Trends in Extreme Precipitation Indices in Northwest Ethiopia: Comparative Analysis Using the Mann–Kendall and Innovative Trend Analysis Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Data Sources and Quality Control
2.3. Data Analysis
2.3.1. Mann–Kendall/Modified Mann–Kendall and Sen’s Slope Estimator
The Mann–Kendall (MK) Test
The Modified Mann–Kendall (MMK) Test
2.3.2. Innovative Trend Analysis (ITA)
Graphical Innovative Trend Assessment (G-ITA)
Statistical Innovative Trend Assessment (S-ITA)
3. Results
3.1. Trends in Precipitation Extremes
3.1.1. Simple Daily Intensity Index (SDII), Consecutive Dry Days (CDD), Consecutive Wet Days (CWD), and Annual Total Wet-Day Precipitation (PRCPTOT)
3.1.2. Number of Heavy (R10mm) and Very Heavy (R20mm) Precipitation Days
3.1.3. Maximum 1-Day (Rx1day) and 5-Day (Rx5day) Precipitation
3.1.4. Very Wet Days (R95p) and Extremely Wet Days (R99p)
3.2. Comparison of Trend Analysis Methods
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mukherjee, S.; Mishra, A.K. Cascading effect of meteorological forcing on extreme precipitation events: Role of atmospheric rivers in southeastern US. J. Hydrol. 2021, 601, 126641. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Y.; Tabari, H.; Wang, J.; Wang, Q.; Song, S.; Hu, Z. Innovative trend analysis of annual and seasonal rainfall in the Yangtze River Delta, eastern China. Atmos. Res. 2020, 231, 104673. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, M.; Xie, N.; Gao, Z. Relating anomalous large-scale atmospheric circulation patterns to temperature and precipitation anomalies in the East Asian monsoon region. Atmos. Res. 2020, 232, 104679. [Google Scholar] [CrossRef]
- Marie, M.; Yirga, F.; Haile, M.; Tquabo, F. Farmers’ choices and factors affecting adoption of climate change adaptation strategies: Evidence from northwestern Ethiopia. Heliyon 2020, 6, e03867. [Google Scholar] [CrossRef]
- Jin, H.; Chen, X.; Wu, P.; Song, C.; Xia, W. Evaluation of spatial-temporal distribution of precipitation in mainland China by statistic and clustering methods. Atmos. Res. 2021, 262, 105772. [Google Scholar] [CrossRef]
- Ferijal, T.; Batelaan, O.; Shanafield, M. Rainy season drought severity trend analysis of the Indonesian maritime continent. Int. J. Climatol. 2021, 41, E2194–E2210. [Google Scholar] [CrossRef]
- Gebrechorkos, S.H.; Hülsmann, S.; Bernhofer, C. Changes in temperature and precipitation extremes in Ethiopia, Kenya, and Tanzania. Int. J. Climatol. 2019, 39, 18–30. [Google Scholar] [CrossRef] [Green Version]
- Janizadeh, S.; Pal, S.C.; Saha, A.; Chowdhuri, I.; Ahmadi, K.; Mirzaei, S.; Mosavi, A.H.; Tiefenbacher, J.P. Mapping the spatial and temporal variability of flood hazard affected by climate and land-use changes in the future. J. Environ. Manag. 2021, 298, 113551. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). State of the Climate in Africa 2020; World Meteorological Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Marak, J.D.K.; Sarma, A.K.; Bhattacharjya, R.K. Innovative trend analysis of spatial and temporal rainfall variations in Umiam and Umtru watersheds in Meghalaya, India. Theor. Appl. Climatol. 2020, 142, 1397–1412. [Google Scholar] [CrossRef]
