Assessing Future Precipitation Patterns, Extremes and Variability in Major Nile Basin Cities: An Ensemble Approach with CORDEX CORE Regional Climate Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Observed Dataset
2.3. CORDEX-CORE Africa Dataset
2.4. Calculation of Extreme Events
2.5. The Mann–Kendall (MK) Trend Test
2.6. The Empirical Quantile Mapping Bias Method
3. Results
3.1. CORDEX-CORE Evaluation over the NRB Stations
3.2. The Projected Changes in Precipitation
3.3. Historical and Future Precipitation Trend
3.4. The Relative Change in RX1Day and RX5Day Indices
3.5. The Relative Change in the CWD and CDD Index
3.6. Spatial Trends of Precipitation Extreme Indices
4. Discussion
5. Conclusions
- The magnitudes of the changes in precipitation vary across stations, scenarios, and time periods.
- Stations that exhibited a positive change in precipitation included Addis Ababa, Asmara, Gitega, Juba, Kampala, Kigali, and Nairobi in at least one scenario and period.
- Stations like Cairo, Dodoma, Kinshasa, and Khartoum showed a decrease in precipitation in at least one scenario and time.
- Addis Ababa and Kigali anticipated a significant increase in precipitation across all periods and scenarios ranging between 8–15% and 13–27%, respectively, while stations Cairo and Kinshasa exhibited a significant decrease in precipitation at around 90% and 38%, respectively.
- The results also indicated that the trends in precipitation varied among stations in each of the selected zones. In fact, RX1Day and RX5Day are projected to consistently increase across the studied domain. For instance, we can notice that the increase in RX5Day is likely to multiply the probability of flood risks over Addis Ababa, Asmara, Khartoum, and Kigali.
- Wet (dry) spells are projected to significantly decrease (increase) over most parts of the NRB, especially during the second period (2081–2100). Therefore, the increase (decrease) in dry (wet) spells could have a direct impact on water resource availability in the NRB.
- CDD increased significantly over many stations, and those like Cairo and Kinshasa could likely experience high drought risk in the future, mainly caused by the combined effect of the extended periods of dry periods and rainfall shortages while decreasing in Addis Ababa and Juba.
- In general, RCP8.5 exhibits more notable variations in precipitation than RCP2.6 when comparing the two RCPs. This indicates that increased greenhouse gas emissions have a greater impact on precipitation patterns; furthermore, the expected increases or declines are larger in magnitude for the late 21st century than the mid-21st century, which might be due to the varied GHG concentration rate sensitivities and related feedback processes.
- The expected increases in the severity and frequency of climatic extremes (droughts and floods) have a significant impact on the region’s food, water security status, and natural environment, so it is crucial to evaluate the socio-economic effects that might arise from increasing precipitation extremes and a projected tendency toward longer (shorter) maximal dry (wet) periods.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allan, R.P.; Hawkins, E.; Bellouin, N.; Collins, B. IPCC, 2021: Summary for Policymakers. In Climate Change 2021; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Sajjad, H.; Ghaffar, A. Observed, simulated and projected extreme climate indices over Pakistan in changing climate. Theor. Appl. Climatol. 2019, 137, 255–281. [Google Scholar] [CrossRef]
- Salah, M.; Moursy, F.; Soliman, E.; Gamal, G. Assessing the potential impacts of climate change on droughts in East Africa using CORDEX-CORE regional climate models’ simulations: A focus on Tanzania. Contrib. Geophys. Geod. 2023, 53, 271–300. [Google Scholar]
