weight of the objectives. In this study, the assumption of equal-weighted goals is set to 1 by default with the meaning that the goals in the multi-objective function have the same priority, and these weights can be adjusted (from 0 to 1) depending on the priority of the local goals for local development orientation.
2.3.2. Constraint Equations
2.3.3. Land-Use Allocation
3. Results
3.1. Analysis of Economic Factors Affecting Agricultural Land Use
3.1.1. Dominant Agricultural Land-Use Types
3.1.2. Socioeconomic and Environmental Factors
3.2. Application of Integrated Systems in Soc Trang Province
3.2.1. Land Evaluation
3.2.2. Configuring Optimization Scenarios
3.2.3. Exploring Weights of the Multi-Objective Land Optimization Module
3.2.4. Optimizing Agricultural Land-Use Area
3.2.5. Examining for the Best Options
4. Discussion
4.1. Discussion on the Developed Models
4.2. Discussion on the Proposed Scenarios
4.3. Limitation of the Model
4.4. Perspective
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GSO. Mekong Delta—Promoting the Number One Rice Bowl Advantage in the Country 2021; General Statistics Office (GSO): Hanoi, Vietnam, 2021. [Google Scholar]
- Espagne, E.; Ngo-Duc, T.; Nguyen, M.-H.; Pannier, E.; Woillez, M.-N.; Drogoul, A.; Huynh, T.P.L.; Le, T.T.; Nguyen, T.T.H.; Nguyen, T.T.; et al. Climate Change in Viet Nam, Impacts and Adaptation: A COP26 Assessment Report of the GEMMES Viet Nam Project; Agence Française de Développement: Paris, France, 2021. [Google Scholar]
- Anh, D.L.T.; Anh, N.T.; Chandio, A.A. Climate Change and Its Impacts on Vietnam Agriculture: A Macroeconomic Perspective. Ecol. Inform. 2023, 74, 101960. [Google Scholar] [CrossRef]
- Wassmann, R.; Hien, N.X.; Hoanh, C.T.; Tuong, T.P. Sea Level Rise Affecting the Vietnamese Mekong Delta: Water Elevation in the Flood Season and Implications for Rice Production. Clim. Change 2004, 66, 89–107. [Google Scholar] [CrossRef]
- Loc, H.H.; Thi Hong Diep, N.; Can, N.T.; Irvine, K.N.; Shimizu, Y. Integrated Evaluation of Ecosystem Services in Prawn-Rice Rotational Crops, Vietnam. Ecosyst. Serv. 2017, 26, 377–387. [Google Scholar] [CrossRef]
- Bong, B.B.; Bo, N.V.; Son, N.H.; Tung, L.T.; Tu, T.Q.; Toan, T.Q.; Yen, B.T.; Trung, N.D.; Labios, R.V.; Sebastian, L.S. Adaptation Options for Rice-Based Cropping Systems in Climate Risk-Prone Provinces in the Mekong River Delta: An Assessment Report; CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS): Wageningen, The Netherlands, 2018. [Google Scholar]
- Truong, Q.C.; Drogoul, A.; Gaudou, B.; Taillandier, P.; Huynh, N.Q.; Nguyen, T.H.; Minderhoud, P.; Nguyen Thi Thu, H.; Espagne, E. An Agent-Based Model for Land-Use Change Adaptation Strategies in the Context of Climate Change and Land Subsidence in the Mekong Delta. Sustainability 2023, 15, 5355. [Google Scholar] [CrossRef]
- Truong, Q.C.; Gaudou, B.; Van Danh, M.; Quang Huynh, N.; Drogoul, A.; Taillandier, P. A Land-Use Change Model to Study Climate Change Adaptation Strategies in the Mekong Delta. In Proceedings of the 2021 RIVF International Conference on Computing and Communication Technologies (RIVF), Hanoi, Vietnam, 19–21 August 2021; pp. 1–6. [Google Scholar]
- Trang, N.T.; Tu, V.H.; Kopp, S.W. Trade-Offs between Economic and Environmental Efficiencies in Shrimp Farming: Implications for Sustainable Agricultural Restructuring in the Vietnamese Mekong Delta. Environ. Dev. Sustain. 2023, 25, 2670–2687. [Google Scholar] [CrossRef]