- Myhre, G.; Alterskjær, K.; Stjern, C.W.; Hodnebrog, Ø.; Marelle, L.; Samset, B.H.; Sillmann, J.; Schaller, N.; Fischer, E.; Schulz, M.; et al. Frequency of extreme precipitation increases extensively with event rareness under global warming. Sci. Rep. 2019, 9, 16063. [Google Scholar] [CrossRef] [Green Version]
- Papalexiou, S.M.; Montanari, A. Global and Regional Increase of Precipitation Extremes Under Global Warming. Water Resour. Res. 2019, 55, 4901–4914. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, G.; Guo, E. Spatial distribution and temporal variation of drought in Inner Mongolia during 1901–2014 using Standardized Precipitation Evapotranspiration Index. Sci. Total Environ. 2019, 654, 850–862. [Google Scholar] [CrossRef] [PubMed]
- Gezie, M. Farmer’s response to climate change and variability in Ethiopia: A review. Cogent Food Agric. 2019, 5, 1613770. [Google Scholar] [CrossRef]
- Geremew, G.M.; Mini, S.; Abegaz, A. Spatiotemporal variability and trends in rainfall extremes in Enebsie Sar Midir district, northwest Ethiopia. Model. Earth Syst. Environ. 2020, 6, 1177–1187. [Google Scholar] [CrossRef]
- Bezu, A. Analyzing Impacts of Climate Variability and Changes in Ethiopia: A Review. Am. J. Mod. Energy 2020, 6, 65. [Google Scholar] [CrossRef]
- Nicholson, S.E. Climate and climatic variability of rainfall over eastern Africa. Rev. Geophys. 2017, 55, 590–635. [Google Scholar] [CrossRef] [Green Version]
- Gebrehiwot, B.; Gessesse, B.; Melgani, F. Characterizing the spatiotemporal distribution of meteorological drought as a response to climate variability: The case of rift valley lakes basin of Ethiopia. Weather. Clim. Extrem. 2019, 26, 100237. [Google Scholar] [CrossRef]
- Terefe, S.; Bantider, A.; Teferi, E.; Abi, M. Spatiotemporal trends in mean and extreme climate variables over 1981–2020 in Meki watershed of central rift valley basin, Ethiopia. Heliyon 2022, 8, e11684. [Google Scholar] [CrossRef]
- Endalew, H.A.; Sen, S. Effects of climate shocks on Ethiopian rural households: An integrated livelihood vulnerability approach. J. Environ. Plan. Manag. 2020, 64, 399–431. [Google Scholar] [CrossRef]
- Likinaw, A.; Alemayehu, A.; Bewket, W. Local-scale climate variability and trends in a vulnerable rural landscape, northwest Ethiopia. Malays. J. Trop. Geogr. 2022, 48, 19–44. [Google Scholar]
- Bazezew, A.; Bewket, W.; Nicolau, M. Rural households’ livelihood assets, strategies and outcomes in drought-prone areas of the Amhara Region, Ethiopia: Case Study in Lay Gaint District. Afr. J. Agric. Res. 2013, 8, 5716–5727. [Google Scholar] [CrossRef]
- Tizazu, G.Z. Food Security Status of Rural Households in Lay Gayint Woreda of South Gondar Zone, Amhara Region, Ethiopia. Int. J. African Asian Stud. 2019, 57, 12–26. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, P.K.; Pradhan, R.K.; Petropoulos, G.P.; Pandey, V.; Gupta, M.; Yaduvanshi, A.; Jaafar, W.Z.W.; Mall, R.K.; Sahai, A.K. Long-term trend analysis of precipitation and extreme events over Kosi River Basin in India. Water 2021, 13, 1695. [Google Scholar] [CrossRef]
