Statistical Downscaling of Precipitation in the South and Southeast of Mexico
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Zone
2.2. Statistical Downscaling
2.3. Data
3. Results
3.1. Linear Adjustment
3.2. Bias-Correction Performance
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V.P., Zhai, A., Pirani, S.L., Connors, C., Péan, S., Berger, N., Caud, Y., Chen, L., Goldfarb, M.I., Gomis, M., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; p. 2391. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). 2022. Available online: https://public.wmo.int/en/resources/world-meteorological-day/world-meteorological-day-2022-early-warning-early-action/climate-change-and-extreme-weather (accessed on 21 August 2023).
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Balaji, V.; Taylor, K.E.; Juckes, M.; Lawrence, B.N.; Durack, P.J.; Lautenschlager, M.; Blanton, C.; Cinquini, L.; Denvil, S.; Elkington, M.; et al. Requirements for a global data infrastructure in support of CMIP6. Geosci. Model Dev. 2018, 11, 3659–3680. [Google Scholar] [CrossRef]
- Meinshausen, M.; Vogel, E.; Nauels, A.; Lorbacher, K.; Meinshausen, N.; Etheridge, D.M.; Fraser, P.J.; Montzka, S.A.; Rayner, P.J.; Trudinger, C.M.; et al. Historical greenhouse gas concentrations for climate modelling (CMIP6). Geosci. Model Dev. 2017, 10, 2057–2116. [Google Scholar] [CrossRef]
- Hoesly, R.; O’Rourke, P.; Braun, C.; Feng, L.; Smith, S.J.; Pitkanen, T.; Seibert, J.J.; Vu, L.; Presley, M.; Bolt, R.; et al. Zenodo, Version 23 December 2019, Community Emissions Data System; CERN: Genève, Switzerland, 2019. [Google Scholar] [CrossRef]
- Pascoe, C.; Lawrence, B.N.; Guilyardi, E.; Juckes, M.; Taylor, K.E. Documenting numerical experiments in support of the Coupled Model Intercomparison Project Phase 6 (CMIP6). Geosci. Model Dev. 2020, 13, 2149–2167. [Google Scholar] [CrossRef]
- McGuffie, K.; Henderson-Sellers, A. The Climate Modelling Primer, 4th ed.; Wiley-Blackwell: Chichester, UK, 2014; p. 464. [Google Scholar]
- Fan, X.; Miao, C.; Duan, Q.; Shen, C.; Wu, Y. The performance of CMIP6 versus CMIP5 in simulating temperature extremes over the global land surface. J. Geophys. Res. Atmos. 2020, 125, e2020JD033031. [Google Scholar] [CrossRef]
- Keeble, J.; Hassler, B.; Banerjee, A.; Checa-Garcia, R.; Chiodo, G.; Davis, S.; Eyring, V.; Griffiths, P.T.; Morgenstern, O.; Nowack, P.; et al. Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100. Atmos. Chem. Phys. 2021, 21, 5015–5061. [Google Scholar] [CrossRef]
- Hirabayashi, Y.; Tanoue, M.; Sasaki, O.; Zhou, X.; Yamazaki, D. Global exposure to flooding from the new CMIP6 climate model projections. Sci. Rep. 2021, 11, 3740. [Google Scholar] [CrossRef]
- Srivastava, A.; Grotjahn, R.; Ullrich, P.A. Evaluation of historical CMIP6 model simulations of extreme precipitation over contiguous US regions. Weather. Clim. Extrem. 2020, 29, 100268. [Google Scholar] [CrossRef]