- Easterling, D.R.; Arnold, J.R.; Knutson, T.; Kunkel, K.E.; LeGrande, A.N.; Leung, L.R.; Vose, R.S.; Waliser, D.E.; Wehner, M.F. Precipitation change in the United States. In Climate Science Special Report: Fourth National Climate Assessment, Volume I; U.S. Global Change Research Program: Washington, DC, USA, 2017. [Google Scholar]
- Maidment, R.I.; Allan, R.P.; Black, E. Recent observed and simulated changes in precipitation over Africa. Geophys. Res. Lett. 2015, 42, 8155–8164. [Google Scholar] [CrossRef]
- Safdar, F.; Khokhar, M.F.; Mahmood, F.; Khan, M.Z.A.; Arshad, M. Observed and predicted precipitation variability across Pakistan with special focus on winter and pre-monsoon precipitation. Environ. Sci. Pollut. Res. 2023, 30, 4510–4530. [Google Scholar] [CrossRef] [PubMed]
- Caporali, E.; Lompi, M.; Pacetti, T.; Chiarello, V.; Fatichi, S. A review of studies on observed precipitation trends in Italy. Int. J. Climatol. 2021, 41, E1–E25. [Google Scholar] [CrossRef]
- Ozer, P.; Mahamoud, A. Recent extreme precipitation and temperature changes in Djibouti City (1966–2011). J. Climatol. 2013, 2013, 928501. [Google Scholar] [CrossRef]
- Keuser, A.P. Precipitation patterns and trends in the metropolitan area of Milwaukee, Wisconsin. Int. J. Geospat. Environ. Res. 2014, 1, 6. [Google Scholar]
- Khoi, D.N.; Trang, H.T. Analysis of changes in precipitation and extremes events in Ho Chi Minh City, Vietnam. Procedia Eng. 2016, 142, 229–235. [Google Scholar] [CrossRef]
- Toros, H.; Abbasnia, M.; Sagdic, M.; Tayanç, M. Long-term variations of temperature and precipitation in the megacity of Istanbul for the development of adaptation strategies to climate change. Adv. Meteorol. 2017, 2017, 6519856. [Google Scholar] [CrossRef]
- Pan, Z.; Zhang, Y.; Liu, X.; Gao, Z. Current and future precipitation extremes over Mississippi and Yangtze River basins as simulated in CMIP5 models. J. Earth Sci. 2016, 27, 22–36. [Google Scholar] [CrossRef]
- Oliveira, G.S.; Nobre, C.; Costa, M.H.; Satyamurty, P.; Soares Filho, B.S.; Cardoso, M. Regional climate change over eastern Amazônia caused by pasture and soybean cropland expansion. Geophys. Res. Lett. 2007, 34, LI7709. [Google Scholar] [CrossRef]
- Satyamurty, P.; de Castro, A.A.; Tota, J.; da Silva Gularte, L.E.; Manzi, A.O. Rainfall trends in the Brazilian Amazon Basin in the past eight decades. Theor. Appl. Climatol. 2010, 99, 139–148. [Google Scholar] [CrossRef]
- Niang, I.; Ruppel, O.C.; Abdrabo, M.A.; Essel, A.; Lennard, C.; Padgham, J.; Urquhart, P. Africa. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects: Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 1199–1265. [Google Scholar]
- Burls, N.J.; Blamey, R.C.; Cash, B.A.; Swenson, E.T.; al Abdullah, F.; Bopape, M.-J.M.; Straus, D.M.; Reason, C.J.C. The Cape Town “day zero” drought and Hadley cell expansion. Clim. Atmos. Sci. 2019, 2, 27. [Google Scholar] [CrossRef]
- Dosio, A.; Jury, M.W.; Almazroui, M.; Ashfaq, M.; Diallo, I.; Engelbrecht, F.A.; Klutse, N.A.B.; Lennard, C.; Pinto, I.; Sylla, M.B.; et al. Projected future daily characteristics of African precipitation based on global (CMIP5, CMIP6) and regional (CORDEX, CORDEX-CORE) climate models. Clim. Dyn. 2021, 57, 3135–3158. [Google Scholar] [CrossRef]
- Elshamy, M.E.; Seierstad, I.A.; Sorteberg, A. Impacts of climate change on Blue Nile flows using bias-corrected GCM scenarios. Hydrol. Earth Syst. Sci. 2009, 13, 551–565. [Google Scholar] [CrossRef]
- Giorgi, F.; Gutowski, W.J. Regional dynamical downscaling and the cordex initiative. Annu. Rev. Environ. Resour. 2015, 40, 467–490. [Google Scholar] [CrossRef]
- Bichet, A.; Diedhiou, A.; Hingray, B.; Evin, G.; Touré, N.E.; Browne, K.N.A.; Kouadio, K. Assessing uncertainties in the regional projections of precipitation in CORDEX-AFRICA. Clim. Chang. 2020, 162, 583–601. [Google Scholar] [CrossRef]