- FAO. Guidelines for Land-Use Planning; FAO Development Series; FAO: Rome, Italy, 1993; ISBN 92-5-103282-3. [Google Scholar]
- FAO. A Framework for Land Evaluation; Soil Resources, Management and Conservation Service, Ed.; FAO soils bulletin; 2. print.; FAO: Rome, Italy, 1981; ISBN 92-5-100111-1. [Google Scholar]
- Yamamura, K.; Tamura, N. Finding All Solutions of Separable Systems of Piecewise-Linear Equations Using Integer Programming. J. Comput. Appl. Math. 2012, 236, 2844–2852. [Google Scholar] [CrossRef]
- Delphin, S.; Snyder, K.A.; Tanner, S.; Musálem, K.; Marsh, S.E.; Soto, J.R. Obstacles to the Development of Integrated Land-Use Planning in Developing Countries: The Case of Paraguay. Land 2022, 11, 1339. [Google Scholar] [CrossRef]
- Chuvieco, E. Integration of Linear Programming and GIS for Land-Use Modelling. Int. J. Geogr. Inf. Syst. 1993, 7, 71–83. [Google Scholar] [CrossRef]
- Mellaku, M.; Reynolds, T.; Woldeamanuel, T. Linear Programming-Based Cropland Allocation to Enhance Performance of Smallholder Crop Production: A Pilot Study in Abaro Kebele, Ethiopia. Resources 2018, 7, 76. [Google Scholar] [CrossRef]
- Aerts, J.C.J.H.; Eisinger, E.; Heuvelink, G.B.M.; Stewart, T.J. Using Linear Integer Programming for Multi-Site Land-Use Allocation. Geogr. Anal. 2003, 35, 148–169. [Google Scholar] [CrossRef]
- Phinyoyang, A.; Ongsomwang, S. Optimizing Land Use and Land Cover Allocation for Flood Mitigation Using Land Use Change and Hydrological Models with Goal Programming, Chaiyaphum, Thailand. Land 2021, 10, 1317. [Google Scholar] [CrossRef]
- Liao, G.; He, P.; Gao, X.; Lin, Z.; Huang, C.; Zhou, W.; Deng, O.; Xu, C.; Deng, L. Land Use Optimization of Rural Production–Living–Ecological Space at Different Scales Based on the BP–ANN and CLUE–S Models. Ecol. Indic. 2022, 137, 108710. [Google Scholar] [CrossRef]
- Vũ, P.T.; Khương, N.T.A.; Trí, L.Q.; Huy, V.T. Application of mathematical optimization method in agricultural land use—Case study in Vi Thuy district, Hau Giang province. Can Tho Univ. J. Sci. 2016, 44, 38–47. [Google Scholar] [CrossRef]
- Vũ, P.T.; Lộc, T.T.; Trí, L.Q.; Huy, V.T.; Trung, N.H. Enhancing land use efficiency for income optimization of farm households in Tra Hat hamlet of Chau Thoi commune, Vinh Loi district, Bac Lieu province. Can Tho Univ. J. Sci. 2017, 51, 54–63. [Google Scholar] [CrossRef]
- Verburg, P.H.; Overmars, K.P. Dynamic Simulation of Land-Use Change Trajectories with the Clue-S Model. In Modelling Land-Use Change: Progress and Applications; Koomen, E., Stillwell, J., Bakema, A., Scholten, H.J., Eds.; The GeoJournal Library; Springer: Dordrecht, The Netherlands, 2007; pp. 321–337. ISBN 978-1-4020-5648-2. [Google Scholar]
- Valbuena, D.; Verburg, P.H.; Bregt, A.K.; Ligtenberg, A. An Agent-Based Approach to Model Land-Use Change at a Regional Scale. Landsc. Ecol. 2010, 25, 185–199. [Google Scholar] [CrossRef]
- Wu, C.; Chen, B.; Huang, X.; Dennis Wei, Y.H. Effect of Land-Use Change and Optimization on the Ecosystem Service Values of Jiangsu Province, China. Ecol. Indic. 2020, 117, 106507. [Google Scholar] [CrossRef]
- Quang, T.C.; Diem, P.K.; Minh, V.Q.; Vu, P.T.; Vu, P.H.; Chinh, P.T. An Analysis of Land Use Options Using CLUMondo Model to Promote Agricultural Restructuring in the Mekong Delta’s Coastal Area in Vietnam. Agric. Sci. Dig.—Res. J. 2023, 43, 482–489. [Google Scholar] [CrossRef]
- Lambin, E.; Geist, H.J. Causes of Land-Use and Land-Cover Change. Available online: http://www.eoearth.org/view/article/150964/ (accessed on 23 March 2015).