- Vondou, D.A.; Guenang, G.M.; Djiotang, T.L.A.; Kamsu-Tamo, P.H. Trends and interannual variability of extreme rainfall indices over Cameroon. Sustainability 2021, 13, 6803. [Google Scholar] [CrossRef]
- Salameh, A.A.M.; Ojeda, M.G.-V.; Esteban-Parra, M.J.; Castro-Díez, Y.; Gámiz-Fortis, S.R. Extreme rainfall indices in southern levant and related large-scale atmospheric circulation patterns: A spatial and temporal analysis. Water 2022, 14, 3799. [Google Scholar] [CrossRef]
- Obada, E.; Alamou, E.A.; Biao, E.I.; Zandagba, E.B.J. Interannual variability and trends of extreme rainfall indices over Benin. Climate 2021, 9, 160. [Google Scholar] [CrossRef]
- Berhane, A.; Hadgu, G.; Worku, W.; Abrha, B. Trends in extreme temperature and rainfall indices in the semi-arid areas of Western Tigray, Ethiopia. Environ. Syst. Res. 2020, 9, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Beyene, T.K.; Jain, M.K.; Yadav, B.K.; Agarwal, A. Multiscale investigation of precipitation extremes over Ethiopia and teleconnections to large-scale climate anomalies. Stoch. Environ. Res. Risk Assess. 2022, 36, 1503–1519. [Google Scholar] [CrossRef]
- Damtew, A.; Teferi, E.; Ongoma, V.; Mumo, R.; Esayas, B. Spatiotemporal Changes in Mean and Extreme Climate: Farmers’ Perception and Its Agricultural Implications in Awash River Basin, Ethiopia. Climate 2022, 10, 89. [Google Scholar] [CrossRef]
- Degefu, M.A.; Tadesse, Y.; Bewket, W. Observed changes in rainfall amount and extreme events in southeastern Ethiopia, 1955–2015. Theor Appl Clim. 2021, 144, 967–983. [Google Scholar] [CrossRef]
- Dendir, Z.; Birhanu, B.S. Analysis of Observed Trends in Daily Temperature and Precipitation Extremes in Different Agroecologies of Gurage Zone, Southern Ethiopia. Adv. Meteorol. 2022, 2022. [Google Scholar] [CrossRef]
- Esayas, B.; Simane, B.; Teferi, E.; Ongoma, V.; Tefera, N. Trends in extreme climate events over three agroecological zones of Southern Ethiopia. Adv. Meteorol. 2018, 2018, 1–17. [Google Scholar] [CrossRef]
- Gedefaw, M.; Yan, D.; Wang, H.; Qin, T.; Girma, A.; Abiyu, A.; Batsuren, D. Innovative trend analysis of annual and seasonal rainfall variability in Amhara Regional State, Ethiopia. Atmosphere 2018, 9, 326. [Google Scholar] [CrossRef] [Green Version]
- Worku, G.; Teferi, E.; Bantider, A.; Dile, Y.T. Observed changes in extremes of daily rainfall and temperature in Jemma Sub-Basin, Upper Blue Nile Basin, Ethiopia. Theor. Appl. Climatol. 2019, 135, 839–854. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin & Company Limited: London, UK, 1975. [Google Scholar]
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Birpınar, M.E.; Kızılöz, B.; Şişman, E. Classic trend analysis methods’ paradoxical results and innovative trend analysis methodology with percentile ranges. Theor. Appl. Climatol. 2023, 153, 1–8. [Google Scholar] [CrossRef]