- Tamoffo, A.T.; Nikulin, G.; Vondou, D.A.; Dosio, A.; Nouayou, R.; Wu, M.; Igri, P.M. Process-based assessment of the impact of reduced turbulent mixing on Congo Basin precipitation in the RCA4 Regional Climate Model. Clim. Dyn. 2021, 56, 1951–1965. [Google Scholar] [CrossRef]
- Mengistu, D.; Bewket, W.; Dosio, A.; Panitz, H.-J. Climate change impacts on water resources in the upper blue nile (Abay) river basin, ethiopia. J. Hydrol. 2021, 592, 125614. [Google Scholar] [CrossRef]
- Woldesenbet, T.A.; Elagib, N.A.; Ribbe, L.; Heinrich, J. Catchment response to climate and land use changes in the Upper Blue Nile sub-basins, Ethiopia. Sci. Total Environ. 2018, 644, 193–206. [Google Scholar] [CrossRef]
- Mohammed, J.A.; Gashaw, T.; Tefera, G.W.; Dile, Y.T.; Worqlul, A.W.; Addisu, S. Changes in observed rainfall and temperature extremes in the Upper Blue Nile Basin of Ethiopia. Weather Clim. Extrem. 2022, 37, 100468. [Google Scholar] [CrossRef]
- Nashwan, M.S.; Shahid, S. Spatial distribution of unidirectional trends in climate and weather extremes in Nile River basin. Theor. Appl. Climatol. 2019, 137, 1181–1199. [Google Scholar] [CrossRef]
- Worku, G.; Teferi, E.; Bantider, A.; Dile, Y.T. Observed changes in extremes of daily rainfall and temperature in Jemma Sub-Basin, Upper Blue Nile Basin, Ethiopia. Theor. Appl. Climatol. 2019, 135, 839–854. [Google Scholar] [CrossRef]
- Tariku, T.B.; Gan, T.Y. Regional climate change impact on extreme precipitation and temperature of the Nile river basin. Clim. Dyn. 2018, 51, 3487–3506. [Google Scholar] [CrossRef]
- Mariotti, L.; Diallo, I.; Coppola, E.; Giorgi, F. Seasonal and intraseasonal changes of African monsoon climates in 21st century CORDEX projections. Clim. Chang. 2014, 125, 53–65. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; van Ypserle, J.P. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Swain, A. Challenges for water sharing in the Nile basin: Changing geo-politics and changing climate. Hydrol. Sci. J. 2011, 56, 687–702. [Google Scholar] [CrossRef]
- Marelle, L.; Myhre, G.; Steensen, B.M.; Hodnebrog, Ø.; Alterskjær, K.; Sillmann, J. Urbanization in megacities increases the frequency of extreme precipitation events far more than their intensity. Environ. Res. Lett. 2020, 15, 124072. [Google Scholar] [CrossRef]
- Onyutha, C.; Willems, P. Spatial and temporal variability of rainfall in the Nile Basin. Hydrol. Earth Syst. Sci. 2015, 19, 2227–2246. [Google Scholar] [CrossRef]
- Onyutha, C.; Tabari, H.; Taye, M.T.; Nyandwaro, G.N.; Willems, P. Analyses of rainfall trends in the Nile River Basin. J. Hydro-Environ. Res. 2016, 13, 36–51. [Google Scholar] [CrossRef]
- Camberlin, P. Rainfall anomalies in the source region of the Nile and their connection with the Indian summer monsoon. J. Clim. 1997, 10, 1380–1392. [Google Scholar] [CrossRef]
- Tesemma, Z.K.; Mohamed, Y.A.; Steenhuis, T.S. Trends in rainfall and runoff in the Blue Nile Basin: 1964–2003. Hydrol. Process. 2010, 24, 3747–3758. [Google Scholar] [CrossRef]
- Tabari, H.; Taye, M.T.; Willems, P. Statistical assessment of precipitation trends in the upper Blue Nile River basin. Stoch. Environ. Res. Risk Assess. 2015, 29, 1751–1761. [Google Scholar] [CrossRef]
- Kim, U.; Kaluarachchi, J.J.; Smakhtin, V.U. Generation of monthly precipitation under climate change for the upper blue nile river basin, Ethiopia 1. JAWRA J. Am. Water Resour. Assoc. 2008, 44, 1231–1247. [Google Scholar] [CrossRef]
- Taye, M.T.; Willems, P. Temporal variability of hydroclimatic extremes in the Blue Nile basin. Water Resour. Res. 2012, 48, 1–13. [Google Scholar] [CrossRef]
- Awulachew, S.B. (Ed.) The Nile River Basin: Water, Agriculture, Governance and Livelihoods; Routledge: Abingdon, UK, 2012. [Google Scholar]
- Nile Basin Water Resource Atlas, 2022: Estimated and Projected Total Population in Nile Basin Countries. Available online: https://atlas.nilebasin.org/treatise/estimated-and-projected-total-population-in-nile-basin-countries/ (accessed on 22 July 2022).