- Santiphop, T.; Shrestha, R.P.; Hazarika, M.K. An Analysis of Factors Affecting Agricultural Land Use Patterns and Livelihood Strategies of Farm Households in Kanchanaburi Province, Thailand. J. Land Use Sci. 2012, 7, 331–348. [Google Scholar] [CrossRef]
- Liu, J.; Xia, M. Influencing Factors Analysis and Optimization of Land Use Allocation: Combining MAS with MOPSO Procedure. Sustainability 2023, 15, 1401. [Google Scholar] [CrossRef]
- Loi, L.T.; Tien, L.T.M.; Vu, P.T. Analysis of the factors affecting efficiency of agricultural land use patterns in the Ba Tri district, Ben Tre province. Can Tho Univ. J. Sci. 2016, 43, 80–92. [Google Scholar] [CrossRef]
- Vu, P.T.; Tri, L.Q.; Dat, N.T.; Huy, V.T.; Nuong, L.T.; Trung, N.H. Using multi-criteria decision analysis in agricultural land uses in Bac Lieu province. Can Tho Univ. J. Sci. 2014, 31, 106–115. [Google Scholar]
- Sofi, N.A.; Ahmed, A.; Ahmad, M.; Bhat, B.A. Decision Making in Agriculture: A Linear Programming Approach. Int. J. Mod. Math. Sci. 2015, 13, 160–169. [Google Scholar]
- Tuan Anh, B.; Bong Dinh, N.; Tam Thi, D. Some Factors Which Influence management of Agricultural Land Use in Sontay Town, Hanoi City. J. Sci. Devel. 2013, 11, 654–662. [Google Scholar]
- Tri, L.Q.; Chi, V.V.; Vu, P.T.; Kiet, N.H.; Binh, N.T.S.; Guong, V.T. Evaluating the changes of soil properties and land use at three coastal districts in Soc Trang province. Can Tho Univ. J. Sci. 2008, 9, 59–68. [Google Scholar]
- Nghi, N.Q.; Hien, L.T.D. Market risk in agriculture of households in the Mekong Delta. Can Tho Univ. J. Sci. 2014, 33, 38–44. [Google Scholar]
- Yamane, T. Statistics: An Introductory Analysis, 2nd ed.; Harper and Row: New York, NY, USA, 1967. [Google Scholar]
- lp_solve Introduction to Lp_solve 5.5.2.5. Available online: http://web.mit.edu/lpsolve/doc/ (accessed on 4 June 2019).
- Taillandier, P.; Gaudou, B.; Grignard, A.; Huynh, Q.-N.; Marilleau, N.; Caillou, P.; Philippon, D.; Drogoul, A. Building, Composing and Experimenting Complex Spatial Models with the GAMA Platform. GeoInformatica 2019, 23, 299–322. [Google Scholar] [CrossRef]
- Enoguanbhor, E.C.; Gollnow, F.; Walker, B.B.; Nielsen, J.O.; Lakes, T. Key Challenges for Land Use Planning and Its Environmental Assessments in the Abuja City-Region, Nigeria. Land 2021, 10, 443. [Google Scholar] [CrossRef]
Factor Group | Factors | Source |
---|---|---|
Economic | Profit | Santiphop et al. [26]; Liu and Xia [27]; Le et al. [28]; Pham et al. [29] |
Capital, cost | Le et al. [28]; Sofi et al. [30] | |
Household capital | Bui et al. [31]; | |
Market demands | Santiphop et al. [26]; Liu and Xia [27] | |
Social | Labor | Pham et al. [29]; Sofi et al. [30] |
Educational level | Bui et al. [31]; | |
Neighborhood effect | Le et al. [32]; | |
Infrastructure (road, canals) | Le et al. [28]; Liu and Xia [27] | |
Environment | Risk of land use | Nghi and Hien [33]; Pham et al. [29] |
Natural factors: soil, water | Most related research |