- Hamed, K.H.; Ramachandra Rao, A. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol. Process 2002, 16, 1807–1829. [Google Scholar] [CrossRef]
- Kumar, S.; Merwade, V.; Kam, J.; Thurner, K. Streamflow trends in Indiana: Effects of long term persistence, precipitation and subsurface drains. J. Hydrol. 2009, 374, 171–183. [Google Scholar] [CrossRef]
- Yue, S.; Wang, C.Y. The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour. Manag. 2004, 18, 201–218. [Google Scholar] [CrossRef]
- Şen, Z. Innovative Trend Analysis Methodology. J. Hydrol. Eng. 2012, 17, 1042–1046. [Google Scholar] [CrossRef]
- Şïşman, E.; Kizilöz, B.; Bïrpinar, M.E. Trend slope risk charts (TSRC) for piecewise ITA method: An application in Oxford, 1771–2020. Theor. Appl. Climatol. 2022, 150, 863–879. [Google Scholar] [CrossRef]
- Caloiero, T. Evaluation of rainfall trends in the South Island of New Zealand through the innovative trend analysis (ITA). Theor. Appl. Climatol. 2020, 139, 493–504. [Google Scholar] [CrossRef]
- Serencam, U. Innovative trend analysis of total annual rainfall and temperature variability case study: Yesilirmak region, Turkey. Arab. J. Geosci. 2019, 12, 704. [Google Scholar] [CrossRef]
- Wu, H.; Qian, H. Innovative trend analysis of annual and seasonal rainfall and extreme values in Shaanxi, China, since the 1950s. Int. J. Climatol. 2017, 37, 2582–2592. [Google Scholar] [CrossRef]
- Alemu, Z.A.; Dioha, M.O. Climate change and trend analysis of temperature: The case of Addis Ababa, Ethiopia. Environ. Syst. Res. 2020, 9, 1–5. [Google Scholar] [CrossRef]
- Hurni, H.; Berhe, W.A.; Chadhokar, P.; Daniel, D.; Gete, Z.; Grunder, M.K.G. Soil and Water Conservation in Ethiopia: Guidelines for Development Agents; Centre for Development and Environment (CDE), University of Bern: Bern, Switzerland, 2016; Volume 1. [Google Scholar]
- Dinku, T.; Thomson, M.C.; Cousin, R.; del Corral, J.; Ceccato, P.; Hansen, J.; Connor, S.J. Enhancing National Climate Services (ENACTS) for development in Africa. Clim. Dev. 2018, 10, 664–672. [Google Scholar] [CrossRef]
- Alemayehu, A.; Bewket, W. Local spatiotemporal variability and trends in rainfall and temperature in the central highlands of Ethiopia. Geogr. Ann. Ser. A Phys. Geogr. 2017, 99, 85–101. [Google Scholar] [CrossRef]
- Dinku, T.; Cousin, J.; del Corral, R.; Ceccato, P. The Enacts Approach; The International Research Institute for Climate and Society (IRI): Palisades, NY, USA, 2016. [Google Scholar]
- Dinku, T. Challenges with Availability and Quality of Climate Data in Africa; Elsevier Inc.: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Asfaw, A.; Simane, B.; Hassen, A.; Bantider, A. Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: A case study in Woleka sub-basin. Weather Clim. Extrem. 2018, 19, 29–41. [Google Scholar] [CrossRef]
- Wu, C.; Huang, G.; Yu, H.; Chen, Z.; Ma, J. Spatial and temporal distributions of trends in climate extremes of the Feilaixia catchment in the upstream area of the Beijiang River Basin, South China. Int. J. Clim. 2013, 34, 3161–3178. [Google Scholar] [CrossRef]