- United Nations Environmental Programme (UNEP). 2006: Environment, Sustainable Development and the Nile River Basin. Education for Sustainable Development Innovations. MESA University Partnership. Available online: https://docplayer.net/2630438-Education-for-sustainable-development-innovations-mesa-universities-partnership-environment-sustainable-development-and-the-nile-river-basin.html (accessed on 14 November 2014).
- Abtew, W.; Melesse, A.M. The Nile River Basin. In Nile River Basin: Ecohydrological Challenges, Climate Change and Hydropolitics; Springer International Publishing: Cham, Switzerland, 2014; pp. 7–21. [Google Scholar]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, F.; Jones, C.; Asrar, G.R. Addressing climate information needs at the regional level: The CORDEX framework. World Meteorol. Organ. Bull. 2009, 58, 175. [Google Scholar]
- Stéfanon, M.; Martin-StPaul, N.K.; Leadley, P.; Bastin, S.; Dell’Aquila, A.; Drobinski, P.; Gallardo, C. Testing climate models using an impact model: What are the advantages? Clim. Chang. 2015, 131, 649–661. [Google Scholar] [CrossRef]
- Flato, G.; Marotzke, J.; Abiodun, B.; Braconnot, P.; Chou, S.C.; Collins, W.; Cox, P.; Driouech, F.; Emori, S.; Eyring, V.; et al. 2013: Evaluation of Climate Models. In Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; Van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef]
- Field, C.B.; Barros, V.R. (Eds.) Climate Change 2014–Impacts, Adaptation and Vulnerability: Regional Aspects; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Valle, D.; Staudhammer, C.L.; Cropper Jr, W.P.; Gardingen, P.R. The importance of multimodel projections to assess uncertainty in projections from simulation models. Ecol. Appl. 2009, 19, 1680–1692. [Google Scholar] [CrossRef]
- Hawkins, E.; Sutton, R. The potential to narrow uncertainty in projections of regional precipitation change. Clim. Dyn. 2011, 37, 407–418. [Google Scholar] [CrossRef]
- Rockel, B.; Will, A.; Hense, A. The regional climate model COSMO-CLM (CCLM). Meteorol. Zeitschr. 2008, 17, 347–348. [Google Scholar] [CrossRef]
- Stevens, B.; Giorgetta, M.; Esch, M.; Mauritsen, T.; Crueger, T.; Rast, S.; Salzmann, M.; Schmidt, H.; Bader, J.; Roeckner, E.; et al. Atmospheric component of the MPI-M earth system model: ECHAM6. J. Adv. Model. Earth Syst. 2013, 5, 146–172. [Google Scholar] [CrossRef]
- Bentsen, M.; Bethke, I.; Debernard, J.B.; Iversen, T.; Kirkevåg, A.; Seland, Ø.; Drange, H.; Roelandt, C.; Seierstad, I.A.; Hoose, C.; et al. The Norwegian Earth System Model, NorESM1-M—Part 1: Description and basic evaluation of the physical climate. Geosci. Model Dev. 2013, 6, 687–720. [Google Scholar] [CrossRef]
- Teichmann, C.; Eggert, B.; Elizalde, A.; Haensler, A.; Jacob, D.; Kumar, P.; Moseley, C.; Pfeifer, S.; Rechid, D.; Remedio, A.; et al. How Does a Regional Climate Model Modify the Projected Climate Change Signal of the Driving GCM: A Study over Different CORDEX Regions Using REMO. Atmosphere 2013, 4, 214–236. [Google Scholar] [CrossRef]
- Collins, W.J.; Bellouin, N.; Doutriaux-Boucher, M.; Gedney, N.; Halloran, P.; Hinton, T.; Jones, H.C.D.; Joshi, J.M.; Liddicoat, S.; Woodward, S.; et al. Development and evaluation of an earth-system model—HadGEM2. Geosci. Model. Dev. 2011, 4, 1051–1075. [Google Scholar] [CrossRef]