LUT | Labor Demand | Profits | Environmental Benefits | Risk in Cultivation | |
---|---|---|---|---|---|
(Day/Year/ha) | (Million VND/ha) | ||||
LUT1 | Three rice crops | 92 | 58.48 ± 4.78 | 3.27 ± 1.18 | 3.20 ± 1.19 |
LUT2 | Two rice crops | 78 | 42.42 ± 4.13 | 3.96 ± 1.26 | 2.62 ± 0.68 |
LUT3 | Rice–vegetable | 121 | 80.27 ± 4.96 | 4.02 ± 1 | 2.51 ± 0.81 |
LUT4 | Rice–shrimp | 86 | 86.62 ± 7.02 | 4.22 ± 0.87 | 2.96 ± 0.92 |
LUT5 | Annual crops | 233 | 88.07 ± 5.59 | 3.18 ± 1.18 | 3.36 ± 1.01 |
LUT6 | Fruit trees | 115 | 184.00 ± 34.83 | 3.42 ± 1.06 | 3.62 ± 0.85 |
LUT7 | Shrimp | 217 | 277.23 ± 30.16 | 3.16 ± 1.01 | 4.24 ± 1.08 |
District | Communes | ||
---|---|---|---|
Group 1 | Group 2 | Group 3 | |
Long Phu | Truong Khanh, Tan Thanh, | Long Phu, Song Phung, Hau Thanh | Long Duc, Chau Khanh, Tân Hung, Phu Huu |
Tran De | Trung Binh, Lich Hoi Thuong, Thanh Thoi Thuan, Vien Binh | Vien An | Dai An 2, Lieu Tu, Tai Van, Thanh Thoi An |
My Xuyen | Hoa Tu 1, Hoa Tu 2, Ngoc To, Đại Tâm, TT My Xuyen | Ngoc Dong, Gia Hoa 1, Gia Hoa 2 | Tham Don, Thanh Phu, Thanh Quoi |
Household’s income per year | NRC qualified (greater than VND 30 million) | Not up to NRC standard (VND 20–28 million) | Not up to the NRC standard (<VND 20 million) |
Poverty rate | NRC qualified ≤4% | NRC qualified (≤6%) | Not up to the NRC standard NRC (≤23%) |
Factors | Detailed | Impact on LUTs and Allocation Orders | Applied |
---|---|---|---|
Economic | Profit | LUT7, LUT6, LUT5, LUT4, LUT3, LUT1, LUT2. | Optimization |
Capacity of investment | LUT7, LUT6, LUT5, LUT4, LUT3, LUT1, LUT2 | Allocation | |
Social | Labor days | LUT5, LUT7, LUT3, LUT6, LUT1, LUT4, LUT2 | Optimization |
Road systems | LUT5, LUT6, LUT7, LUT1, LUT4, LUT3, LUT2 | Allocation | |
Channel systems | LUT5, LUT6, LUT7, LUT4, LUT3, LUT1, LUT2 | Allocation | |
Neighboring LUT | LUT7, LUT4, LUT1, LUT3, LUT2 | Allocation | |
Environment | Land suitability | Based on Land suitability order | Optimization |
Risk of LUT | LUT7, LUT6, LUT1, LUT5, LUT4, LUT3, LUT2 | Optimization | |
Benefit of environment | LUT2, LUT4, LUT3, LUT1, LUT6, LUT5, LUT7 | Optimization |
LMU | Soil Type | Acid Sulfate Occurred | Salinity (‰) | Persistence of Salinity (Months) | Irrigation Capability (Months) | LUT1 | LUT2 | LUT3 | LUT4 | LUT5 | LUT6 | LUT7 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Anthrosol | No | 2–4 | 5 | 7 | 0 | 0 | 0 | 0 | 0.33 | 1 | 0 |
2 | Fluvisol | Active at <50 cm | 2–4 | 6 | 6 | 0 | 0.67 | 0.67 | 0 | 0.33 | 0 | 0 |
3 | Fluvisol | Active at >50 cm | 2–4 | 5 | 7 | 0 | 0.67 | 0.67 | 0 | 0.67 | 0 | 0 |
4 | Anthrosol | No | 4–6 | 5 | 7 | 0 | 0 | 0 | 0.67 | 0 | 0 | 0.33 |
5 | Arenosol | No | 4–6 | 6 | 6 | 0 | 0.33 | 0.33 | 0 | 0.67 | 0.67 | 0 |
6 | Fluvisol | Active at <50 cm | 4–6 | 5 | 7 | 0 | 1 | 0.67 | 0 | 0.67 | 0.33 | 0 |
7 | Anthrosol | Active at >50 cm | 12–20 | 12 | 0 | 0 | 0 | 0 | 0.33 | 0 | 0 | 0.67 |
8 | Fluvisol | No | 12–20 | 12 | 0 | 0 | 0 | 0 | 0.33 | 0 | 0 | 0.67 |
