Winter Climate of Northeastern Dominican Republic and Cash Crop Production
Abstract
:1. Introduction
1.1. Background Geography and Climate
1.2. Local Uptake of Climate Change
1.3. Importance of Agriculture in the Dominican Republic
1.4. Objectives and Preface
2. Data and Methods
3. Results
3.1. Winter Climate
3.2. Case Features
3.3. Interannual Climate Variability and Crop Yields
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Parameter | Value ± 2σ | 95% CI (W/m2) |
---|---|---|
mean: | 0.79 × 10−5 ± 0.79 | −0.84…0.74 |
s.d. (n): | 9.59 ± 0.58 | 8.99…10.15 |
s.d. (n − 1): | 9.60 | |
skew: | −0.35 ± 0.18 | −0.52…−0.16 |
min/max: | −31.58/23.15 | |
χ2/df | 52/31 = 1.67 | p = 0.011 |
References
- Tobey, J.; Ortiz, A. Freshwater Flows to Estuaries and Water Budget of the Yuna River Watershed, Dominican Republic, USAID Report, Univ Rhode Island. 2004. Available online: https://www.crc.uri.edu/ (accessed on 1 January 2022).
- Jury, M.R.; Chiao, S. Meso-circulation associated with summer convection over the central Antilles. Earth Int. 2011, 15, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Perez, C.R.; Jury, M.R. Spatial and temporal analysis of climate change in Hispañola. Theor. Appl. Climatol. 2013, 113, 213–224. [Google Scholar] [CrossRef]
- Garcia, O.; Bosart, L.; DiMego, G. On the nature of the winter season rainfall in the Dominican Republic. Mon. Weather Rev. 1978, 106, 961–982. [Google Scholar] [CrossRef]
- Martin, P.H.; Fahey, T.J. Mesoclimatic patterns shape the striking vegetation mosaic in the cordillera central, Dominican Republic. Arct. Antarct. Alp. Res. 2014, 46, 755–765. [Google Scholar] [CrossRef] [Green Version]
- Izzo, M.; Aucelli, P.P.C.; Maratea, A. Historical trends of rain and air temperature in the Dominican Republic. Int. J. Climatol. 2021, 41, E563–E581. [Google Scholar] [CrossRef]
- Jury, M.R. The pattern of climate change around the Windward Passage. Theor. Appl. Climatol. 2019, 137, 1149–1157. [Google Scholar] [CrossRef]
- Jury, M.R. Resolution-dependent perspectives on Caribbean hydro-climate. Hydrology 2020, 7, 93. [Google Scholar] [CrossRef]
- Herrera, D.A.; Mendez-Tejeda, R.; Centella-Artola, A.; Martínez-Castro, D.; Ault, T.; Delanoy, R. Projected hydroclimate changes on Hispaniola Island through the 21st Century in CMIP6 models. Atmosphere 2021, 12, 6. [Google Scholar] [CrossRef]
- Payano-Almanzar, R.; Rodriguez, J. Meteorological, agricultural and hydrological drought in the Dominican Republic: A review. Curr. World Environ. 2018, 13, 124. [Google Scholar] [CrossRef] [Green Version]
- DeAlmeida, A.-A.F.; Valle, R.R. Ecophysiology of the cacao tree. Braz. J. Plant Physiol. 2007, 19, 425–448. [Google Scholar] [CrossRef] [Green Version]
- Lahive, F.; Hadley, P.; Daymond, A.J. The physiological responses of cacao to the environment and the implications for climate change resilience, a review. Agron. Sustain. Dev. 2019, 39, 5. [Google Scholar] [CrossRef] [Green Version]
- Berlan, A.; Berges, A. Cocoa Production in the Dominican Republic, SCI Report Green-Black. 2013. Available online: https://www.cocoalife.org/ (accessed on 1 January 2022).