- Almazroui, M.; Saeed, F.; Saeed, S.; Nazrul Islam, M.; Ismail, M.; Klutse, N.A.B.; Siddiqui, M.H. Projected change in temperature and precipitation over Africa from CMIP6. Earth Syst. Environ. 2020, 4, 455–475. [Google Scholar] [CrossRef]
- Mekonnen, D.G.; Moges, M.A.; Mulat, A.G.; Shumitter, P. The impact of climate change on mean and extreme state of hydrological variables in Megech watershed, Upper Blue Nile Basin, Ethiopia. In Extreme Hydrology and Climate Variability; Elsevier: Amsterdam, The Netherlands, 2019; pp. 123–135. [Google Scholar] [CrossRef]
- Šeparović, L.; Alexandru, A.; Laprise, R.; Martynov, A.; Sushama, L.; Winger, K.; Tete, K.; Valin, M. Present climate and climate change over North America as simulated by the fifth-generation Canadian regional climate model. Clim. Dyn. 2013, 41, 3167–3201. [Google Scholar] [CrossRef]
- Huth, R. Statistical downscaling of daily temperature in central Europe. J. Clim. 2002, 15, 1731–1742. [Google Scholar] [CrossRef]
- Christensen, J.H.; Boberg, F.; Christensen, O.B.; Lucas-Picher, P. On the need for bias correction of regional climate change projections of temperature and precipitation. Geophys. Res. Lett. 2008, 35, L20709. [Google Scholar] [CrossRef]
- Ehret, U.; Zehe, E.; Wulfmeyer, V.; Warrach-Sagi, K.; Liebert, J. HESS Opinions “Should we apply bias correction to global and regional climate model data?”. Hydrol. Earth Syst. Sci. 2012, 16, 3391–3404. [Google Scholar] [CrossRef]
- Maraun, D.; Widmann, M. Statistical Downscaling and Bias Correction for Climate Research; Cambridge University Press: Cambridge, UK, 2018; p. 341. [Google Scholar] [CrossRef]
- Soriano, E.; Mediero, L.; Garijo, C. Selection of Bias Correction Methods to Assess the Impact of Climate Change on Flood Frequency Curves. Water 2019, 11, 2266. [Google Scholar] [CrossRef]
- Bedia, J.; Baño-Medina, J.; Legasa, M.N.; Iturbide, M.; Manzanas, R.; Herrera, S.; Casanueva, A.; San-Martín, D.; Cofiño, A.S.; Gutiérrez, J.M. Statistical downscaling with the downscaleR package (v3.1.0): Contribution to the VALUE intercomparison experiment. Geosci. Model Dev. 2020, 13, 1711–1735. [Google Scholar] [CrossRef]
- Lopez-Cantu, T.; Prein, A.F.; Samaras, C. Uncertainties in future U.S. extreme precipitation from downscaled climate projections. Geophys. Res. Lett. 2020, 47, e2019GL086797. [Google Scholar] [CrossRef]
- Andrade-Velázquez, M.; Montero-Martínez, M.J. Historical and Projected Trends of the Mean Surface Temperature in South-Southeast Mexico Using ERA5 and CMIP6. Climate 2023, 11, 111. [Google Scholar] [CrossRef]
- Wilby, R.L.; Charles, S.P.; Zorita, E.; Timbal, B.; Whetton, P.; Mearns, L.O. Guidelines for Use of Climate Scenarios Developed from Statistical Downscaling Methods. Supporting Material of The Intergovernmental Panel on Climate Change, DDC of IPCC TGCIA, 27, 2004. Available online: https://www.academia.edu/download/31092390/dgm_no2_v1_09_2004.pdf (accessed on 21 August 2023).