- Martin, G.M.; Collins, W.J.; Culverwell, I.D.; Halloran, P.R.; Hardiman, S.C.; Hinton, T.J.; Jones, C.D.; McDonald, R.E.; McLaren, A.J.; Wiltshire, A.; et al. The HadGEM2 family of MET office unified model climate configurations. Geosci. Model. Dev. 2011, 4, 723–757. [Google Scholar]
- Seneviratne, S.; Nicholls, N.; Easterling, D.; Goodess, C.; Kanae, S.; Kossin, J.; Luo, Y.; Marengo, J.; McInnes, K.; Zwiers, F.W. Changes in Climate Extremes and Their Impacts on the Natural Physical Environment; Columbia, University: New York, NY, USA, 2012. [Google Scholar]
- Perkins-Kirkpatrick, S.E.; Lewis, S.C. Increasing trends in regional heatwaves. Nat. Commun. 2020, 11, 3357. [Google Scholar] [CrossRef]
- De Vries, H.; Haarsma, R.J.; Hazeleger, W. Western European cold spells in current and future climate. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Breugem, A.J.; Wesseling, J.G.; Oostindie, K.; Ritsema, C.J. Meteorological aspects of heavy precipitation in relation to floods–an overview. Earth-Sci. Rev. 2020, 204, 103171. [Google Scholar] [CrossRef]
- Haile, G.G.; Tang, Q.; Sun, S.; Huang, Z.; Zhang, X.; Liu, X. Droughts in East Africa: Causes, impacts and resilience. Earth-Sci. Rev. 2019, 193, 146–161. [Google Scholar] [CrossRef]
- Saeed, F.; Almazroui, M.; Islam, N.; Khan, M.S. Intensification of future heat waves in Pakistan: A study using CORDEX regional climate models ensemble. Nat. Hazards 2017, 87, 1635–1647. [Google Scholar] [CrossRef]
- Ozturk, T. Projected Future Changes in Extreme Climate Indices over Central Asia Using RegCM4. 3.5. Atmosphere 2023, 14, 939. [Google Scholar] [CrossRef]
- Han, F.; Cook, K.H.; Vizy, E.K. Changes in intense rainfall events and dry periods across Africa in the twenty-first century. Clim. Dyn. 2019, 53, 2757–2777. [Google Scholar] [CrossRef]
- Sillmann, J.; Kharin, V.V.; Zhang, X.; Zwiers, F.W.; Bronaugh, D. Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res. Atmos. 2013, 118, 1716–1733. [Google Scholar] [CrossRef]
- Mann, H.B. Non-parametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Griffin: London, UK, 1975. [Google Scholar]
- Ahmad, I.; Tang, D.; Wang, T.; Wang, M.; Wagan, B. Precipitation trends over time using Mann-Kendall and spearman’s rho tests in swat river basin, Pakistan. Adv. Meteorol. 2015, 2015, 431860. [Google Scholar] [CrossRef]
- Ongoma, V.; Chen, H. Temporal and Spatial Variability of Temperature and Precipitation over East Africa from 1951 to 2010. Meteorol. Atmos. Phys. 2016, 129, 131–144. [Google Scholar] [CrossRef]
- Cannon, A.J.; Sobie, S.R.; Murdock, T.Q. Bias correction of GCM precipitation by quantile mapping: How well do methods preserve changes in quantiles and extremes? J. Clim. 2015, 28, 6938–6959. [Google Scholar] [CrossRef]
- Piani, C.; Haerter, J.O.; Coppola, E. Statistical bias correction for daily precipitation in regional climate models over Europe. Theor. Appl. Climatol. 2010, 99, 187–192. [Google Scholar] [CrossRef]
- Hagemann, S.; Chen, C.; Haerter, J.O.; Heinke, J.; Gerten, D.; Piani, C. Impact of a statistical bias correction on the projected hydrological changes obtained from three GCMs and two hydrology models. J. Hydrometeorol. 2011, 12, 556–578. [Google Scholar] [CrossRef]