- DaMatta, F.M.; Ramalho, J.D.C. Effects of drought and temperature stress on coffee physiology and production: A review. Braz. J. Plant Physiol. 2006, 18, 55–81. [Google Scholar] [CrossRef]
- DaMatta, F.M.; Ronchi, C.P.; Maestri, M.; Barros, R.S. Ecophysiology of coffee growth and production. Braz. J. Plant Physiol. 2007, 19, 485–510. [Google Scholar] [CrossRef] [Green Version]
- Davis, A.P.; Gole, T.W.; Baena, S.; Moat, J. The impact of climate change on indigenous Arabica coffee: Predicting future trends and identifying priorities. PLoS ONE 2012, 7, e47981. [Google Scholar] [CrossRef]
- Siegel, P.B.; Alwang, J. Export Commodity Production and Broad-Based Rural Development: Coffee and Cocoa in the Dominican Republic, World Bank Policy Res Paper 3306. 2004. Available online: https://econ.worldbank.org (accessed on 1 January 2022).
- Food and Agriculture Organization. Cacao and Coffee Yield Data for the Dominican Republic. 2021. Available online: https://www.fao.org/faostat/en/#data/QC (accessed on 1 January 2022).
- Izzo, M.; Rosskopf, C.M.; Aucelli, P.P.C.; Maratea, A.; Méndez, R.; Pérez, C.; Segura, H. A new climatic map of the Dominican Republic based on the Thornthwaite classification. Phys. Geogr. 2010, 31, 455–472. [Google Scholar] [CrossRef]
- Funk, C.C.; Peterson, P.J.; Landsfeld, M.F.; Pedreros, D.H.; Verdin, J.P.; Rowland, J.D.; Romero, B.E.; Husak, G.J.; Michaelsen, J.C.; Verdin, A.P. A quasi-global precipitation time series for drought monitoring. U.S. Geol. Surv. Data Ser. 2014, 832, 4. [Google Scholar] [CrossRef] [Green Version]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The Global Precipitation Measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.T.; Chuang, H.Y.; Iredell, M.; et al. The NCEP climate forecast system version 2. J. Clim. 2014, 27, 2185–2208. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Janjic, Z.I. A nonhydrostatic model based on a new approach. Meteorol. Atmos. Phys. 2003, 82, 271–285. [Google Scholar] [CrossRef]
- Chassignet, E.P.; Hurlburt, H.E.; Metzger, E.J.; Smedstad, O.M.; Cummings, J.A.; Halliwell, G.R.; Bleck, R.; Baraille, R.; Wallcraft, A.J.; Lozano, C.; et al. US GODAE: Global ocean prediction with the Hybrid coordinate ocean model (HYCOM). Oceanography 2009, 22, 64–75. [Google Scholar] [CrossRef] [Green Version]
- Tolman, H.L.; Balasubramaniyan, B.; Burroughs, L.D.; Chalikov, D.V.; Chao, Y.Y.; Chen, H.S.; Gerald, V.M. Development and implementation of wind generated ocean surface wave models at NCEP. Weather Forecast 2002, 17, 311–333. [Google Scholar] [CrossRef]
- Martinez, C.; Kushnir, Y.; Goddard, L.; Ting, M. Interannual variability of the early and late-rainy seasons in the Caribbean. Clim. Dyn. 2020, 55, 1563–1583. [Google Scholar] [CrossRef]
- Elahi, E.; Khalid, Z.; Tauni, M.Z.; Zhang, H.; Lirong, X. Extreme weather events risk to crop-production and the adaptation of innovative management strategies to mitigate the risk: A retrospective survey of rural Punjab, Pakistan. Technovation 2022, 117, 102255. [Google Scholar] [CrossRef]
Acronym | Name and Variable | Space and Time Resolution |
---|---|---|