- Wang, X.L.; Wen, Q.H.; Wu, Y. Penalized Maximal t Test for Detecting Undocumented Mean Change in Climate Data Series. J. Appl. Meteorol. Clim. 2007, 46, 916–931. [Google Scholar] [CrossRef]
- Wang, X.L.; Feng, Y. RHtestsV3 User Manual. Atmos Sci. Technol. Dir. Sci. Technol. Branch Env. Can. Tor. 2010, 2010, 1–27. [Google Scholar]
- Zhang, X.; Yang, F.; Canada, E. RClimDex (1.0); Climate Research Division, Environment Canada: Toronto, ON, Canada, 2004; pp. 1–23. [Google Scholar]
- Tank, A.; Zwiers, F.; Zhang, X. Guidelines on Analysis of Extremes in a Changing Climate; World Meteorological Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Gebremichael, H.B.; Raba, G.A.; Beketie, K.T.; Feyisa, G.L.; Siyoum, T. Changes in daily rainfall and temperature extremes of upper Awash Basin, Ethiopia. Sci. Afr. 2022, 16, e01173. [Google Scholar] [CrossRef]
- Gajbhiye, S.; Meshram, C.; Mirabbasi, R.; Sharma, S.K. Trend analysis of rainfall time series for Sindh river basin in India. Theor. Appl. Climatol. 2016, 125, 593–608. [Google Scholar] [CrossRef]
- Kumar, S.; Machiwal, D.; Dayal, D. Spatial modelling of rainfall trends using satellite datasets and geographic information system. Hydrol. Sci. J. 2017, 62, 1636–1653. [Google Scholar] [CrossRef]
- Novotny, E.V.; Stefan, H.G. Stream flow in Minnesota: Indicator of climate change. J. Hydrol. 2007, 334, 319–333. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Theil, H. A rank-invariant method of linear and polynomial regression analysis, Part I. Proc. Natl. Acad. Sci. USA 1950, 53, 386–392. [Google Scholar]
- Datta, P.; Behera, B. What caused smallholders to change farming practices in the era of climate change? Empirical evidence from Sub-Himalayan West Bengal, India. GeoJournal 2022, 87, 3621–3637. [Google Scholar] [CrossRef]
- Şen, Z. Innovative trend significance test and applications. Theor. Appl. Climatol. 2017, 127, 939–947. [Google Scholar] [CrossRef]
- Gummadi, S.; Rao, K.P.C.; Seid, J.; Legesse, G.; Kadiyala, M.D.M.; Takele, R.; Amede, T.; Whitbread, A. Spatio-temporal variability and trends of precipitation and extreme rainfall events in Ethiopia in 1980–2010. Theor. Appl. Climatol. 2018, 134, 1315–1328. [Google Scholar] [CrossRef] [Green Version]
- Shawul, A.A.; Chakma, S. Trend of extreme precipitation indices and analysis of long-term climate variability in the Upper Awash basin, Ethiopia. Theor. Appl. Climatol. 2020, 140, 635–652. [Google Scholar] [CrossRef]
- Dawit, M.; Halefom, A.; Teshome, A.; Sisay, E.; Shewayirga, B.; Dananto, M. Changes and variability of precipitation and temperature in the Guna Tana watershed, Upper Blue Nile Basin, Ethiopia. Model. Earth Syst. Environ. 2019, 5, 1395–1404. [Google Scholar] [CrossRef]
- Singh, R.; Sah, S.; Das, B.; Potekar, S.; Chaudhary, A.; Pathak, H. Innovative trend analysis of spatio-temporal variations of rainfall in India during 1901–2019. Theor. Appl. Climatol. 2021, 145, 821–838. [Google Scholar] [CrossRef]