- Vrac, M.; Stein, M.; Hayhoe, K. Statistical downscaling of precipitation through nonhomogeneous stochastic weather typing. Clim. Res. 2007, 34, 169–184. [Google Scholar] [CrossRef]
- Tavakolifar, H.; Shahghasemi, E.; Nazif, S. Evaluation of climate change impacts on extreme rainfall events characteristics using a synoptic weather typing-based daily precipitation downscaling model. J. Water Clim. Chang. 2017, 8, 388–411. [Google Scholar] [CrossRef][Green Version]
- Lee, T.; Singh, V.P. Statistical Downscaling for Hydrological and Environmental Applications; Taylor & Francis Group, LLC.: Boca Raton, FL, USA, 2019; p. 159. [Google Scholar]
- Hewitson, B.C.; Crane, R.G. Climate downscaling: Techniques and application. Clim. Res. 1996, 7, 85–95. [Google Scholar] [CrossRef]
- Benestad, R.E.; Chen, D.; Hanssen-Bauer, I. Empirical-Statistical Downscaling; World Scientific Publishing Company: Hackensack, NJ, USA, 2008; p. 228. [Google Scholar] [CrossRef]
- Jakob Themeßl, M.; Gobiet, A.; Leuprecht, A. Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. Int. J. Climatol. 2011, 31, 1530–1544. [Google Scholar] [CrossRef]
- Hewitson, B.C.; Daron, J.; Crane, R.G.; Zermoglio, M.F.; Jack, C. Interrogating empirical-statistical downscaling. Clim. Chang. 2014, 122, 539–554. [Google Scholar] [CrossRef]
- Wilks, D.S. Adapting stochastic weather generation algorithms for climate change studies. Clim. Chang. 1992, 22, 67–84. [Google Scholar] [CrossRef]
- Rozoff, C.M.; Alessandrini, S. A Comparison between Analog Ensemble and Convolutional Neural Network Empirical-Statistical Downscaling Techniques for Reconstructing High-Resolution Near-Surface Wind. Energies 2022, 15, 1718. [Google Scholar] [CrossRef]
- Cawley, G.C.; Janacek, G.J.; Haylock, M.R.; Dorling, S.R. Predictive uncertainty in environmental modelling. Neural Netw. 2007, 20, 537–549. [Google Scholar] [CrossRef]
- Karamouz, M.; Falahi, M.; Nazif, S.; Rahimi Farahani, M. Long lead rainfall prediction using statistical downscaling and artificial neural network modeling. Trans. A Civ. Eng. 2009, 16, 165–172. Available online: https://www.sid.ir/EN/VEWSSID/J_pdf/95520092A07.pdf (accessed on 21 August 2023).
- Laddimath, R.S.; Patil, N.S. Artificial Neural Network Technique for Statistical Downscaling of Global Climate Model. MAPAN 2019, 34, 121–127. [Google Scholar] [CrossRef]
- Chaudhuri, C.; Robertson, C. CliGAN: A Structurally Sensitive Convolutional Neural Network Model for Statistical Downscaling of Precipitation from Multi-Model Ensembles. Water 2020, 12, 3353. [Google Scholar] [CrossRef]
- Hosseini Baghanam, A.; Norouzi, E.; Nourani, V. Wavelet-based predictor screening for statistical downscaling of precipitation and temperature using the artificial neural network method. Hydrol. Res. 2022, 53, 385–406. [Google Scholar] [CrossRef]
- Hempel, S.; Frieler, K.; Warszawski, L.; Schewe, J.; Piontek, F. A trend-preserving bias correction–the ISI-MIP approach. Earth Syst. Dyn. 2013, 4, 219–236. [Google Scholar] [CrossRef]
- Li, C.; Sinha, E.; Horton, D.E.; Diffenbaugh, N.S.; Michalak, A.M. Joint bias correction of temperature and precipitation in climate model simulations. J. Geophys. Res.-Atmos. 2014, 119, 13–153. [Google Scholar] [CrossRef]
- Cannon, A.J.; Sobie, S.R.; Murdock, T.Q. Bias correction of GCM precipitation by quantile mapping: How well do methods preserve changes in quantiles and extremes? J. Clim. 2015, 28, 6938–6959. [Google Scholar] [CrossRef]
- Mehrotra, R.; Sharma, A. A Multivariate Quantile-Matching Bias Correction Approach with Auto- and Cross-Dependence across Multiple Time Scales: Implications for Downscaling. J. Clim. 2016, 29, 3519–3539. [Google Scholar] [CrossRef]