- Watanabe, T. How Do Irrigation and Drainage Play an Important Role in Climate Change Adaptation? Irrig. Drain. 2016, 65, 189–196. [Google Scholar] [CrossRef]
- Teshome, A.; Zhang, J. Increase of extreme drought over Ethiopia under climate warming. Adv. Meteorol. 2019, 2019, 5235429. [Google Scholar] [CrossRef]
- Mekasha, A.; Duncan, A.J. Trends in daily observed temperature and precipitation extremes over three Ethiopian eco-environments. Int. J. Clim. 2013, 34, 1990–1999. [Google Scholar] [CrossRef]
- Sonkoué, D.; Monkam, D.; Fotso-Nguemo, T.C.; Yepdo, Z.D.; Vondou, D.A. Evaluation and projected changes in daily rainfall characteristics over Central Africa based on a multi-model ensemble mean of CMIP5 simulations. Theor. Appl. Climatol. 2019, 137, 2167–2186. [Google Scholar] [CrossRef]
- Tamoffo, A.T.; Weber, T.; Akinsanola, A.A.; Vondou, D.A. Projected changes in extreme rainfall and temperature events and possible implications for Cameroon’s socio-economic sectors. Meteorol. Appl. 2023, 30, e2119. [Google Scholar] [CrossRef]
- Samuel, S.; Dosio, A.; Mphale, K.; Faka, D.N.; Wiston, M. Comparison of multimodel ensembles of global and regional climate models projections for extreme precipitation over four major river basins in southern Africa—Assessment of the historical simulations. Clim. Chang. 2023, 176, 57. [Google Scholar] [CrossRef]
- Babaousmail, H.; Hou, R.; Ayugi, B.; Sian, K.T.C.L.K.; Ojara, M.; Mumo, R.; Ongoma, V. Future changes in mean and extreme precipitation over the Mediterranean and Sahara regions using bias-corrected CMIP6 models. Int. J. Climatol. 2022, 42, 7280–7297. [Google Scholar] [CrossRef]
- Moradian, S.; Torabi Haghighi, A.; Asadi, M.; Mirbagheri, S.A. Future changes in precipitation over northern europe based on a multi-model ensemble from CMIP6: Focus on Tana River Basin. Water Resour. Manag. 2023, 37, 2447–2463. [Google Scholar] [CrossRef]
- Sun, Y.; Ding, Y. A projection of future changes in summer precipitation and monsoon in East Asia. Sci. China Earth Sci. 2010, 53, 284–300. [Google Scholar] [CrossRef]
- Zittis, G.; Bruggeman, A.; Lelieveld, J. Revisiting future extreme precipitation trends in the Mediterranean. Weather Clim. Extrem. 2021, 34, 100380. [Google Scholar] [CrossRef]
- Lyon, B.; DeWitt, D.G. A recent and abrupt decline in the East African long rains. Geophys. Res. Lett. 2012, 39, 5. [Google Scholar] [CrossRef]
- Muluneh, A.; Bewket, W.; Keesstra, S.; Stroosnijder, L. Searching for evidence of changes in extreme rainfall indices in the Central Rift Valley of Ethiopia. Theor. Appl. Climatol. 2017, 128, 795–809. [Google Scholar] [CrossRef]
- Conway, D. The climate and hydrology of the Upper Blue Nile River. Geogr. J. 2000, 166, 49–62. [Google Scholar] [CrossRef]
- Viste, E.; Sorteberg, A. Moisture transport into the Ethiopian highlands. Int. J. Climatol. 2013, 33, 249–263. [Google Scholar] [CrossRef]
- Berhane, A.; Hadgu, G.; Worku, W.; Abrha, B. Trends in extreme temperature and rainfall indices in the semi-arid areas of Western Tigray, Ethiopia. Environ. Syst. Res. 2020, 9, 1–20. [Google Scholar]
- Medany, M.; Niang-Diop, I.; Nyong, T.; Tabo, R.; Vogel, C. Background paper on impacts, vulnerability and adaptation to climate change in Africa. In Proceedings of the UNFCCC Convention, Accra, Ghana, 21–23 September 2006; pp. 21–23. [Google Scholar]