- Harka, A.E.; Jilo, N.B.; Behulu, F. Spatial-temporal rainfall trend and variability assessment in the Upper Wabe Shebelle River Basin, Ethiopia: Application of innovative trend analysis method. J. Hydrol. Reg. Stud. 2021, 37, 100915. [Google Scholar] [CrossRef]
- Caloiero, T.; Coscarelli, R.; Ferrari, E. Application of the Innovative Trend Analysis Method for the Trend Analysis of Rainfall Anomalies in Southern Italy. Water Resour. Manag. 2018, 32, 4971–4983. [Google Scholar] [CrossRef]
- Kişi, Ö.; Santos, C.A.G.; da Silva, R.M.; Zounemat-Kermani, M. Trend analysis of monthly streamflows using Şen’s innovative trend method. Geofizika 2018, 35, 53–68. [Google Scholar] [CrossRef]
- Alifujiang, Y.; Abuduwaili, J.; Maihemuti, B.; Emin, B.; Groll, M. Innovative trend analysis of precipitation in the Lake Issyk-Kul Basin, Kyrgyzstan. Atmosphere 2020, 11, 332. [Google Scholar] [CrossRef] [Green Version]
Index | Indicator Name | Definition of the Index | Units |
---|---|---|---|
SDII | Simple daily intensity index | Annual total precipitation divided by the number of wet days | mm/day |
Rx1day | Max 1-day precipitation amount | Monthly maximum 1-day precipitation | mm |
Rx5day | Max 5-day precipitation amount | Monthly maximum consecutive 5-day precipitation | mm |
R10mm | Number of heavy precipitation days | Annual count of days when PRCP ≥ 10 mm | Days |
R20mm | Number of very heavy precipitation days | Annual count of days when PRCP ≥ 20 mm | Days |
CDD | Consecutive dry days | Maximum number of consecutive days with RR < 1 mm | Days |
CWD | Consecutive wet days | Maximum number of consecutive days with RR ≥ 1 mm | Days |
R95p | Very wet days | Annual total PRCP when RR > 95th percentile | mm |
R99p | Extremely wet days | Annual total PRCP when RR > 99th percentile | mm |
PRCPTOT | Annual total wet-day precipitation | Annual total PRCP in wet days (RR ≥ 1 mm) | mm |
Indices | Lay Gayint | Tach Gayint | Simada | |||
---|---|---|---|---|---|---|
MK/MMK | SS | MK/MMK | SS | MK/MMK | SS | |
Rx1day | 1.10 | 0.12 | −0.55 | −0.05 | −1.53 | −0.15 |
Rx5day | 1.70 | 0.45 | −0.12 | −0.03 | −1.25 | −0.22 |
R10mm | 2.96 | 0.46 ** | 2.33 | 0.31 * | 1.10 | 0.12 |
R20mm | 1.98 | 0.14 * | 0.49 | 0.02 | −0.75 | −0.01 |
CDD | −0.74 | −0.13 | 1.70 | 0.26 | 1.88 | 0.26 * |
CWD | 3.57 | 0.86 ** | 2.86 | 0.85 ** | 3.34 | 0.79 ** |
R95p | 1.50 | 2.06 | 0.27 | 0.53 | −1.00 | −1.08 |
R99p | 1.50 | 0.72 | −0.59 | −0.29 | −1.23 | −0.58 |
PRCPTOT | 2.91 | 9.16 ** | 2.46 | 5.42* | 0.65 | 1.70 |
SDII | 2.47 | 0.04 * | 2.35 | 0.03* | 1.32 | 0.01 |
Indices | SITA | SSD | Correlation | UCL/LCL Sig. (p < 0.05) | UCL/LCL Sig. (p < 0.01) |
---|---|---|---|---|---|
Rx1day | 0.10 ** | 0.01 | 0.97 | ±0.03 | ±0.03 |
Rx5day | 0.38 ** | 0.04 | 0.97 | ±0.07 | ±0.09 |
R10mm | 0.44 ** | 0.04 | 0.92 | ±0.07 | ±0.09 |
R20mm | 0.15 ** | 0.01 | 0.98 | ±0.02 | ±0.02 |
CDD | −0.21 ** | 0.03 | 0.98 | ±0.05 | ±0.07 |
CWD | 0.72 ** | 0.04 | 0.97 | ±0.07 | ±0.09 |
R95p | 2.21 ** | 0.15 | 0.99 | ±0.28 | ±0.37 |
R99p | 0.78 ** | 0.08 | 0.97 | ±0.15 | ±0.20 |
PRCPTOT | 7.70 ** | 0.72 | 0.92 | ±1.41 | ±1.85 |