- Gupta, R.; Bhattarai, R.; Mishra, A. Development of Climate Data Bias Corrector (CDBC) Tool and Its Application over the Agro-Ecological Zones of India. Water 2019, 11, 1102. [Google Scholar] [CrossRef]
- Jaiswal, R.; Mall, R.K.; Singh, N.; Lakshmi Kumar, T.V.; Niyogi, D. Evaluation of bias correction methods for regional climate models: Downscaled rainfall analysis over diverse agroclimatic zones of India. Earth Space Sci. 2022, 9, e2021EA001981. [Google Scholar] [CrossRef]
- Ines, A.V.; Hansen, J.W. Bias correction of daily GCM rainfall for crop simulation studies. Agric. For. Meteorol. 2006, 138, 44–53. [Google Scholar] [CrossRef]
- Qian, W.; Chang, H.H. Projecting Health Impacts of Future Temperature: A Comparison of Quantile-Mapping Bias-Correction Methods. Int. J. Environ. Res. Public Health 2021, 18, 1992. [Google Scholar] [CrossRef]
- Wehner, M.; Easterling, D.R.; Lawrimore, J.H.; Heim, R.R.; Vose, R.S.; Santer, B.D. Projections of future drought in the continental United States and Mexico. J. Hydrometeorol. 2011, 12, 1359–1377. [Google Scholar] [CrossRef]
- Mendez, M.; Maathuis, B.; Hein-Griggs, D.; Alvarado-Gamboa, L.F. Performance evaluation of bias correction methods for climate change monthly precipitation projections over Costa Rica. Water 2020, 12, 482. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Pressure Levels from 1940 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2023. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.bd0915c6?tab=overview (accessed on 21 August 2023). [CrossRef]
- García, E. Modificaciones al Sistema de Clasificación Climática de Köppen (Para Adaptarlo a Las Condiciones de La República Mexicana, 5th ed.; Instituto de Geografía, UNAM: Ciudad de México, México, 2004; Available online: http://www.publicaciones.igg.unam.mx/index.php/ig/catalog/book/83 (accessed on 21 August 2023).
- Fideicomiso para el Desarrollo Regional del Sur Sureste (FIDESUR). Estrategia Nacional para el Desarrollo Integral de la región Sur Sureste (ENDIRSSE). 2021. Available online: https://sursureste.org.mx/sites/default/files/ENDRSSE-2-RSSE-y-contexto-geografico-v1.pdf (accessed on 1 September 2023).
- Dominguez, C.; Jaramillo, A.; Cuéllar, P. Are the socioeconomic impacts associated with tropical cyclones in Mexico exacerbated by local vulnerability and ENSO conditions? Int. J. Climatol. 2021, 41, E3307–E3324. [Google Scholar] [CrossRef]
- Andrade-Velázquez, M. Visión climática de la precipitación en la cuenca del Río Usumacinta. In La Cuenca del Río Usumacinta desde la Perspectiva del Cambio Climático; Soares, D., García, G.A., Eds.; Instituto Mexicano de Tecnología del Agua: Jiutepec, México, 2017; pp. 1–417. [Google Scholar]
- Magaña, V.; Vázquez, J.L.; Pérez, J.L.; Pérez, J.B. Impact of El Niño on precipitation in Mexico. Geofis. Int. 2003, 42, 313–330. [Google Scholar] [CrossRef]
- Sáenz, F.; Hidalgo, H.G.; Muñoz, Á.G.; Alfaro, E.J.; Amador, J.A.; Vázquez-Aguirre, J.L. Atmospheric circulation types controlling rainfall in the Central American Isthmus. Int. J. Climatol. 2023, 43, 197–218. [Google Scholar] [CrossRef]
- Straffon, A.; Zavala-Hidalgo, J.; Estrada, F. Preconditioning of the precipitation interannual variability in southern Mexico and Central America by oceanic and atmospheric anomalies. Int. J. Climatol. 2020, 40, 3906–3921. [Google Scholar] [CrossRef]
- Andrade-Velázquez, M.; Medrano-Pérez, O.R. Precipitation patterns in Usumacinta and Grijalva basins (southern Mexico) under a changing climate. Rev. Bio Cienc. 2020, 7, 1–22. [Google Scholar] [CrossRef]
- INEGI. Cuentame, Información por Entidad. Instituto Nacional de Estadística y Geografía. 2023. Available online: https://cuentame.inegi.org.mx/monografias/default.aspx?tema=me (accessed on 1 September 2023).