9 | Fluvisol | Active at <50 cm | 12–20 | 12 | 0 | 0 | 0 | 0 | 0.67 | 0 | 0 | 1 |
10 | Fluvisol | Active at <50 cm | 2–4 | 3 | 9 | 0 | 0.67 | 0.33 | 0 | 0.33 | 0.67 | 0 |
11 | Anthrosol | Active at >50 cm | 4–6 | 5 | 7 | 0 | 0.67 | 0.33 | 0 | 0.67 | 0 | 0 |
12 | Fluvisol | No | 6–8 | 3 | 9 | 0 | 1 | 0.67 | 0 | 0.67 | 0.33 | 0 |
13 | Arenosol | No | 2–4 | 3 | 9 | 0 | 0.33 | 0 | 0 | 1 | 0.67 | 0 |
14 | Fluvisol | Potential at <50 cm | 8–12 | 6 | 6 | 0 | 0 | 0 | 1 | 0.33 | 0 | 0.33 |
15 | Anthrosol | Potential at >50 cm | 6–8 | 6 | 6 | 0 | 0 | 0 | 0 | 0.67 | 1 | 0 |
16 | Anthrosol | Potential at >50 cm | 2–4 | 3 | 9 | 0 | 0.33 | 0.33 | 0 | 0.67 | 1 | 0 |
17 | Fluvisol | Active at <50 cm | 8–10 | 6 | 6 | 0 | 0 | 0 | 0 | 0.67 | 0.33 | 0.67 |
18 | Anthrosol | Potential at >50 cm | <2 | 5 | 7 | 0 | 0 | 0 | 0 | 1 | 0.33 | 0 |
19 | Anthrosol | Potential at >50 cm | <2 | 3 | 9 | 0 | 0 | 0 | 0 | 1 | 0.33 | 0 |
20 | Fluvisol | No | 2–4 | 3 | 9 | 1 | 0.67 | 0.67 | 0 | 0.67 | 1 | 0 |
21 | Fluvisol | No | 2–4 | 6 | 6 | 0.33 | 0.67 | 0.67 | 0 | 0.67 | 1 | 0 |
22 | Anthrosol | Potential at >50 cm | 2–4 | 5 | 7 | 0 | 0 | 0 | 0 | 0.67 | 1 | 0 |
23 | Anthrosol | No | 2–4 | 2 | 10 | 0 | 0 | 0 | 0 | 0.67 | 1 | 0 |
24 | Arenosol | No | 8–10 | 5 | 7 | 0 | 0 | 0 | 0 | 0.67 | 0.67 | 0.33 |
25 | Fluvisol | Active at >50 cm | 2–4 | 6 | 6 | 0.67 | 0.67 | 1 | 0 | 0.67 | 0 | 0 |
26 | Fluvisol | Potential at <50 cm | 6–8 | 6 | 6 | 0 | 0.67 | 0.67 | 0 | 0.33 | 0.33 | 0 |
27 | Fluvisol | No | 6–8 | 3 | 9 | 0.67 | 0.67 | 0.67 | 0 | 0.67 | 0.67 | 0 |
28 | Anthrosol | Active at >50 cm | 2–4 | 3 | 9 | 0 | 0 | 0 | 0 | 0.67 | 1 | 0 |
LUT | Scenario 1 | Scenario 2 | ||
---|---|---|---|---|
Lower Bound (ha) | Upper Bound (ha) | Lower Bound (ha) | Upper Bound (ha) | |
LUT1 | 0 | Unlimited | 0 | Unlimited |
LUT2 | 0 | Unlimited | 0 | Unlimited |
LUT3 | 0 | 12,768 | 0 | 15,436 |
LUT4 | 0 | Unlimited | 0 | Unlimited |
LUT5 | 0 | 2100 | 0 | 2500 |
LUT6 | 0 | 8799 | 0 | 8936 |
LUT7 | 0 | 16,697 | 0 | 19,236 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Truong, Q.C.; Nguyen, T.H.; Pham, V.T.; Nguyen, T.H. Land-Use Optimization and Allocation for Saltwater Intrusion Regions: A Case Study in Soc Trang Province, Vietnam. Climate 2024, 12, 16. https://doi.org/10.3390/cli12020016
Truong QC, Nguyen TH, Pham VT, Nguyen TH. Land-Use Optimization and Allocation for Saltwater Intrusion Regions: A Case Study in Soc Trang Province, Vietnam. Climate. 2024; 12(2):16. https://doi.org/10.3390/cli12020016
Chicago/Turabian StyleTruong, Quang Chi, Thao Hong Nguyen, Vu Thanh Pham, and Trung Hieu Nguyen. 2024. "Land-Use Optimization and Allocation for Saltwater Intrusion Regions: A Case Study in Soc Trang Province, Vietnam" Climate 12, no. 2: 16. https://doi.org/10.3390/cli12020016
APA StyleTruong, Q. C., Nguyen, T. H., Pham, V. T., & Nguyen, T. H. (2024). Land-Use Optimization and Allocation for Saltwater Intrusion Regions: A Case Study in Soc Trang Province, Vietnam. Climate, 12(2), 16. https://doi.org/10.3390/cli12020016