SDII | 0.05 ** | 0.00 | 0.95 | ±0.01 | ±0.01 |
Indices | SITA | SSD | Correlation | UCL/LCL Sig. (p < 0.05) | UCL/LCL Sig. (p < 0.01) |
---|---|---|---|---|---|
Rx1day | −0.11 ** | 0.02 | 0.94 | ±0.04 | ±0.05 |
Rx5day | −0.01 | 0.05 | 0.92 | ±0.09 | ±0.12 |
R10mm | 0.29 ** | 0.03 | 0.93 | ±0.05 | ±0.07 |
R20mm | 0.04 ** | 0.01 | 0.97 | ±0.01 | ±0.01 |
CDD | 0.33 ** | 0.02 | 0.98 | ±0.04 | ±0.05 |
CWD | 0.59 ** | 0.06 | 0.94 | ±0.11 | ±0.15 |
R95p | 0.97 ** | 0.17 | 0.96 | ±0.33 | ±0.44 |
R99p | −0.44 ** | 0.05 | 0.98 | ±0.11 | ±0.14 |
PRCPTOT | 3.93 ** | 0.40 | 0.95 | ±0.79 | ±1.04 |
SDII | 0.04 ** | 0.00 | 0.96 | ±0.00 | ±0.01 |
Indices | SITA | SSD | Correlation | UCL/LCL Sig. (p < 0.05) | UCL/LCL Sig. (p < 0.01) |
---|---|---|---|---|---|
Rx1day | −0.17 ** | 0.01 | 0.98 | ±0.01 | ±0.02 |
Rx5day | −0.29 ** | 0.02 | 0.97 | ±0.04 | ±0.06 |
R10mm | −0.08 ** | 0.01 | 0.97 | ±0.02 | ±0.03 |
R20mm | −0.03 ** | 0.00 | 0.98 | ±0.01 | ±0.01 |
CDD | 0.18 ** | 0.02 | 0.97 | ±0.05 | ±0.06 |
CWD | 0.42 ** | 0.04 | 0.94 | ±0.09 | ±0.12 |
R95p | −1.29 ** | 0.13 | 0.97 | ±0.26 | ±0.34 |
R99p | −0.79 ** | 0.05 | 0.98 | ±0.09 | ±0.12 |
PRCPTOT | 0.27 | 0.16 | 0.99 | ±0.31 | ±0.41 |
SDII | 0.01 | 0.00 | 0.96 | ±0.01 | ±0.02 |
Indices | Lay Gayint | Tach Gayint | Simada | |||
---|---|---|---|---|---|---|
MK | ITA | MK | ITA | MK | ITA | |
Rx1day | No | Yes (++) | No | Yes (− −) | No | Yes (− −) |
Rx5day | No | Yes (++) | No | No | No | Yes (− −) |
R10mm | Yes (++) | Yes (++) | Yes (+) | Yes (++) | No | Yes (++) |
R20mm | Yes (+) | Yes (++) | No | Yes (++) | No | Yes (− −) |
CDD | No | Yes (− −) | No | Yes (++) | Yes (+) | Yes (++) |
CWD | Yes (++) | Yes (++) | Yes (++) | Yes (++) | Yes (− −) | Yes (++) |
R95p | No | Yes (++) | No | Yes (++) | No | Yes (− −) |
R99p | No | Yes (++) | No | Yes (− −) | No | Yes (− −) |
PRCPTOT | Yes (++) | Yes (++) | Yes (+) | Yes (++) | No | No |
SDII | Yes (+) | Yes (++) | Yes (+) | Yes (++) | No | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Likinaw, A.; Alemayehu, A.; Bewket, W. Trends in Extreme Precipitation Indices in Northwest Ethiopia: Comparative Analysis Using the Mann–Kendall and Innovative Trend Analysis Methods. Climate 2023, 11, 164. https://doi.org/10.3390/cli11080164
Likinaw A, Alemayehu A, Bewket W. Trends in Extreme Precipitation Indices in Northwest Ethiopia: Comparative Analysis Using the Mann–Kendall and Innovative Trend Analysis Methods. Climate. 2023; 11(8):164. https://doi.org/10.3390/cli11080164
Chicago/Turabian StyleLikinaw, Aimro, Arragaw Alemayehu, and Woldeamlak Bewket. 2023. "Trends in Extreme Precipitation Indices in Northwest Ethiopia: Comparative Analysis Using the Mann–Kendall and Innovative Trend Analysis Methods" Climate 11, no. 8: 164. https://doi.org/10.3390/cli11080164
APA StyleLikinaw, A., Alemayehu, A., & Bewket, W. (2023). Trends in Extreme Precipitation Indices in Northwest Ethiopia: Comparative Analysis Using the Mann–Kendall and Innovative Trend Analysis Methods. Climate, 11(8), 164. https://doi.org/10.3390/cli11080164