- Andrade-Velázquez, M.; Medrano-Pérez, O.R. Historical precipitation patterns in the South-Southeast region of Mexico and future projections. Earth Sci. Res. J. 2021, 25, 69–84. [Google Scholar] [CrossRef]
- Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). “Atlas de naturaleza y Sociedad”. CONABIO, México, D.F. Atlas de Naturaleza y Sociedad. 2015. Available online: https://www.biodiversidad.gob.mx/atlas/ (accessed on 21 August 2023).
- Centro Mexicano de Derecho Ambiental, A.C. (CEMDA). Todo lo Que Tienes Que Saber Sobre el Tren Maya. 2023. Available online: https://www.cemda.org.mx/tren-maya/ (accessed on 21 August 2023).
- Kauffer, E. El Agua en la Frontera Sur de México: Una Aproximación a la Problemática de las Cuencas Compartidas Con Guatemala y Belice. Boletín del Archivo Histórico del Agua, no. 33, Año 11, Mayo-Agosto, México, AHA/CIESAS/CNA. 2006. Available online: https://biblat.unam.mx/hevila/Boletindelarchivohistoricodelagua/2006/vol11/no33/3.pdf (accessed on 21 August 2023).
- Tren Maya. Secretaria de Turismo y Fonatur. Gobierno de México. 2023. Available online: https://www.gob.mx/trenmaya (accessed on 21 August 2023).
- Corredor Interoceánico-Istmo de Tehuantepec (CIIT). Gobierno de México. 2023. Available online: https://www.gob.mx/ciit (accessed on 21 August 2023).
- Andrade-Velázquez, M.; Medrano-Pérez, O.R.; Montero-Martínez, M.J.; Alcudia-Aguilar, A. Regional Climate Change in Southeast Mexico-Yucatan Peninsula, Central America and the Caribbean. Appl. Sci. 2021, 11, 8284. [Google Scholar] [CrossRef]
- Bruyère, C.L.; Done, J.M.; Holland, G.J.; Fredrick, S. Bias corrections of global models for regional climate simulations of high-impact weather. Clim. Dynam. 2014, 43, 1847–1856. [Google Scholar] [CrossRef]
- Zhao, T.; Bennett, J.C.; Wang, Q.J.; Schepen, A.; Wood, A.W.; Robertson, D.E.; Ramos, M.H. How suitable is quantile mapping for postprocessing GCM precipitation forecasts? J. Clim. 2017, 30, 3185–3196. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Taylor, K.E. Taylor Diagram Primer. 2005. Available online: https://pcmdi.llnl.gov/staff/taylor/CV/Taylor_diagram_primer.pdf (accessed on 1 September 2023).