- Osima, S.; Indasi, V.S.; Zaroug, M.; Endris, H.S.; Gudoshava, M.; Misiani, H.O.; Nimusiima, A.; Anayah, R.O.; Otieno, G.; Dosio, A.; et al. Projected climate over the Greater Horn of Africa under 1.5 C and 2 C global warming. Environ. Res. Lett. 2018, 13, 065004. [Google Scholar] [CrossRef]
- Wainwright, C.M.; Marsham, J.H.; Keane, R.J.; Rowell, D.P.; Finney, D.L.; Black, E.; Allan, R.P. ‘Eastern African Paradox’rainfall decline due to shorter not less intense Long Rains. Clim. Atmos. Sci. 2019, 2, 34. [Google Scholar] [CrossRef]
- Gudoshava, M.; Misiani, H.O.; Segele, Z.T.; Jain, S.; Ouma, J.O.; Otieno, G.; Anyah, R.; Indasi, V.S.; Endris, H.S.; Osima, S. Projected effects of 1.5 C and 2 C global warming levels on the intra-seasonal rainfall characteristics over the Greater Horn of Africa. Environ. Res. Lett. 2020, 15, 034037. [Google Scholar] [CrossRef]
- Bigi, V.; Pezzoli, A.; Rosso, M. Past and future precipitation trend analysis for the City of Niamey (Niger): An overview. Climate 2018, 6, 73. [Google Scholar] [CrossRef]
- Aldrees, A.; Hasan, M.S.U.; Rai, A.K.; Akhtar, M.N.; Khan, M.A.; Saif, M.M.; Ahmad, N.; Islam, S. On the Precipitation Trends in Global Major Metropolitan Cities under Extreme Climatic Conditions: An Analysis of Shifting Patterns. Water 2023, 15, 383. [Google Scholar] [CrossRef]
RCM | Institute and Reference | GCM | GCM Resolution | Reference |
---|---|---|---|---|
CLMcom | Climate Limited-Area Modelling Community-KIT, Germany [51] | MPI-M-MPI-ESM-LR | 1.9° × 1.9° | [52] |
NCC-NorESM1-M | 1.9° × 2.5° | [53] | ||
REMO2015 | Helmholtz-Zentrum Geesthacht, Climate Service Center Germany [54] | |||
MOHC-HadGEM2-ES | 1.3° × 1.9° | [55,56] |
ID | Index | Definition | Unit |
---|---|---|---|
RX1Day | Max 1-day precipitation amount | Annual maximum 1-day precipitation | mm |
RX5Day | Max 5-day precipitation amount | Annual maximum consecutive 5-day precipitation | mm |
CWD | Consecutive wet days | Maximum number of consecutive days when precipitation > 1 mm | days |
CDD | Consecutive dry days | Maximum number of consecutive days when precipitation < 1 mm | days |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gamal, G.; Nejedlik, P.; El Kenawy, A.M. Assessing Future Precipitation Patterns, Extremes and Variability in Major Nile Basin Cities: An Ensemble Approach with CORDEX CORE Regional Climate Models. Climate 2024, 12, 9. https://doi.org/10.3390/cli12010009
Gamal G, Nejedlik P, El Kenawy AM. Assessing Future Precipitation Patterns, Extremes and Variability in Major Nile Basin Cities: An Ensemble Approach with CORDEX CORE Regional Climate Models. Climate. 2024; 12(1):9. https://doi.org/10.3390/cli12010009
Chicago/Turabian StyleGamal, Gamil, Pavol Nejedlik, and Ahmed M. El Kenawy. 2024. "Assessing Future Precipitation Patterns, Extremes and Variability in Major Nile Basin Cities: An Ensemble Approach with CORDEX CORE Regional Climate Models" Climate 12, no. 1: 9. https://doi.org/10.3390/cli12010009
APA StyleGamal, G., Nejedlik, P., & El Kenawy, A. M. (2024). Assessing Future Precipitation Patterns, Extremes and Variability in Major Nile Basin Cities: An Ensemble Approach with CORDEX CORE Regional Climate Models. Climate, 12(1), 9. https://doi.org/10.3390/cli12010009