CFSr2 | Coupled Forecast System reanalysis v2 thermodynamic and circulation parameters | 25 km, hourly |
CHIRP | Climate Hazards InfraRed Precipitation geostationary IR satellite | 5 km, daily |
CloudSat | CALIPSO cloud radar slice microwave reflectivity | 1 km, weekly |
CRU4 | Climate Research Univ v4 rainfall interpolated gauges (land) | 25 km, monthly |
ENSO NAO | El Nino Southern Oscillation (Pacific) North Atlantic Oscillation climate index | area, monthly |
ERA5 | European Centre for Medium-Range Weather Forecasts reanalysis v5 | 25 km, hourly |
FAO | Food and Agriculture Organization crop production (cacao and coffee) | country, yearly |
GPM | Global Precipitation Monitoring IR and MW multi-satellite | 10 km, hourly |
HYCOM | Hybrid Coordinate Ocean Model v3 heat and water flux (sea) | 10 km, daily |
MODIS | Moderate-imaging Infrared Spectrometer, land surface temp., and vegetation color | 5 km, weekly |
NAM | North American Mesoscale model with WRF data assimilation | 10 km, 3 hourly |
net OLR | Outgoing Longwave Radiation satellite proxy for cloudiness | 25 km, daily |
Station | Santiago airport wind, temp., and aircraft observations | point, hourly |
W3 | Wave-watch v3 reanalysis sea state characteristics | 25 km, 3 hourly |
Date | Hour | Rain | U Wind |
---|---|---|---|
24 December 2016 | 07:00 | 1.47 | −4.2 |
27 December 2016 | 03:00 | 1.86 | −4.9 |
1 January 2017 | 06:00 | 0.87 | −5.2 |
9 January 2017 | 07:00 | 1.06 | −2.4 |
16 January 2017 | 06:00 | 1.22 | −4.7 |
12 February 2017 | 08:00 | 0.98 | −3.4 |
Direction | 1.0–1.9 | 2.0–2.9 | 3.0–3.9 | 4.0–5.9 | 6.0–7.9 | 8.0+ m/s |
---|---|---|---|---|---|---|
348–010° | 0.24 | 0.59 | 0.30 | 0.12 | 0.06 | 0.00 |
011–032° | 0.24 | 0.36 | 0.24 | 0.12 | 0.00 | 0.00 |
033–055° | 0.53 | 0.65 | 0.06 | 0.24 | 0.06 | 0.00 |
056–077° | 0.36 | 1.01 | 0.42 | 0.95 | 0.06 | 0.00 |
078–100° | 0.53 | 3.56 | 2.85 | 2.85 | 1.19 | 0.00 |
101–122° | 0.53 | 3.44 | 3.86 | 6.05 | 3.21 | 0.36 |
123–145° | 0.42 | 4.21 | 3.50 | 4.10 | 1.48 | 0.24 |
146–167° | 0.30 | 3.44 | 1.96 | 2.08 | 0.42 | 0.06 |
168–190° | 0.42 | 1.72 | 0.59 | 0.36 | 0.06 | 0.00 |
191–212° | 0.24 | 0.77 | 0.12 | 0.06 | 0.00 | 0.00 |
213–235° | 0.18 | 0.77 | 0.00 | 0.00 | 0.00 | 0.00 |
236–257° | 0.18 | 0.30 | 0.06 | 0.00 | 0.00 | 0.00 |
258–280° | 0.18 | 0.71 | 0.18 | 0.06 | 0.00 | 0.00 |
281–302° | 0.24 | 1.07 | 0.71 | 0.71 | 0.06 | 0.06 |
303–325° | 0.24 | 0.83 | 0.36 | 0.59 | 0.18 | 0.06 |
326–347° | 0.24 | 0.71 | 0.18 | 0.12 | 0.24 | 0.00 |
Calm | 29.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jury, M.R. Winter Climate of Northeastern Dominican Republic and Cash Crop Production. Climate 2023, 11, 161. https://doi.org/10.3390/cli11080161
Jury MR. Winter Climate of Northeastern Dominican Republic and Cash Crop Production. Climate. 2023; 11(8):161. https://doi.org/10.3390/cli11080161
Chicago/Turabian StyleJury, Mark R. 2023. "Winter Climate of Northeastern Dominican Republic and Cash Crop Production" Climate 11, no. 8: 161. https://doi.org/10.3390/cli11080161
APA StyleJury, M. R. (2023). Winter Climate of Northeastern Dominican Republic and Cash Crop Production. Climate, 11(8), 161. https://doi.org/10.3390/cli11080161