- Séférian, R.; Nabat, P.; Michou, M.; Saint-Martin, D.; Voldoire, A.; Colin, J.; Decharme, B.; Delire, C.; Berthet, S.; Chevallier, M.; et al. Evaluation of CNRM Earth System Model, CNRM-ESM2-1: Role of Earth system processes in present-day and future climate. J. Adv. Model. Earth Syst. 2019, 11, 4182–4227. [Google Scholar] [CrossRef]
- Boucher, O.; Servonnat, J.; Albright, A.L.; Aumont, O.; Balkanski, Y.; Bastrikov, V.; Bekki, S.; Bonnet, R.; Bony, S.; Bopp, L.; et al. Presentation and evaluation of the IPSL-CM6A-LR climate model. J. Adv. Model. Earth Syst. 2020, 12, e2019MS002010. [Google Scholar] [CrossRef]
- Tatebe, H.; Ogura, T.; Nitta, T.; Komuro, Y.; Ogochi, K.; Takemura, T.; Sudo, K.; Sekiguchi, M.; Abe, M.; Saito, F.; et al. Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci. Model Dev. 2019, 12, 2727–2765. [Google Scholar] [CrossRef]
- Yukimoto, S.; Kawai, H.; Koshiro, T.; Oshima, N.; Yoshida, K.; Urakawa, S.; Tsujino, H.; Deushi, M.; Tanaka, T.; Hosaka, M.; et al. The Meteorological Research Institute Earth System Model version 2.0, MRI-ESM2. 0: Description and basic evaluation of the physical component. J. Meteorol. Soc. Jpn. Ser. II 2019, 97, 931–965. [Google Scholar] [CrossRef]
Number | Data | Resolution | Reference |
---|---|---|---|
1 | ERA5 | 25 km × 25 km | [49] |
2 | CNRM-ESM2-1 | 250 km × 250 km | [70] |
3 | IPSL-CM6A-LR | 250 km × 250 km | [71] |
4 | MIROC6 | 250 km × 250 km | [72] |
5 | MRI-ESM2-0 | 100 km × 100 km | [73] |
Number | Data | (South) | (South) | (Southeast) | (Southeast) |
---|---|---|---|---|---|
1 | CNRM-ESM2-1 | 7.743 | 0.762 | 10.609 | 0.281 |
2 | IPSL-CM6A-LR | 6.365 | 0.427 | 10.896 | −0.003 |
3 | MIROC6 | 15.420 | −0.114 | 9.061 | 0.236 |
4 | MRI-ESM2-0 | 12.398 | 0.195 | 9.757 | 0.087 |
Data | South rmsd Orig | South rmsd Corr | South rmsd Corr/Orig | Southeast 1 rmsd Orig | Southeast 1 rmsd Corr | Southeast 1 rmsd Corr/Orig | Southeast 2 rmsd Orig | Southeast 2 rmsd Corr | Southeast 2 rmsd Corr/Orig |
---|---|---|---|---|---|---|---|---|---|
CNRM-ESM2-1 | 12.155 | 6.756 | 0.556 | 12.928 | 9.735 | 0.753 | 9.870 | 8.535 | 0.865 |
IPSL-CM6A-LR | 12.639 | 6.322 | 0.500 | 10.951 | 9.934 | 0.907 | 10.066 | 8.704 | 0.865 |
MIROC6 | 12.600 | 7.126 | 0.566 | 12.940 | 9.323 | 0.720 | 9.823 | 7.782 | 0.792 |
MRI-ESM2-0 | 11.260 | 6.998 | 0.621 | 12.620 | 9.389 | 0.744 | 9.649 | 8.411 | 0.872 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrade-Velázquez, M.; Montero-Martínez, M.J. Statistical Downscaling of Precipitation in the South and Southeast of Mexico. Climate 2023, 11, 186. https://doi.org/10.3390/cli11090186
Andrade-Velázquez M, Montero-Martínez MJ. Statistical Downscaling of Precipitation in the South and Southeast of Mexico. Climate. 2023; 11(9):186. https://doi.org/10.3390/cli11090186
Chicago/Turabian StyleAndrade-Velázquez, Mercedes, and Martín José Montero-Martínez. 2023. "Statistical Downscaling of Precipitation in the South and Southeast of Mexico" Climate 11, no. 9: 186. https://doi.org/10.3390/cli11090186
APA StyleAndrade-Velázquez, M., & Montero-Martínez, M. J. (2023). Statistical Downscaling of Precipitation in the South and Southeast of Mexico. Climate, 11(9), 186. https://doi.org/10.3390/cli11090186